Chapter 45 MIPI Controller

45.1 Overview

The Display Serial Interface (DSI) is part of a group of communication protocols defined by the MIPI Alliance. The MIPI Controller is a digital core that implements all protocol functions defined in the MIPI DSI Specification. The MIPI Controller provides an interface between the system and the MIPI D-PHY, allowing the communication with a DSI-compliant display. The MIPI Controller supports one to four lanes for data transmission with MIPI D-PHY.

The MIPI Controller supports the following features:

- Compliant with MIPI Alliance standards
- Support the DPI interface color coding mappings into 24-bit Interface
 - 16 bits per pixel, configurations 1,2,and 3
 - 18 bits per pixel, configurations 1 and 2
 - 24 bits per pixel
 - Programmable polarity of all DPI interface signals
- Extended resolutions beyond the DPI standard maximum resolution of 800x480 pixels:
 - Up to 2047 vertical active lines
 - Up to 63 vertical back porch lines
 - Up to 63 vertical front porch lines
 - Maximum resolution is limited by available DSI Physical link bandwidth which depends on the number of lanes and maximum speed per lane
- All commands defined in MIPI Alliance Specification for Display Command Set (DCS)
- Interface with MIPI D-PHY following PHY Protocol Interface (PPI), as defined in MIPI Alliance Specification for D-PHY
- Up to four D-PHY Data Lanes
- Bidirectional communication and escape mode support through data lane 0
- Transmission of all generic commands
- ECC and Checksum capabilities
- End of Transmission Packet(EOTp)
- Ultra Low-Power mode
- Fault recovery schemes

45.2 Block Diagram

The following diagram shows the MIPI Controller architecture.

Rockchip RK3128 Technical Reference Manual Rev 1.0

Fig. 45-1MIPI Controller architecture

The DPI interface captures the data and control signals and conveys them to a FIFO for video control signals and another one for pixel data. This data is then used to build Video packets, hen in Video mode.

The Register Bank is accessible through a standard AMBA-APB slave interface, providing access to the MIPI Controller registers for configuration and control. There is also a fully programmable interrupt generator to inform the system about certain events.

The PHY Interface Control is responsible for managing the D-PHY PPI interface. It acknowledges the current operation and enables low-power transmission/reception or a high-speed transmission. It also performs data splitting between available D-PHY lanes for high-speed transmission.

The Packet Handler schedules the activities inside the link. It performs several functions based on the interfaces that are currently DPI and the video transmission mode that is used (burst mode or non-burst mode with sync pulse or sync events). It builds long or short packet generating correspondent ECC and CRC codes. This block also performs the following functions: Packet reception, Validation of packet header by checking the ECC, Header correction and notification for single-bit errors, Termination of reception, Multiple header error notification.

The APB-to-Generic block bridges the APB operations into FIFOs holding the Generic commands. The block interfaces with the following FIFOS: Command FIFO, Write payload FIFO, Read payload FIFO.

The Error Management notifies and monitors the error conditions on the DSI link. It controls the timers used to determine if a timeout condition occurred, performing an internal soft reset and triggering an interruption notification.

45.3 Function Description

45.3.1 DPI interface function

TheDPI interface follows the MIPI DPI specification with pixel data bus width up to 24 bits. It is used to transmit the information in Video mode in which the transfers from the host processor to the peripheral take the form of a real-time

pixel stream. This interface allows sending ShutDown (SD) and ColorMode (CM) commands, which are triggered directly by writing to the register of CFG_MISC_CON[2:1]. To transfer additional commands(for example, to initialize the display), use another interface such as APB Slave Generic Interface to complement the DPI interface.

The DPI interface captures the data and control signals and conveys them to the FIFO interfaces that transmit them to the DSI link. Two different streams of data are presented at the interface; video control signals and pixel data. Depending on the interface color coding, the pixel data is disposed differently throughout the dpipixdata bus. The following table shows the Interface pixel color coding.

The DPI interface can be configured to increase flexibility and promote correct usage of this interface for several systems. These configuration options are as follows:Polarity control: All the control signals are programmable to change the polarity depending on system requirements.

After the MIPI Controller reset, DPI waits for the first VSYNC active transition to start signal sampling, including pixel data, and preventing image transmission in the middle of a frame.

If interface pixel color coding is 18 bits and the 18-bit loosely packed stream is disabled, the number of lines programmed in the pixels per lines configuration is a multiple of four. This means that in this mode, the two LSBs in the

configuration are always inferred as zero. The specification states that in this mode, the pixel line size should be a multiple of four.

45.3.2 APB Slave Generic Interface

The APB Slave interface allows the transmission of generic information in Command mode, and follows the proprietary register interface. Commands sent through this interface are not constrained to comply with the DCS specification, and can include generic commands described in the DSI specification as manufacturer-specific.

The MIPI Controller supports the transmission or write and read command mode packets as described in the DSI specification. These packets are built using the APB register access. The GEN_PLD_DATA register has two distinct functions based on the operation. Writing to this register sends the data as payload when sending a Command mode packet. Reading this register returns the payload of a read back operation. The GEN_HDR register contains the Command mode packet header type and header data. Writing to this register triggers the transmission of the packet implying that for a long Command mode packet, the packet's payload needs to be written in advance in the GEN_PLD_DATA register. The valid packets available to be transmitted through the Generic interface are as follows:

Generic Write Short Packet 0 Parameters Generic Write Short Packet 1 Parameters

Generic Write Short Packet 2 Parameter

Generic Write Short Packet 0 Parameter

Generic Write Short Packet 1 Parameters

Generic Write Short Packet 2 Parameter

Maximum Read Packet Configuration

Generic Long Write Packet

DCS Write Short Packet 0 Parameter

DCS Write Short Packet 1 Parameter

DCS Write Short Packet 0 Parameter

DCS Write Long Packet

A set of bits in the CMD_PKT_STATUS register report the status of the FIFOs associated with APB interface support.

Generic interface packets are always transported using one of the DSI transmission modes; Video mode or Command mode. If neither of these mode are selected, the packets are not transmitted through the link and the released FIFOs eventually get overflowed.

The transfer of packets through the APB bus is based on the following conditions:

The APB protocol defines that the write and read procedure takes two clock cycles each to be executed. This means that the maximum input data rate through the APB interfaces is always half the speed of the APB clock.

The data input bus has a maximum width of 32 bits. This allows for a relation to be defined between the input APB clock frequency and maximum bi rate achievable by the APB interface.

The DSI link bit rate when using solely APB is equal to (APB clock frequency) *16 Mbps.

The bandwidth is dependent on the APB clock frequency; the available bandwidth increases with the clock frequency.

To drive the APB interface to achieve high bandwidth Command mode traffic transported by the DSI link, the MIPI Controller should operate in the Command

mode only and the APB interface should be the only data source that is currently in use. Thus, the APB interface has the entire bandwidth of the DSI link and does not share it with any another input interface source.

The memory write commands require maximum throughout from the APB interface, because they contain the most amount of data conveyed by the DSI link. While writing the packet information, first write the payload of a given packet into the payload FIFO using the GEN_PLD_DATA register. When the payload data is for the command parameters, place the first byte to be transmitted in the least sgnificant byte position of the APB data bus.

