Chapter 17 SPDIF transmitter

17.1 Overview

The SPDIF transmitter is a self-clocking, serial, unidirectional interface for the interconnection of digital audio equipment for consumer and professional applications, using linear PCM coded audio samples.

It provides the basic structure of the interface. Separate documents define items specific to particular applications.

When used in a professional application, the interface is primarily intended to carry monophonic or stereophonic programmes, at a 48 kHz sampling frequency and with a resolution of up to 24bits per sample; it may alternatively be used to carry signals sampled at 32 kHz or 44.1 kHz.

When used in a consumer application, the interface is primarily intended to carry stereophonic programmes, with a resolution of up to 20 bits per sample, an extension to 24 bits per sample being possible.

When used for other purposes, the interface is primarily intended to carry audio data coded other than as linear PCM coded audio samples. Provision is also made to allow the interface to carry data related to computer software or signals coded using non-linear PCM. The format specification for these applications is not part of this standard.

In all cases, the clock references and auxiliary information are transmitted along with the programme.

- Supports one internal 32-bit wide and 32-location deep sample data buffer
- Supports two 16-bit audio data store together in one 32-bit wide location
- Supports AHB bus interface
- Supports biphase format stereo audio data output
- Supports DMA handshake interface and configurable DMA water level
- Supports sample data buffer empty, block terminate and user data interrupt
- Supports combine interrupt output
- Supports 16 to 31 bit audio data left or right justified in 32-bit wide sample data buffer
- Support 16, 20, 24 bits audio data transfer in linear PCM mode
- Support non-linear PCM transfer

17.2 Block Diagram

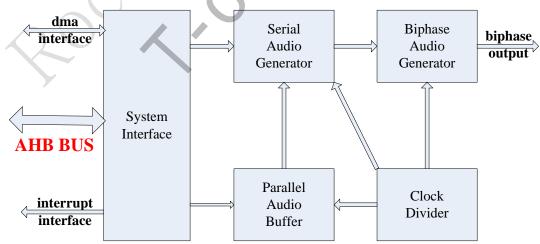


Fig. 17-1 SPDIF transmitter Block Diagram

System Interface

The system interface implements the AHB slave operation. It contains not only control registers of transmitters and receiver inside but also interrupt and DMA handshake interface.

Clock Divider

The Clock Divider implements clock generation function. The input source clock to the module is MCLK, and by the divider of the module, the clock divider generates work clock for digital audio data transformation.

Parallel Audio Buffer

The Parallel Audio Buffer is the buffer to store transmitted audio data. The size of the FIFO is 32bits \times 32.

Serial Audio Converter

The Serial Audio Converter reads parallel audio data from the Parallel Audio Buffer and converts it to serial audio data.

Biphase Audio Generator

The Biphase Audio Generator reads serial audio data from the Serial Audio Converter and generates biphase audio data based on IEC-60958 standard.

17.3 Function description

17.3.1 Frame Format

A frame is uniquely composed of two sub-frames. For linear coded audio applications, the rate of transmission of frames corresponds exactly to the source sampling frequency.

In the 2-channel operation mode, the samples taken from both channels are transmitted by time multiplexing in consecutive sub-frames. The first sub-frame(left channel in stereophonic operation and primary channel in monophonic operation) normally use preamble M. However, the preamble is changed to preamble B once every 192 frame to identify the start of the block structure used to organize the channel status information. The second sub-frame (right in stereophonic operation and secondary channel in monophonic operation) always use preamble W.

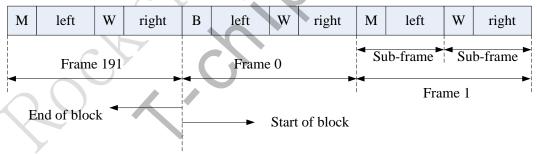


Fig. 17-2 SPDIF Frame Format

In the single channel operation mode in a professional application, the frame format is the same as in the 2-channel mode. Data is carried only in the first sub-frame and may be duplicated in the second sub-frame. If the second sub-frame is not carrying duplicate data, then time slot 28 (validity flag) shall be set to logical '1' (not valid).