After writing the payload, write the packet header into the command FIFO. For more information and it should follow the pixel to byte conversion organization referred in the Annexure A of the DCS specification. The follow figures show how the pixel data should be orgavized in the APB data write bus. The memory write commands are conveyed in DCS long packets. DCS long packets are encapsulated in a DSI packet. The DSI included in the diagrams. In the follow figures, the Write Memory Command can be replaced by the DCS command Write Memory Start and Write Memory Continue.

Fig. 45-318 bpp APB Pixel to Byte Organization

Fig. 45-416 bpp APB Pixel to Byte Organization

Fig. 45-512 bpp APB Pixel to Byte Organization

Fig. 45-68 bpp APB Pixel to Byte Organization

45.3.3 Transmission of Commands in Video Mode

The MIPI Controller supports the transmission of commands, both in high-speed and low-power, while in Video mode. The DSI controller uses Blanking or Low-Power(BLLP) periods to transmit commands inserted through the APB Generic interface. Those periods correspond to the shaded areas of the following figure.

Fig. 45-7Command Transmission Periods within the Image Area

Commands are transmitted in the blanking periods after the following packet/states:

- Bertical Sync Start (VSS) packets, if the Video Sync pulses are not enabled
- Horizontal Sync End (HSE) packets, in the VSA, VBP, and VFP regions
- Horizontal Sync Start (HSS) packets, if the Video Sync pulses are not enabled in the VSA, VBP, and VFP regions
- Horizontal Active (HACT) state

Only one command is transmitted per line, even in the case of the last line of a frame but one command is possible for each line.

The MIPI Controller avoids sending commands in the last line because it is possible that the last line is shorter than the other ones. For instance, the line time (tL) could be half a cycle longer than the tL on the DPI interface, that is, each line in the frame taking half a cycle from time for the last line. This results in the last line being (1/2 cycle) * (number of lines -1) shorter than tL.

The dpicolorm and dpishutdn input signals are also able to trigger the sending of command packets. The commands are DSI data types Color Mode On, Color Mode Off, Shut Down Peripheral, and Turn on Peripheral. These commands are not sent in the VACT region. If the lpcmden bit of the VID_MODE_CFG register is 1, these commands are sent in LP mode. In LP mode, the ouvact_lpcmd_time field of the LP_CMD_TIM register is used to determine if these commands can be transmitted. It is assumed that outvact_lpcmd_time is greater than or equal to 4 bytes (number of bytes in a short packet), because the DWC_mipi_dsi_host does not transmit these commands on the last line.

If the frame_BTA_ack field is set in the VID_MODE_CFG register, a BTA is generated by DWC_mipi_dsi_host after the last line of a frame. This may coincide with a write command or a read command. In either case, the edpihalt signal is held asserted until an acknowledge has been received (control of the DSI bus is returned to the host).

If the lpcmden bit of the VID_MODE_CFG register is set to 1, the commands are sent in low-power in Video mode. In this case, it is necessary to calculate the time available, in bytes, to transmit a command in LP mode for Horizontal Front Porch (HFP), Vertical Sync Active (VSA), Vertical Back Porch (VBP), and Vertical Front Porch(VFP) regions.

The outvact_lpcmd_time field of the LP_CMD_TIM register indicates the time available (in bytes) to transmit a command in LP mode, based on the escape clock, on a line during the VSA, VBP, and the VFP

Outvact_lpcmd_time=(tL-(Time to transmit HSS and HSE frames +tHSA+Time to enter and leave LP mode+Time to send the D-PHY LPDT command)) / escape clock period / 8 / 2

Where,

tL=Line time

tHSA=Time to send a short packet (for sync events) or time of the HAS pulse (for sync pulses)

In the above equation, division by eight is done to convert the time available to bytes and division by two is done because one bit is transmitted once in every two escape clock cycles.

The outvact_lpcmd_time filed can be compared directly with the size of the command to be transmitted to determine if there is enough time to transmit the command. The maximum size of a command that can be transmitted in LP mode is limited to 255 bytes by this field. This register must be programmed to a value greater than or equal to 4 bytes for the transmission of the DCTRL commands such as shutdown and colorm in LP mode.

Consider an example with 12.6 µs per line and assume an escape clock frequency of 15 MHz. In this case, 189 escape clock cycles are available to enter and exit LP mode and transmit command. The following are assumed: Sync pulses are not being transmitted

Two lane byte clock ticks are required to transmit a short packet

phy_lp2hs_time=16

phy_lp2p_time=20

In this example, a 11-byte command can be transmitted as follows:

outvact_lpcmd_time=(12.6µs-(2*10 ns)-(16*10 ns)-(20*10 ns)-(8*66 ns)) / 66 ns / 8 / 2 = 11 bytes

The invact_lpcmd_time field of the LP_CMD_TIM register indicates the time available (in bytes) to transmite a command in LP mode (based on the escape clock) in the Vertical Active (VACT) region. This time is calculated as follows:

Invact_lpcmd_time= ((tHFP-Time to enter and leave low-power mode + Blanking period before the HFP when in Burst mode- Time to send the D-PHY LPDT command) / escape clock period) / 8

Where,

tHFP=line time-tHSA-tHBP-tHACT

tHACT=vid_pkt_size*bits_per_pixel*lane_byte_clock_period / num_lanes The invact_lpcmd_time field can be compared directly with the size of the command to be transmitted to determined if there is time to transmit the command.

Consider an example where the refresh rate is 60 Hz. The number of lines is 1320 (typical). The tL in this case is 12.6 μ s. With a lane byte clock of 100 MHz, 1260 clock ticks are availabel to transmit a single frame. If 800 ticks are used for pixel data then 460 ticks (4.6 μ s) are available for Horizontal Sync Start (HSS), HFP, and HBP. Assuming that 2.3 μ s is available for HFP and the escape clock is 15MHz, only 34 LP clock ticks are available to enter LP, transmit a command, and return from LP mode. Approximately 12 escape clock ticks are required to enter and leave LP mode. Therefore, only 1 byte could be transmitted in this

period.

A short packet (for example, generic short write) requires a minimum of 4 bytes. Therefore, in this exampled, commands are not sent in the VACT region. If Burst mode is enabled, more time is available to transmit commands in the VACT region. The following are assumed:

The controller is not in Burst mode

phy_lp2hs_time=16

phy_lp2hs_time=16

In this examplem invact_lpcmd_time is calculated as follows:

Invact_lpcmd_time = $(2.3 \mu s - (16*10 \text{ ns}) - (20*10 \text{ ns}) - (8*66 \text{ ns})) / 66 \text{ ns} / 8 = 2$ bytes

The outvact_lpcmd_time and invact_lpcmd_time fields allow a simple comparision to determine if a command can be transmitted in any of the BLLP periods.

Figure 5-21 illustrates the meaning of invact_lpcmd_time and outvact_lpcmd_time, matching them with the shaded areas and the VACT region.

Fig. 45-8 Location of outvact_lpcmd_time and invact_lpcmd_time in the Image Area

If the lpcmden bit of the VID_MODE_CFG register is 0, the commands are sent in high_speed in Video Mode. In this case, the DWC_mipi_dsi_host automatically determines the area where each command can be sent and no programming or calculation is requied.

On read command Transmission, the max_rd_time field of the PHY_TMR_CFG register configures the maximum amount of time required to perform a read command in lane byte clock cycles.

The maximum time required to perform a read command in Lane byte clock cycles (max_rd_time) =Time to transmit the read command in LP mode + Time to enter and leave LP mode + Time to return the read data packet from the peripheral device.

The time to return the read data packet from the pripheral depends on the number of bytes read and the escape clock frequency of the peripheal; not the escape clock of the host. The max_rd_time field is used in both HS and LP mode to determine if there is time to complete a read command in a BLLP period. In high-speed mode (lpcmden=0), max_rd_time is calculated as follows: max_rd_time = phy_hs2lp_time + Time to return the read data packet from the peripheral device + phy_hs2hs_time

In low-power mode (lpcmden = 1), max_rd_time is calculated as follows: max_rd_time = phy_hs2lp_time +LPDT command time + Read command time in LP mode + Time to return the data read from the peripheral device + phy_lp2hs_time

Where,

LPDT command time = (8*Host escape clock period) / Lane byte clock period Read command time in LP mode = <math>(32 * host escape clock period) / lane byte clock period

It is recommended to keep the maximum number of bytes read from the peripheral to a minimum to have sufficient time available to issue the read commands on a line. Ensure that max_rd_time* Lane byte clock period is less than outvact_lpcmd_time *8*Escape clock period of the host.

Otherwise, the read commands are serviced on the last line of a frame and the edpihalt signal may be asserted. If it is necessary to read a large number of parameters (>16), increase the max_rd_time while the read command is being executed. When the read has completed, decrease the max_rd_time to a lower value.

45.4 Register Description

This section describes the control/status registers of the design.

45.4.1 Register Summary

Name	Offset	Size	Reset Value	Description
MIPIC_VERSION	0x0000	W	0x3132302a	Version of the mipi controller
MIPIC_PWR_UP	0x0004	W	0x0000000	Core power-up
MIPIC_CLKMGR_CFG	0x0008	W	0x00000000	Configuration of the internal clock dividers
MIPIC_DPI_VCID	0x000c	W	0x0000000	The DPI interface configuration.
MIPIC_DPI_COLOR_C ODING	0x0010	W	0x0000000	
MIPIC_DPI_CFG_POL	0x0014	W	0x0000000	• () *
MIPIC_LP_CMD_TIM	0x0018	w	0×00000000	Low-power Command Timing Configuration Register.
MIPIC_PCKHDL_CFG	0x002c	w	0x00000000	Packet handler configuration
MIPIC_GEN_VCID	0x0030	W	0x00000000	$\lambda \cup$
MIPIC_MODE_CFG	0x0034	W	0x0000000	
MIPIC_VID_MODE_CF G	0x0038	W	0x00000000	Video mode configuration.
MIPIC_VID_PKT_SIZE	0x003c	W	0x0000000	
MIPIC_VID_NUM_CHU NKS	0x0040	w	0x0000000	
MIPIC_VID_NULL_SIZ E	0x0044	w	0x0000000	
MIPIC_VID_HSA_TIM E	0x0048	w	0x00000000	Line timing configuration.
MIPIC_VID_HBP_TIM E	0x004c	w	0x00000000	
MIPIC_VID_HLINE_TI ME	0x0050	W	0x00000000	
MIPIC_VID_VSA_LINE S	0x0054	W	0x00000000	Vertical timing configuration.
MIPIC_VID_VBP_LINE S	0x0058	W	0x0000000	
MIPIC_VID_VFP_LINE	0x005c	W	0x0000000	
MIPIC_VID_VACTIVE_ LINES	0x0060	W	0x0000000	
MIPIC_EDPI_CMD_SI ZE	0x0064	W	0x0000000	
MIPIC_CMD_MODE_C FG	0x0068	W	0x0000000	Command mode configuration
MIPIC_GEN_HDR	0x006c	W	0x00000000	Generic packet header configuration.
MIPIC_GEN_PLD_DAT	0x0070	W	0x0000000	Generic payload data in and out.
MIPIC_CMD_PKT_STA TUS	0x0074	W	0x00000000	Command packet status

Name	Offset	Size	Reset Value	Description
MIPIC_TO_CNT_CFG	0x0078	W	0×00000000	Timeout timers configuration
MIPIC_HS_RD_TO_CN T	0x007c	w	0x00000000	
MIPIC_LP_RD_TO_CN T	0x0080	W	0x00000000	
MIPIC_HS_WR_TO_C NT	0x0084	W	0x0000000	
MIPIC_LP_WR_TO_CN T	0x0088	W	0x0000000	A
MIPIC_BTA_TO_CNT	0x008c	W	0x0000000	
MIPIC_LPCLK_CTRL	0x0094	W	0x0000000	• • • • •
MIPIC_PHY_TMR_LPC LK_CFG	0x0098	W	0x0000000	XY
MIPIC_PHY_TMR_CFG	0x009c	W	0x0000000	D-PHY timing configuration
MIPIC_PHY_RSTZ	0x00a0	W	0x0000000	D-PHY reset control
MIPIC_PHY_IF_CFG	0x00a4	w	0×00000000	D-PHY interface configuration
MIPIC_PHY_ULPS_CT RL	0x00a8	W	0x0000000	D-PHY PPI interface control
MIPIC_PHY_TX_TRIG GERS	0x00ac	W	0x0000000	
MIPIC_PHY_STATUS	0x00b0	W	0x00000000	D-PHY PPI status interface
MIPIC_RESERVED3	0x00b4	W	0x0000000	Reserved
MIPIC_RESERVED4	0x00b8	W	0x0000000	Reserved
MIPIC_ERROR_ST0	0x00bc	W	0x0000000	Interrupt status register 0
MIPIC_ERROR_ST1	0x00c0	W	0x0000000	Interrupt status register 1
MIPIC_MSK0	0x00c4	w	0×00000000	Masks the interrupt generation triggerd by the ERROR_ST0 reg
MIPIC_MSK1	0x00c8	W	0×00000000	Masks the interrupt generation triggerd by the ERROR_ST1 reg

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

45.4.2 Detail Register Description

MIPIC_VERSION

Address: Operational Base + offset (0x0000) Version of the mipi controller

Bit	Attr	Reset Value	Description
31:0	RO	0x3132302a	version indicates the version of the mipi_controller

MIPIC_PWR_UP

Address: Operational Base + offset (0x0004) Core power-up

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RW	0×0	shutdownz This bit indicates the core power-up or the reset 0-Reset 1-Power-up

MIPIC_CLKMGR_CFG

Address: Operational Base + offset (0x0008) Configuration of the internal clock dividers

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			TO_CLK_DIVISION
			This field indicates the division factor for the
15:8	RW	0x00	Time Out clock used as the timing unit in the
			configuration of HS to LP and LP to HS
			transition error.
			TX_ESC_CLK_DIVISION
			Field0000 Abstract
7:0	RW	0x00	This field indicates the division factor for the
			TX_Escape clock source(lanebyteclk).The
			value 0 and 1 stop the TX_ESC clock generation

MIPIC_DPI_VCID

Address: Operational Base + offset (0x000c)

The DPI interface configuration.