17.3.2 Sub-frame Format

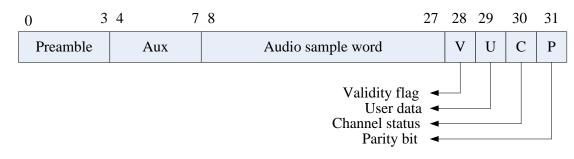


Fig. 17-3 SPDIF Sub-frame Format

Each sub-frame is divided into 32 time slots, numbered from 0 to 31. Time slot 0 to 3 carries one of the three permitted preambles. Time slot 4 to 27 carry the audio sample word in linear 2's complement representation. The MSB is carried by time slot 27. When a 24-bit coding range is used, the LSB is in time slot 4. When a 20-bit coding range is used, time slot 8 to 27 carry the audio sample word with the LSB in time slot 8. Time slot 4 to 7 may be used for other application. Under these circumstances, the bits in the time slot 4 to 7 are designated auxiliary sample bits.

If the source provides fewer bits than the interface allows (either 24 or 20), the unused LSBs are set to a logical '0'. For a non-linear PCM audio application or a data application the main data field may carry any other information. Time slot 28 carries the validity flag associated with the main data field. Time slot 29 carries 1 bit of the user data associated with the audio channel transmitted in the same sub-frame. Time slot 30 carries one bit of the channel status words associated with the main data field channel transmitted in the same sub-frame. Time slot 31 carries a parity bit such that time slots 4 to 31 inclusive carries an even number of ones and an even number of zeros.

17.3.3 Channel Coding

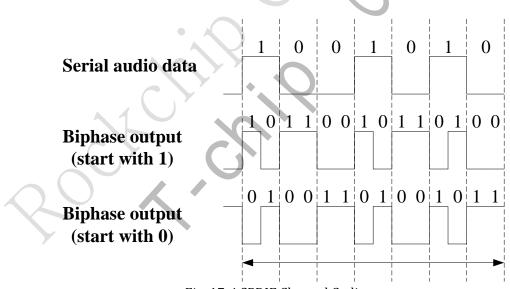
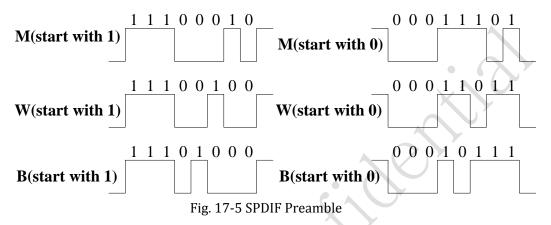


Fig. 17-4 SPDIF Channel Coding

To minimize the direct current component on the transmission line, to facilitate clock recovery from the data stream and to make the interface insensitive to the polarity of connections, time slots 4 to 31 are encoded in biphase-mark.


Each bit to be transmitted is represented by a symbol comprising two consecutive binary states. The first state of a symbol is always different from the second state of the previous symbol. The second state of the symbol is identical to the first if the bit to be transmitted is logical '0'. However, it is different from the first if the bit is logical '1'.

17.3.4 Preamble

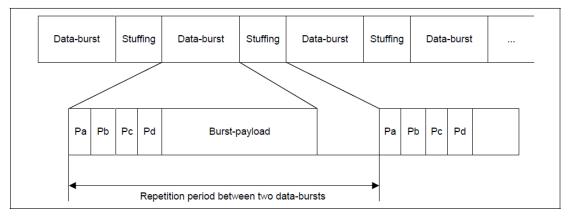
Preambles are specific patterns providing synchronization and identification of the sub-frames and blocks.

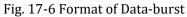
To achieve synchronization within one sampling period and to make this process completely reliable, these patterns violate the biphase-mark code rules, thereby avoiding the possibility of data imitating the preambles.

A set of three preambles is used. These preambles are transmitted in the time allocated to four time slots (time slots 0 to 3) and are represented by eight successive states. The first state of the preamble is always different from the second state of the previous symbol.

Like biphase code, these preambles are dc free and provide clock recovery. They differ in at least two states from any valid biphase sequence.

17.3.5 NON-LINEAR PCM ENCODED SOURCE(IEC 61937)


The non-linear PCM encoded audio bitstream is transferred using the basic 16-bit data area of the IEC 60958subframes, i.e. in time slots 12 to 27. Each IEC 60958 frame transfers 32-bit of the non-PCM data in consumer application mode.