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1:0	RW	0x0	dpi_vid This field configures the DPI virtual channel id that is indexed to the Video mode packets.

MIPIC_DPI_COLOR_CODING

Address: Operational Base + offset (0x0010)

Bit	Attr	Reset Value	Description
31:9	RO	0x0	reserved
8	RW	0×0	en18_loosely When set to 1,this bit enables 18 loosely packed pixel stream.
7:4	RO	0x0	reserved

Rockchip RK3128 Technical Reference Manual Rev 1.0

Bit	Attr	Reset Value	Description
3:0	RW	0x0	dpi_color_coding This field configures the DPI color coding as follows: 000:16bit configuration 1 001:16bit configuration 2 010:16bit configuration 3 011:18bit configuration 1 100:18bit configuration 2
			101,110,and 111:24bits

MIPIC_DPI_CFG_POL

Address: Operational Base + offset (0x0014)

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4	RW	0x0	colorm_active_low When set to 1,this bit configures the color mode pin as active low
3	RW	0x0	shutd_active_low When set to 1,this bit configures the shut down pin as active low
2	RW	0x0	hsync_active_low When set to 1,this bit configures the horizontal synchronism pin as active low.
1	RW	0x0	vsync_active_low When set to 1,this bit configures the vertical synchronism pin as active low
0	RW	0x0	dataen_active_low When set to 1,this bit configures the data enable pin as active low

MIPIC_LP_CMD_TIM

Address: Operational Base + offset (0x0018) Low-power Command Timing Configuration Register.

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved
23:16	RW	0x00	outvact_lpcmd_time outside VACT region command time.This field configures the time available to transmit a command in low-power mode.The time value is expressed in a number of bytes format.The number of bytes represents the maximum size of a packet that can fit in a line during the VSA,VBP,and VFP region. This field must be configured with a value greater than or equal to four bytes to allow the transmission of the DCTRL commands such as shutdown and colorm in low-power mode.
15:8	RO	0x0	reserved

•

Rockchip RK3128 Technical Reference Manual Rev 1.0

Bit	Attr	Reset Value	Description
7:0	RW	0x00	invact_lpcmd_time Inside VACT region command time.This field configures the time available to transmit a command in low-power mode.The time value is expressed in a number of bytes format.The number of bytes represents the maximum size of the packet that can fit a line during the VACT region.

MIPIC_PCKHDL_CFG

Address: Operational Base + offset (0x002c) Packet handler configuration

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
			en_CRC_rx
4	RW	0x0	When set to 1, this bit enables the CRC
			reception and error reporting
			en_ECC_rx
3	RW	0x0	When set to 1, this bit enables the ECC
			reception, error correction, and reporting
			en_BTA
2	RW	0x0	When set to 1, this bit enables the Bus
			Turn-Around(BTA) request.
			en_EOTp_rx
1	RW	0x0	When set to 1, this bit enables the EOTp
			reception
			en_EOTp_tx
0	RW	0x0	When set to 1, this bit enables the EOTp
		•	transmission

MIPIC_GEN_VCID

Address: Operational Base + offset (0x0030) Packet handler configuration

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1:0	RW	0×0	gen_vid_rx This field indicates the Generic interface read-back virtual channel identification

MIPIC_MODE_CFG

Address: Operational Base + offset (0x0034)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RW	0×0	en_video_mode When set to 1,this bit enables the DPI Video mode transmission.

MIPIC_VID_MODE_CFG

Address: Operational Base + offset (0x0038) Video mode configuration.

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15	RW	0x0	lpcmden When set to 1,this bit enables the command transmission only in low-power mode
14	RW	0x0	frame_BTA_ack When set to 1,this bit enables the request for an acknowledge response at the end of a frame
13	RW	0×0	en_lp_hfp When set to 1,this bit enables the return to low-power inside the HFP period when timing allows.
12	RW	0×0	en_lp_hbp When set to 1,this bit enables the return to low-power inside the HBP period when timing allows.
11	RW	0×0	en_lp_vact When set to 1,this bit enables the return to low-power inside the VACT period when timing allows.
10	RW	0×0	en_lp_vfp When set to 1,this bit enables the return to low-power inside the VFP period when timing allows.
9	RW	0x0	en_lp_vbp When set to 1,this bit enables the return to low-power inside the VBP period when timing allows.
8	RW	0×0	en_lp_vsa When set to 1,this bit enables the return to low-power inside the VSA period when timing allows.
7:2	RO	0x0	reserved
1:0	RW	0×0	vid_mode_type This field indicates the video mode transmission type as follows: 00:Non-burst with sync pulses 01:Non-burst with sync events 10 and 11:Burst with sync pulses

MIPIC_VID_PKT_SIZE

Address: Operational Base + offset (0x003c)

Bit	Attr	Reset Value	Description
31:14	RO	0x0	reserved

Bit	Attr	Reset Value	Description
13:0	RW	0×0000	vid_pkt_size This field configures the number of pixels on a single vedio packet.if you use the 18-bit mode and do not enable loosely packed stream,this vaule must be a multiple of 4.

MIPIC_VID_NUM_CHUNKS

Address: Operational Base + offset (0x0040)

Bit	Attr	Reset Value	Description
31:13	RO	0x0	reserved
12:0	RW	0×0000	num_chunks This field configures the number of chunks to be transmitted during a line period(a chunk is a video packet or a null packet)

MIPIC_VID_NULL_SIZE

Address: Operational Base + offset (0x0044)

Bit	Attr	Reset Value	Description
31:13	RO	0x0	reserved
12:0	RW	0x0000	null_pkt_size This field configures the number of bytes in a null packet

MIPIC_VID_HSA_TIME

Address: Operational Base + offset (0x0048) Line timing configuration.

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
11:0	RW	0×000	hsa_time This field configures the Horizontal Synchronism Active period in lane byte clock cycles.

MIPIC_VID_HBP_TIME

Address: Operational Base + offset (0x004c)

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
11:0	RW	0×000	hbp_time This field configures the Horizontal Back Porch period in lane byte clock cycles

MIPIC_VID_HLINE_TIME

Address: Operational Base + offset (0x0050)

Bit	Attr	Reset Value	Description
31:15	RO	0x0	reserved
14:0	RW	0x0000	hline_time This field configures the size of the total lines counted in lane byte cycles.

MIPIC_VID_VSA_LINES

Address: Operational Base + offset (0x0054) Vertical timing configuration.

Bit	Attr	Reset Value	Description
31:10	RO	0x0	reserved
9:0	RW	0x000	vsa_lines This field configures the Vertical Synchronism Active period measured in number of horizontal lines.

MIPIC_VID_VBP_LINES

Address: Operational Base + offset (0x0058)

Bit	Attr	Reset Value	Description
31:10	RO	0x0	reserved
9:0	RW	0x000	vbp_lines This field configures the Vertical Back Porch period measured in horizontal lines.

MIPIC_VID_VFP_LINES

Address: Operational Base + offset (0x005c)

Bit	Attr	Reset Value	Description
31:10	RO	0x0	reserved
9:0	RW	0×000	vfp_lines This field configures the Vertical Front Porch period measured in horizontal lines.

MIPIC_VID_VACTIVE_LINES

Address: Operational Base + offset (0x0060)

Bit	Attr	Reset Value	Description
31:14	RO	0x0	reserved
13:0	RW	0×0000	v_active_line This field configures the Vertical Active period measured in horizontal lines.

MIPIC_EDPI_CMD_SIZE

Address: Operational Base + offset (0x0064)

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:0	RW	0×0000	edpi_allowed_cmd_size This field configures the maximum allowed size for an eDPI write memory command,measured in pixels.Automatic partitioning of data obtained from eDPI is permanently enabled.

MIPIC_CMD_MODE_CFG

Address: Operational Base + offset (0x0068) Command mode configuration

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
24	RW	0×0	max_rd_pkt_size This bit configures the maximum read packet size command transmission type: 0:High-speed 1:Low-power
23:20	RO	0x0	reserved
19	RW	0x0	dcs_lw_tx This bit configures the DCS long write packet command transmission type: 0:High-speed 1:Low-power
18	RW	0x0	dcs_sr_0p_tx This bit configures the DCS short read packet with zero parameter command transmission type: 0:High-speed 1:Low-power
17	RW	0×0	dcs_sw_1p_tx This bit configures the DCS short write packet with one parameter command transmission type: 0:High-speed 1:Low-power
16	RW	0x0	dcs_sw_0p_tx This bit configures the DCS short write packet with zero parameter command transmission type: 0:High-speed 1:Low-power
15	RO	0x0	reserved
14	RW	0x0	gen_lw_tx This bit configures the Generic long write packet command 0:High-speed 1:Low-power

Rockchip RK3128 Technical Reference Manual Rev 1.0

Bit	Attr	Reset Value	Description
13	RW	0x0	gen_sr_2p_tx This bit configures the Generic short read packet with two parameter command transmission type: 0:High-speed
12	RW	0×0	gen_sr_1p_tx This bit configures the Generic short read packet with one parameter command transmission type: 0:High-speed 1:Low-power
11	RW	0x0	gen_sr_0p_tx This bit configures the Generic short read packet with zero parameter command transmission type: 0:High-speed 1:Low-power
10	RW	0x0	gen_sw_2p_tx This bit configures the Generic short write packet with two parameter command transmission type: 0:High-speed 1:Low-power
9	RW	0x0	gen_sw_1p_tx This bit configures the Generic short write packet with one parameter command transmission type: 0:High-speed 1:Low-power
8	RW	0x0	gen_sw_0p_tx This bit configures the Generic short write packet with zero parameter command transmission type: 0:High-speed 1:Low-power
7:2	R0	0x0	reserved
1	RW	0x0	ack_rqst_en When
0	RW	0x0	tear_fx_en When set to 1,this bit enables the tearing effect acknowledge request

MIPIC_GEN_HDR

Address: Operational Base + offset (0x006c)

Generic packet header configuration.

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved

Bit	Attr	Reset Value	Description
23:16	RW	0×00	gen_WC_MSbyte This field configures the most significant byte of the header packet's Word count for long packets or data 1 for short packets.
15:8	RW	0×00	gen_WC_LSbyte This field configures the least significant byte of the header packet's Word count for long packets or data 0 for short packets.
7:6	RW	0x0	gen_VC This field configures the virtual channel id of the header packet.
5:0	RW	0x00	gen_DT This field configures the packet data type of the header packet

MIPIC_GEN_PLD_DATA

MIPIC_GEN_PLD_DATA Address: Operational Base + offset (0x0070) Generic payload data in and out.				
Bit	Attr	Reset Value	Description	
31:24	RW	0×00	gen_pld_b4 This field indicates byte 4 of the packet payload.	
23:16	RW	0×00	gen_pld_b3 This field indicates byte 3 of the packet payload.	
15:8	RW	0×00	gen_pld_b2 This field indicates byte 2 of the packet payload.	
7:0	RW	0x00	gen_pld_b1 This field indicates byte 1 of the packet payload.	

MIPIC_CMD_PKT_STATUS

Address: Operational Base + offset (0x0074) Command packet status

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7	RW	0×0	reserved
/		0.00	reserved
6	RW	0×0	gen_rd_cmd_busy This bit is set when a read command is issued and cleared when the entire response is stored in the FIFO
5	RW	0×0	gen_pld_r_full This bit indicates the full status of the generic read payload FIFO Vaule after reset:0x0

Rockchip RK3128 Technical Reference Manual Rev 1.0

Bit	Attr	Reset Value	Description
4	RO	0×0	gen_pld_r_empty This bit indicates the empty status of the generic read payload FIFO Vaule after reset:0x1
3	RO	0×0	gen_pld_w_full This bit indicates the full status of the generic write payload FIFO Vaule after reset:0x0
2	RO	0×0	gen_pld_w_empty This bit indicates the empty status of the generic write payload FIFO Vaule after reset:0x1
1	RO	0×0	gen_cmd_full This bit indicates the full status of the generic command FIFO Vaule after reset:0x0
0	RO	0×0	gen_cmd_empty This bit indicates the empty status of the generic command FIFO Vaule after reset:0x1

MIPIC_TO_CNT_CFG

Address: Operational Base + offset (0x0078)

Bit	Attr	Reset Value	Description	
31:16	RW	0×0000	hstx_to_cnt This field configures the timeout counter that triggers a high-speed transmission timeout contention detection(measured in TO_CLK_DIVISION cycles)	
15:0	RW	0×0000	Iprx_to_cnt This field configures the timeout counter that triggers a low-power reception timeout contention detection(measured in TO_CLK_DIVISION cycles)	

MIPIC_HS_RD_TO_CNT

Address: Operational Base + offset (0x007c)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RW	0x0	hs_rd_to_cnt This field sets a period for which the MIPI Controller keeps the link still,after sending a high-speed read operation.This period is measured in cycles of lanebyteclk.The counting starts when the D-PHY enters the Stop state and causes no interrupts.

MIPIC_LP_RD_TO_CNT

Address: Operational Base + offset (0x0080)

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:0	RW	0×0000	Ip_rd_to_cnt This field sets a period for which MIPI Controller keeps the link still,after sending a low-power read operation.This period is measured in cycles of lanebyteclk.The counting starts when the D-PHY enters the Stop state and causes no interrupts.

MIPIC_HS_WR_TO_CNT

Address: Operational Base + offset (0x0084)

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
24	RW	0x0	presp_to_mode When set to 1, this bit ensures that the peripheral respone timeout caused by hs_wr_to_cnt is used only once per eDPI frame,when both the following conditions are met: .dpivsync_edpiwms has risen and fallen .packets originated from eDPI have been transmitted and its FIFO is empty again.
23:16	RO	0x0	reserved
15:0	RW	0×0000	hs_wr_to_cnt This field sets a period for which the MIPI Controller keeps the link inactive after sending a high-speed write operation.This period is measured in cycles of lanebyteclk.The counting starts when the D-PHY enters the Stop state and causes no interrupts.

MIPIC_LP_WR_TO_CNT

Address: Operational Base + offset (0x0088)

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:0	RW	0×0	Ip_wr_to_cnt This field sets a period for which the DSI Controller keeps the link still,after sending a low-power write operation.This period is measured in cycles of lanebyteclk.The counting starts when the D-PHY enters the Stop state and causes no interrupts.