If the SPDIF bitstream conveys linear PCM audio, the symbol frequency is 64 times the PCM sampling frequency (32 time slots per PCM sample times two channels). If a non-linear PCM encoded audio bitstream is conveyed by the interface, the symbol frequency is 64 times the sampling rate of the encoded audio within that bitstream. But in the case where a non-linear PCM encoded audio bitstream is conveyed by the interface containing audio with low sampling frequency, the symbol frequency is 128 times the sampling rate of the encoded audio within that bitstream.

Each data burst contains a burst-preamble consisting of four 16-bit words (Pa, Pb, Pc, Pd), followed by the burstpayload which contains data of an encoded audio frame.

The burst-preamble consists of four mandatory fields. Pa and Pb represent a synchronization word; Pc gives information about the type of data and some information/control for the receiver; Pd gives the length of the burstpayload, the number of bits or number of bytes according to data-type.

The four preamble words are contained in two sequential SPDIF frames. The frame beginning the data-burst contains preamble word Pa in subframe 0 and Pb in subframe 1. The next frame contains Pc in subframe 0 and Pd in subframe 1. When placed into a SPDIF subframe, the MSB of a 16-bit burst-preamble is placed into time slot 27 and the LSB is placed into time slot 12.

17.4 Register description

17.4.1 Register Summary

Name	Offset	Size	Reset Value	Description
SPDIF_CFGR	0x0000	W	0×00000000	Transfer Configuration Register
SPDIF_SDBLR	0x0004	W	0×00000000	Sample Date Buffer Level Register
SPDIF_DMACR	0x0008	W	0x0000000	DMA Control Register
SPDIF_INTCR	0x000c	W	0x0000000	Interrupt Control Register
SPDIF_INTSR	0x0010	W	0x0000000	Interrupt Status Register
SPDIF_XFER	0x0018	W	0x0000000	Transfer Start Register
SPDIF_SMPDR	0x0020	W	0x0000000	Sample Data Register
SPDIF_VLDFRn	0x0060	W	0x00000000	Validity Flag Register n
SPDIF_USRDRn	0x0090	W	0x00000000	User Data Register n
SPDIF_CHNSRn	0x00c0	W	0x0000000	Channel Status Register n
SPDIF_BURTSINFO	0x0100	W	0x0000000	Channel Burst Info Register
SPDIF_REPETTION	0x0104	W	0x00000000	Channel Repetition Register
SPDIF_BURTSINFO_ SHD	0x0108	W	0x00000000	Shadow Channel Burst Info Register
SPDIF_REPETTION_S HD	0x010c	W	0x00000000	Shadow Channel Repetition Register
SPDIF_USRDR_SHDn	0x0190	W	0x0000000	Shadow User Data Register n

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

17.4.2 Detail Register Description

SPDIF_CFGR

Address: Operational Base + offset (0x0000) Transfer Configuration Register

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			MCD
			mclk divider
22.10		000	Fmclk/Fsdo
23:16	RW	0x00	This parameter can be caculated by
			Fmclk/(Fs*128).
			Fs=the sample frequency be wanted
15:10	RO	0x0	reserved
			PRE_CHANGE
			Preamble Change
			The bit only is valid when set to non-linear
9	RW	0x0	PCM mode;
			0: the Preamble will change when block finish;
			1: the Preamble will change every 192 frames
			just like the linear PCM mode.
			РСМТҮРЕ
		0x0	PCM type
8	RW		0: linear PCM
			1: non-linear PCM
			CLR
_			mclk domain logic clear
7	WO	0x0	Write 1 to clear mclk domain logic. Read
			return zero.
			CSE
			Channel status enable
			0: disable
6	RW	0x0	1: enable
			The bit should be set to 1 when the channel
			conveys non-linear PCM
			UDE
		0×0	User data enable
5	RW		0: disable
			1: enable
	\square		VFE
くと			Validity flag enable
4	RW	0x0	0: disable
×			1: enable
			ADJ
			audio data justified
3	RW	0×0	0: Right justified
			1: Left justified

Bit	Attr	Reset Value	Description
			HWT
			Halfword word transform enable
2	RW	0x0	0: disable
2	K VV	0.00	1: enable
			It is valid only when the valid data width is
			16bit.
			VDW
		0x0	Valid data width
			00: 16bit
1:0	RW		01: 20bit
1.0	K VV		10: 24bit
			11: reserved
			The valid data width is 16bit only for $igcup$
			non-linear PCM

SPDIF_SDBLR

Address: Operational Base + offset (0x0004) Sample Date Buffer Level Register

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
		0×00	SDBLR
5.0	RW		Sample Date Buffer Level Register
5:0	RVV		Contains the number of valid data entries in
			the sample data buffer.

SPDIF_DMACR

Address: Operational Base + offset (0x0008) DMA Control Register

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
		Y C	TDE
5	RW	0x0	Transmit DMA Enable
5		UXU	0: Transmit DMA disabled
			1: Transmit DMA enabled
		-	TDL
			Transmit Data Level
	RW	0×00	This bit field controls the level at which a DMA
4:0			request is made by the transmit logic. It is
4.0			equal to the watermark level; that is, the
			dma_tx_req signal is generated when the
			number of valid data entries in the Sample
			Date Buffer is equal to or below this field value

SPDIF_INTCR

Address: Operational Base + offset (0x000c)

Bit	Attr	Reset Value	Description
31:18	RO	0x0	reserved
			UDTIC
17	W1C	0x0	Ueser Data Interrupt Clear
			Write '1' to clear the user data interrupt.
			BTTIC
16	W1C	0x0	Block/Data burst transfer finish interrupt clea
			Write 1 to clear the interrupt.
15:10	RO	0x0	reserved
			SDBT
0.F	DW	0.400	Sample Date Buffer Threshold
9:5	RW	0x00	Sample Date Buffer Threshold for empty
			interrupt
			SDBEIE
1	DW	0.40	Sample Date Buffer empty interrupt enable
4	RW	0x0	0: disable
			1: enable
			BTTIE
			Block transfer/repetition period end interrupt
			enable
			When enabled, an interrupt will be asserted
3	RW	0x0	when the block transfer is finished if the
2	RVV	UXU	channel conveys linear PCM or when the
			repetition period is reached if the channel
			conveys non-linear PCM.
		•	0: disable
			1: enable
			UDTIE
		C	User Data Interrupt
			0: disable
2	RW	0x0	1: enable
			If enabled, an interrupt will be asserted when
	\bigcap		the content of the user data register is fed into
くと			the corresponding shadow register
1:0	RO	0x0	reserved

Interrupt Control Register

SPDIF_INTSR

Address: Operational Base + offset (0x0010) Interrupt Status Register

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
		0x0	SDBEIS
1			Sample Date Buffer empty interrupt status
4	RW		0: inactive
			1: active

Bit	Attr	Reset Value	Description
			BTTIS
3	RW	0x0	Block/Data burst transfer interrupt status
5	r, vv	UXU	0: inactive
			1: active
			UDTIS
			User Data Interrupt Status
2	RW	0x0	0: inactive
			1: active
1:0	RO	0x0	reserved

SPDIF_XFER

Address: Operational Base + offset (0x0018) Transfer Start Register

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
			XFER
0	RW	0x0	Transfer Start Register
			Transfer Start Register

SPDIF_SMPDR

Address: Operational Base + offset (0x0020) Sample Data Register

2		egister		
	Bit	Attr	Reset Value	Description
			•	SMPDR
	31:0	RW	0x0000000	Sample Data Register
				Sample Data Register

SPDIF_VLDFRn

Address: Operational Base + offset (0x0060) Validity Flag Register n

Bit	Attr	Reset Value	Description
	\mathbf{O}		VLDFR_SUB_1
31:16	RW	0x0000	Validity Flag Subframe 1
		Ť	Validity Flag Register 0
			VLDFR_SUB_0
15:0	RW	0x0000	Validity Flag Subframe 0
			Validity Flag for Subframe 0

SPDIF_USRDRn

Address: Operational Base + offset (0x0090)

User D<u>ata Register n</u>

Bit Attr Reset Value Description	
----------------------------------	--

Bit	Attr	Reset Value	Description
			USR_SUB_1
31:16	RW	0x0000	User Data Subframe 1
			User Data Bit for Subframe 1
			USR_SUB_0
15:0	RW	0x0000	User Data Subframe 0
			User Data Bit for Subframe 0