MIPIC_BTA_TO_CNT

X

Address: Operational Base + offset (0x008c)

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:0	RW	0×0000	bta_to_cnt This field sets a period for which the DSI Controller keeps the link still,after completing a Bus Turn-Around.This period is measured in cycles of lanebyteclk.The counting starts when the D-PHY enters the Stop state and causes no interrupts.

MIPIC_LPCLK_CTRL

Address: Operational Base + offset (0x0094)

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1	RW	0x0	auto_clklane_ctrl This bit enables the automatic mechanism to stop providing clock in the clock lane when time allows.
0	RW	0×0	phy_txrequestclkhs This bit controls the D-PHY PPI tx requestclkhs signal

MIPIC_PHY_TMR_LPCLK_CFG

Address: Operational Base + offset (0x0098)

Bit	Attr	Reset Value	Description		
31:26	RO	0x0	reserved		
25:16	RW	0×000	phy_hs2lp_time This field configures the maximum time that the PHY takes to go from high-speed to low-power transmission measured in lane byte clock cycles.(clock lane)		
15:10	RO	0x0	reserved		
9:0	RW	0×000	phy_lp2hs_time This field configures the maximum time that the PHY takes to go from low-power to high-speed transmission measured in lane byte clock cycles.(clock lane)		
	Y				

MIPIC_PHY_TMR_CFG

Address: Operational Base + offset (0x009c) D-PHY timing configuration

Bit	Attr	Reset Value	Description
31:24	RW	0×00	phy_hs2lp_time This field configures the maximum time that the PHY takes to go from high-speed to low-power transmission measured in lane byte clock cycles.

Bit	Attr	Reset Value	Description
23:16	RW	0x00	phy_lp2hs_time This field configures the maximum time that the PHY takes to go from low-power to high-speed transmission measured in lane byte clock cycles.
15	RW	0x0	reserved reserved for future use
14:0	RW	0x0000	max_rd_time This field configures the maximum time required to perform a read command in lane byte clock cycles.This register can only by modified when read commands are not in progress.

MIPIC_PHY_RSTZ

			p. e.g. eee.	
MIPIC_PHY_RSTZ Address: Operational Base + offset (0x00a0) D-PHY reset control				
Bit	Attr	Reset Value	Description	
31:3	RO	0x0	reserved	
2	RW	0x0	phy_enableclk When set to 1,this bit enables the D-PHY Clock Lane Module	
1	RW	0x0	reserved1	
0	RW	0x0	reserved	

MIPIC_PHY_IF_CFG

Address: Operational Base + offset (0x00a4) D-PHY interface configuration

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:8	RW	0×00	phy_stop_wait_time This field configures the minimum wait period to request a high-speed transmission after the Stop state is accounted in clock lane cycles.
7:2	RO	0x0	reserved
1:0	RW	0x0	n_lanes This field configures the number of active data lanes: 00:One data lane(lane 0) 01:Two data lane(lanes 0 and 1) 10:Three data lanes(lanes 0,1,and 2) 11:Four data lanes(lanes 0,1,2,and 3)

MIPIC_PHY_ULPS_CTRL

Address: Operational Base + offset (0x00a8)

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved

Bit	Attr	Reset Value	Description
3	RW	0x0	phy_txexitulpslan ULPS mode Exit on all active data lanes
2	RW	0x0	phy_txrequlpslan ULPS mode Request on all active data lanes
1	RW	0x0	phy_txexitulpsclk ULPS mode Exit on clock lane
0	RW	0x0	phy_txrequlpsclk ULPS mode Request on clock lane

MIPIC_PHY_TX_TRIGGERS

Address: Operational Base + offset (0x00ac)

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3:0	RW	0x0	phy_tx_triggers This field controls the trigger transmissions.
MIPIC Addres	_ PHY_S s: Opera	TATUS tional Base + o	ffset (0x00b0)

MIPIC_PHY_STATUS Address: Operational Base + offset (0x00b0)

D-PHY F	PI statu	s inter	face
-			-

Bit	Attr	Reset Value	Description
31:13	RO	0x0	reserved
			ulpsactivenot3lane
12	RO	0x0	This bit indicates the status of
			ulpsactivenot3lane D-PHY signal
			phystopstate3lane
11	RO	0x0	This bit indicates the status of
			phystopstate3lane D-PHY signal
			ulpsactivenot2lane
10	RO	0x0	This bit indicates the status of
			ulpsactivenot2lane D-PHY signal
		1	phystopstate2lane
9	RO	0x0	This bit indicates the status of
	C		phystopstate2lane D-PHY signal
			ulpsactivenot1lane
8	RO	0x0	This bit indicates the status of
			ulpsactivenot1lane D-PHY signal
			phystopstate1lane
7	RO	0x0	This bit indicates the status of
			phystopstate1lane D-PHY signal
			rxulpsesc0lane
6	RW	0x0	This bit indicates the status of rxulpsesc0lane
			D-PHY signal
			ulpsactivenot0lane
5	RO	0x0	This bit indicates the status of
			ulpsactivenot0lane D-PHY signal
			phystopstate0lane
4	RO	0x0	This bit indicates the status of
			phystopstate0lane D-PHY signal

Bit	Attr	Reset Value	Description
			phyulpsactivenotclk
3	RO	0x0	This bit indicates the status of
			phyulpsactivenotclk D-PHY signal
			phystopstateclklane
2	RO	0x0	This bit indicates the status of
			phystopstateclklane D-PHY signal
			phydirection
1	RO	0x0	This bit indicates the status of phydirection
			D-PHY signal
			phylock
0	RO	0x0	This bit indicates the status of phylock D-PHY
			signal

MIPIC_RESERVED3

Address: Operational Base + offset (0x00b4) Reserved

Bit	Attr	Reset Value		Description
31:1	RO	0x0	reserved	
0	RW	0x0	Reserved	• ()

MIPIC_RESERVED4

Address: Operational Base + offset (0x00b8) Reserved

Bit	Attr	Reset Value	Description	
31:1	RO	0x0	reserved	
0	RW	0x0	Reserved	

MIPIC_ERROR_ST0

Address: Operational Base + offset (0x00bc) Interrupt status register 0

Bit	Attr	Reset Value	Description
31:21	RO	0x0	reserved
20	RO	0x0	dphy_errors_4 This bit indicates LP1 contention error ErrContentionLP1 from Lane 0
19	RO	0x0	dphy_errors_3 This bit indicates LP0 contention error ErrContentionLP0 from Lane 0
18	RO	0×0	dphy_errors_2 This bit indicates control error ErrControl from Lane 0
17	RO	0×0	dphy_errors_1 This bit indicates ErrSyncEsc low-power data transmission synchronization error from Lane 0
16	RO	0x0	dphy_errors_0 This bit indicates ErrEsc escape entry error from Lane 0