SPDIF_CHNSRn

Address: Operational Base + offset (0x00c0) Channel Status Register n

Bit	Attr	Reset Value	Description
			CHNSR_SUB_1
31:16	RW	0x0000	Channel Status Subframe 1
			Channel Status Bit for Subframe 1
			CHNSR_SUB_0
15:0	RW	0x0000	Channel Status Subframe 0
			Channel Status Bit for Subframe 0

SPDIF_BURTSINFO

Address: Operational Base + offset (0x0100) Channel Burst Info Register

Bit	Attr	Reset Value	Description
31:16 RW		0x0000	PD pd Preamble Pd for non-linear pcm, indicating the
		•	length of burst payload in unit of bytes or bits.
15:13	RW	0x0 BSNUM Bitstream Number This field indicates the bitstream number. Usually the birstream number is 0.	
12:8	RW	0×00	DATAINFO Data-type-dependent info This field gives the data-type-dependent info
7	RW	0×0	ERRFLAG Error Flag 0: indicates a valid burst-payload 1: indicates that the burst-payload may contain errors

Bit	Attr	Reset Value	Description
			DATATYPE
			Data type
			0000000: null data
			0000001: AC-3 data
			0000011: Pause data
			0000100: MPEG-1 layer 1 data
			0000101: MPEG-1 layer 2 or 3 data or MPEG-2
			without extension
			0000110: MPEG-2 data with extension
			0000111: MPEG-2 AAC
			0001000: MPEG-2, layer-1 low sampling
			frequency
			0001001: MPEG-2, layer-2 low sampling
			frequency
			0001010: MPEG-2, layer-3 low sampling
			frequency
			0001011: DTS type I
			0001100: DTS type II
			0001101: DTS type III
			0001110: ATRAC
6:0	RW	0x00	0001111: ATRAC 2/3
010			0010000: ATRAC-X
			0010001: DTS type IV
			0010010: WMA professional type I
			0110010: WMA professional type II
		• ^	1010010: WMA professional type III
			1110010: WMA professional type IV
		Y'	0010011: MPEG-2 AAC low sampling
			frequency
			0110011: MPEG-2 AAC low sampling
	C		frequency
			1010011: MPEG-2 AAC low sampling
		11	frequency
			1110011: MPEG-2 AAC low sampling
			frequency
			0010100: MPEG-4 AAC
			0110100: MPEG-4 AAC
			1010100: MPEG-4 AAC
			1110100: MPEG-4 AAC
			0010101: Enhanced AC-3
			0010110: MAT
			others: reserved

SPDIF_REPETTION

Address: Operational Base + offset (0x0104) Channel Repetition Register

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:0	RW	0×0000	REPETTION
			Repetition
			This define the repetition period when the
			channel conveys non-linear PCM

SPDIF_BURTSINFO_SHD

Address: Operational Base + offset (0x0108) Shadow Channel Burst Info Register

F

Bit	Attr	Reset Value	Description
			PD
31:16		0x0000	pd • • • •
	RO		Preamble Pd for non-linear pcm, indicating the
			length of burst payload in unit of bytes or bits.
			BSNUM
15:13 R		0×0	Bitstream Number
	RU		This field indicates the bitstream number.
			Usually the birstream number is 0.
			DATAINFO
12:8	RO	0x00	Data-type-dependent info
			This field gives the data-type-dependent info
		RO 0x0	ERRFLAG
			Error Flag
7			0: indicates a valid burst-payload
/	RU		1: indicates that the burst-payload may
			contain errors