Bit	Attr	Reset Value	Description
			ack_with_err_15
15	RO	0x0	This bit retrieves the DSI protocol violation
			from the Display Acknowledge error report
			ack_with_err_14
1 4		0.40	This bit retrieves the reserved(specific to
14	RO	UXU	device) from the Display Acknowledge error
			report
			ack_with_err_13
10		0.40	This bit retrieves the invalid transmission
13	RU	UXU	length from the Display Acknowledge error
			report
			ack_with_err_12
12	RO	0x0	This bit retrieves the DSI VC ID Invalid from
			the Display Acknowledge error report
			ack_with_err_11
1.1		0.40	This bit retrieves the not recognized DSI data
	RU	UXU	type from the Display Acknowledge error
			report
			ack_with_err_10
10		0.40	This bit retrieves the checksum error(long
10	RO	0x0	packet only) from the Display Acknowledge
			error report
0			ack_with_err_9
			This bit retrieves the ECC
9	RO	UXU	error, multi-bit (detected and corrected) from
			the Display Acknowledge error report
			ack with err 8
		00	This bit retrieves the ECC
8	RO	UXU	error, single-bit (detected and corrected) from
		• *	the Display Acknowledge error report
			ack_with_err_7
7			This bit retrieves the reserved(specific to
/	RU	UXU	device) error from the Display Acknowledge
			error report
			ack_with_err_6
6	RO 🦰	0x0	This bit retrieves the False Control error from
)	the Display Acknowledge error report
			ack_with_err_5
5	RO	0x0	This bit retrieves the HS Receive Timeout error
			from the Display Acknowledge error report
			ack_with_err_4
1		0.00	This bit retrieves the LP Transmit Sync error
4	RU	UXU	error from the Display Acknowledge error
			report
			ack_with_err_3
2	RO	0x0	This bit retrieves the Escape Mode Entry
J			command error from the Display Acknowledge
			error report
			ack_with_err_2
2	RO	0x0	This bit retrieves the EoT sync error from the
			Display Acknowledge error report

Bit	Attr	Reset Value	Description
			ack_with_err_1
1	RO	0x0	This bit retrieves the SoT Sync error from the
			Display Acknowledge error report
			ack_with_err_0
0	RO	0x0	This bit retrieves the SoT error from the Display
			Acknowledge error report

MIPIC_ERROR_ST1

Address: Operational Base + offset (0x00c0) Interrupt status register 1

Bit	Attr	Reset Value	Description
31:13	RO	0x0	reserved
12	RO	0x0	gen_pld_recv_err This bit indicates that during a generic interface packet read back,the payload FIFO becomes full and the received data is corrupted.
11	RO	0x0	gen_pld_rd_err This bit indicates that during a DCS read data,the payload FIFO becomes empty and the data sent to the interface is corrupted
10	RO	0×0	gen_pld_send_err This bit indicates that during a Generic interface packet build,the payload FIFO becomes empty and corrupt data is sent.
9	RO	0x0	gen_pld_wr_err This bit indicates that the system tried to write a payload data through the Generic interface and the FIFO is full.Therefore,the command is not written.
8	RO	0x0	gen_cmd_wr_err This bit indicates that the system tried to write a command through the Generic interface and the FIFO is full.Therefore,the command is not written.
7	RO	0×0	dpi_pld_wr_err This bit indicates that during a DPI pixel line storage,the payload FIFO becomes full and the data stored is corrupted.
6	RO	0×0	eopt_err This bit indicates that the EOTp packet is not received at the end of the incoming peripheral transmission.
5	RO	0×0	pkt_size_err This bit indicates that the packet size error is detected during the packet reception.
4	RO	0×0	crc_err This bit indicates that the CRC error is detected in a received packet.

Bit	Attr	Reset Value	Description
3	RO	0x0	ecc_multi_err This bit indicates that the ECC multiple error is detected and corrected in a received packet.
2	RO	0x0	ecc_single_err This bit indicates that the ECC single error is detected and corrected in a received packet.
1	RO	0×0	to_lp_rx This bit indicates that the low-power reception timeout counter reached the end and contention detection is detected.
0	RO	0×0	to_hs_tx This bit indicates that the high-speed transmission timeout counter reached the end and contention detection is detected.

MIPIC_MSK0

Address: Operational Base + offset (0x00c4) Masks the interrupt generation triggerd by the ERROR_ST0 reg

Bit	Attr	Reset Value	Description
31:21	RO	0x0	reserved
20	RW	0x0	dphy_errors_4 This bit indicates LP1 contention error ErrContentionLP1 from Lane 0
19	RW	0x0	dphy_errors_3 This bit indicates LP0 contention error ErrContentionLP0 from Lane 0
18	RW	0x0	dphy_errors_2 This bit indicates control error ErrControl from Lane 0
17	RW	0x0	dphy_errors_1 This bit indicates ErrSyncEsc low-power data transmission synchronization error from Lane 0
16	RW	0x0	dphy_errors_0 This bit indicates ErrEsc escape entry error from Lane 0
15	RW	0×0	ack_with_err_15 This bit retrieves the DSI protocol violation from the Display Acknowledge error report
14	RW	0x0	ack_with_err_14 This bit retrieves the reserved(specific to device) from the Display Acknowledge error report
13	RW	0x0	ack_with_err_13 This bit retrieves the invalid transmission length from the Display Acknowledge error report
12	RW	0x0	ack_with_err_12 This bit retrieves the DSI VC ID Invalid from the Display Acknowledge error report

Bit	Attr	Reset Value	Description
			ack_with_err_11
11	RW	0×0	This bit retrieves the not recognized DSI data type from the Display Acknowledge error report
			ack_with_err_10
10	RW	0x0	This bit retrieves the checksum error(long packet only) from the Display Acknowledge error report
			ack_with_err_9
9	RW	0×0	This bit retrieves the ECC error,multi-bit(detected and corrected) from the Display Acknowledge error report
			ack with err 8
8	RW	0×0	This bit retrieves the ECC error,single-bit(detected and corrected) from the Display Acknowledge error report
			ack with err 7
7	RW	0×0	This bit retrieves the reserved(specific to device) error from the Display Acknowledge error report
			ack_with_err_6
6	RW	0x0	This bit retrieves the False Control error from the Display Acknowledge error report
5	RW	0×0	ack_with_err_5 This bit retrieves the HS Receive Timeout error from the Display Acknowledge error report
4	RW	0×0	ack_with_err_4 This bit retrieves the LP Transmit Sync error error from the Display Acknowledge error report
3	RW	0x0	ack_with_err_3 This bit retrieves the Escape Mode Entry command error from the Display Acknowledge error report
2	RW	0x0	ack_with_err_2 This bit retrieves the EoT sync error from the Display Acknowledge error report
	RW	0x0	ack_with_err_1 This bit retrieves the SoT Sync error from the Display Acknowledge error report
0	RW	0x0	ack_with_err_0 This bit retrieves the SoT error from the Display Acknowledge error report

MIPIC_MSK1

Address: Operational Base + offset (0x00c8)

Masks the interrupt generation triggerd by the ERROR_ST1 reg					
Bit	Attr	Reset Value	Description		
31:13	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
12	RO	0×0	gen_pld_recv_err This bit indicates that during a generic interface packet read back,the payload FIFO becomes full and the received data is corrupted.
11	RO	0×0	gen_pld_rd_err This bit indicates that during a DCS read data,the payload FIFO becomes empty and the data sent to the interface is corrupted
10	RO	0×0	gen_pld_send_err This bit indicates that during a Generic interface packet build,the payload FIFO becomes empty and corrupt data is sent.
9	RO	0×0	gen_pld_wr_err This bit indicates that the system tried to write a payload data through the Generic interface and the FIFO is full.Therefore,the command is not written.
8	RO	0×0	gen_cmd_wr_err This bit indicates that the system tried to write a command through the Generic interface and the FIFO is full.Therefore,the command is not written.
7	RO	0×0	dpi_pld_wr_err This bit indicates that during a DPI pixel line storage,the payload FIFO becomes full and the data stored is corrupted.
6	RO	0x0	eopt_err This bit indicates that the EOTp packet is not received at the end of the incoming peripheral transmission.
5	RO	0x0	pkt_size_err This bit indicates that the packet size error is detected during the packet reception.
4	RO	0×0	crc_err This bit indicates that the CRC error is detected in a received packet.
3	RO	0x0	ecc_multi_err This bit indicates that the ECC multiple error is detected and corrected in a received packet.
2	RO	0x0	ecc_single_err This bit indicates that the ECC single error is detected and corrected in a received packet.
1	RO	0×0	to_lp_rx This bit indicates that the low-power reception timeout counter reached the end and contention detection is detected.
0	RO	0x0	to_hs_tx This bit indicates that the high-speed transmission timeout counter reached the end and contention detection is detected.

45.5 Application Notes

Low Power Mode is a special feature for D-PHY. You can control this function by using proper registers from the Innosilicon D-PHY with few operations. The following is a step by step instruction for low power mode in and out.

Perform the following steps to configure the DPI packet transmission:

Step1:Global configuration:

Configure n_lanes (PHY_IF_CFG-[1:0]) to define the number of lanes in which the controller has to perform high-speed transmissions.

Step2:Configure the DPI Interface to define how the DPI interface interacts with the controller.

Configure dpi_vid (DPI_CFG-[1:0]): This field configures the virtual channel that the packet generated by the DPI interface is indexed to.

Configure dpi_color_coding (DPI_CFG-[4:2]): This field configures the bits per pixels that the interface transmits and also the variant configuration of each bpp. If you select 18 bpp, and the Enable_18_loosely_packed is not active, the number or pixels per line should be a multiple of four.

Configure dataen_active_low (DPI_CFG-[5]): This bit configures the polarity of the dpidataen signal and enables if it is active low.

Configure vsync_active_low(DPI_CFG-[6]): This bit configures the polarity of the dpivsync signal and enables if it is active low.

Configure vsync_active_low(DPI_CFG-[7]): This bit configures the polarity of the dpivsync signal and enables if it is active low.

Configure vsync_active_low(DPI_CFG-[8]): This bit configures the polarity of the dpishutdn signal and enables if it is active low.

Configure vsync_active_low(DPI_CFG-[9]): This bit configures the polarity of the dpicolorm signal and enables if it is active low.

Configure en 18_loosely(DPI_CFG-[10]): This bit configures if the pixel packing is done loosely or packed when dpi_color_coding is 18 bpp. This bit enables loosely packing.

Step3: Select the Video Transmission Mode to define how the processor requires the video line to be transported through the DSI link.

Configure low-power transitions (VID_MODE_CFG-[8:3]): This defines the video line to be transported through the DSI link.

Configure low-power transitions (VID_MODE_CFG-[8:3]): This defines the video periods which are permitted to go to low-power if there is available time to do so.

Configure frame_BTA_ack (VID_MODE_CFG-[11]): This specifies if the controller should request the peripheral acknowledge message at the end of frames.

Burst mode: In this mode, the entire active pixel line is buffered into a FIFO and transmitted in a single packed with no interruptions. This transmission mode requires that the DPI Pixel FIFO has the capacity to store a full line of active pixel data inside it. This mode is optimally used if the difference between pixel required bandwidth and DSI link bandwidth is very different. This enables the DWC_mipi_dsi_host to quickly dispatch the entire active video line in a single burst of data and then return to low-power mode.

Configure the register field vid_mode_type (VID_MODE_CFG-[10]), num_chunks (VID_PKT_CFG-[20:11]), and null_pkt_size

(VID_PKT_CFG-[30:21]) are automatically ignored by the DWC_mipi_dsi_host. Non-Burst mode: In this mode, the processor uses the partitioning properties of the DWC_mipi_dsi_host to divide the video line transmission into several DSI packets. This is done to match th pixel required bandwidth with the DSI link bandwidth. With this mode, the controller configuration dose not require a full line of pixel data to be stored inside the DPI Pixel FIFO. It requires only the content of one video packet.

Configure the vid_mode_type field (VID_MODE_CFG-[2:1]) with 2'b0x.

Configure the vid_mode_type field (VID_MODE_CFG-[2:1]) with 2'b00x to enable the transmission of sync pulses.

Configure the vid_mode_type field (VID_MODE_CFG-[2:1]) with 2'b01to enable the transmission of sync events.

Configure the vid_mode_type field (VID_MODE_CFG-[10:0]) with the number of pixels to be transmitted in a single packet.

Configure the en_multi_pkt field (VID_MODE_CFG-[9]) to enable the division of the active video transmission into more than one packet.

Configure the num_chunks field (VID_MODE_CFG-[20:11]) with the number of video chunks that the active video transmission is divided into.

Configure the en_null_pkt field (VID_MODE_CFG-[10]) to enable the insertion of null packets between video packets.

The field is effective only when en_multi_pkt field is activated, otherwise the controller ignores it and does not sent the null packets.

Configure the null_pkt_size field (VID_MODE_CFG-[30:21]) with the actual size of the inserted null packet.

Step4:Define the DPI Horizontal timing configuration as follows:

Configure the hline_time field (TMR_LINE_CFG-[31:18]) with the time taken by a DPI video line accounted in Clock Lane bytes clock cycles (for a clock lane at 500 MHz the Lane byte clock period is 8 ns). When the DPI clock and Clock Lane clock are not multiples, the hline_time is a result of a round of a number. If the DWC_mipi_dsi_host is configured to go to low-power, it is possible that the error included in a line is incremented with the next one. At the end of several lines, the DWC_mipi_dsi_host can have a number of errors that can cause a malfunction of the video transmission.

Configure the hsa_time field (TMR_LINE_CFG-[8:0]) with the time taken by a DPI Horizontal Sync Active period accounted in Clock Lane byte clock cycles (normally a period of 8ns).

Configure the hbp_time field (TMR_LINE_CFG-[17:9]) with the time taken by a DPI Horizontal Sync Active period accounted in Clock Lane byte clock cycles (normally a period of 8ns). Special attention should be given to the calculation of this parameter.

Step5:Define the Vertical line configuration:

Configure the vsa_lines field (VTIMING_CFG-[3:0]) with the number of lines existing in the DPI Vertical Sync Active period.

Configure the vbp_lines field (VTIMING_CFG-[9:4]) with the number of lines existing in the DPI Vertical Back Porch period.

Configure the vfp_lines field (VTIMING_CFG-[15:10]) with the number of lines existing in the DPI Vertical Front Porch period.

Configure the v_active_lines field (VTIMING_CFG-[26:16]) with the number of lines existing in the DPI Vertical Active period.