Bit	Attr	Reset Value	Description
			DATATYPE
			Data type
			0000000: null data
			0000001: AC-3 data
			0000011: Pause data
			0000100: MPEG-1 layer 1 data
			0000101: MPEG-1 layer 2 or 3 data or MPEG-2
			without extension
			0000110: MPEG-2 data with extension
			0000111: MPEG-2 AAC
			0001000: MPEG-2, layer-1 low sampling
			frequency
			0001001: MPEG-2, layer-2 low sampling
			frequency
			0001010: MPEG-2, layer-3 low sampling
			frequency
			0001011: DTS type I
			0001100: DTS type II
			0001101: DTS type III
			0001110: ATRAC
6:0	RO	0x00	0001111: ATRAC 2/3
0.0	KU	0,00	0010000: ATRAC-X
			0010001: DTS type IV
			0010010: WMA professional type I
			0110010: WMA professional type II
		• . <	1010010: WMA professional type III
			1110010: WMA professional type IV
			0010011: MPEG-2 AAC low sampling
			frequency
			0110011: MPEG-2 AAC low sampling
			frequency
			1010011: MPEG-2 AAC low sampling
	\bigcap		frequency
$\boldsymbol{\lambda}$			1110011: MPEG-2 AAC low sampling
			frequency
y			0010100: MPEG-4 AAC
			0110100: MPEG-4 AAC
			1010100: MPEG-4 AAC
			1110100: MPEG-4 AAC
			0010101: Enhanced AC-3
			0010110: MAT
			others: reserved

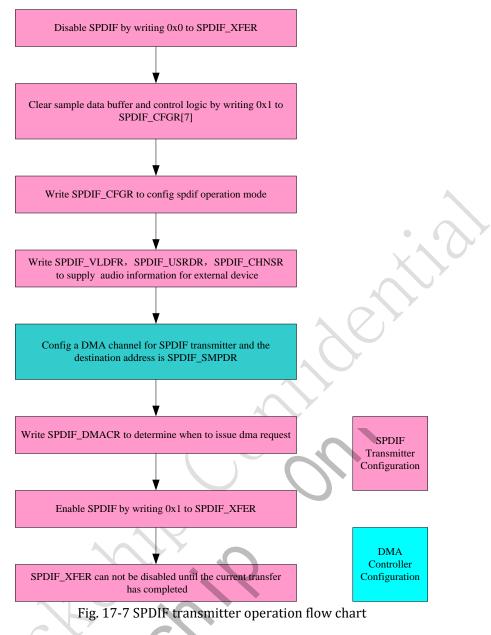
SPDIF_REPETTION_SHD

Address: Operational Base + offset (0x010c) Shadow Channel Repetition Register

Bit	Attr	Attr Reset Value Description	
31:16	RO	0x0	reserved
	RO	0×0000	REPETTION
			Repetition
			This register provides the repetition of the
			bitstream when channel conveys non-linear
15:0			PCM. In the design, it is define the length
			bwtween Pa of the two consecutive
			data-burst. For the same audio format, the
			definition is different. Please convert the
			actual repetition in order to comply with the
			design.

SPDIF_USRDR_SHDn

Address: Operational Base + offset (0x0190) Shadow User Data Register n


Bit	Attr	Reset Value	Description
			USR_SUB_1
31:16	RO	0x0000	User Data Subframe 1
			User Data Bit for Subframe 1
			USR_SUB_0
15:0	RO	0x0000	User Data Subframe 0
			User Data Bit for Subframe 0

17.5 Interface description

Table 17-1 IOMUX Setting

		Table 17-1 IOMOX Se	ung
Module Pin IO		Pad Name	IOMUX Setting
spdif_tx	0	SPDIFtx_AUDIOgpio6b3	GPIO6B_IOMUX[7:6]= 2'b01
Notes: 1. O=output			

17.6 Application Notes

17.6.1 Channel Status Bit and Validity Flag Bit

Normally the channel status bits and validity flag bits are not necessarily updated frequently. If it is desired to change the channel status bits or validity flag, please write to the corresponding register after a block terminate interrupt is asserted. The new value will take effect immediately.

17.6.2 User Data Bit

As the user data bits are updated frequently, the design takes use of the shadow register mechanism to store and convey the user data bit. When the SPDIF interface is disabled, the values of the shadow user data registers keeps the same with the corresponding user data registers. After the SPDIF starts, any change of the user data register will not go to the corresponding shadow user data registers until an user data interrupt is asserted.

Therefore before the SPDIF transfer starts, prepare the first 384 user data bits by writing them to the SPDIF_USRDR registers. After the SPDIF transfer starts, writing the second 384

user data bits to the SPDIF_USRDR registers. Then wait for the assertion of user data interrupt. The second 384 user data bits goes to the shadow registers, and then third 384 user bits are written to SPDIF_USRDR.

17.6.3 Burst Info and Repetition

The shadow register mechanism is also applied to the data of burst info and repetition as the user data. The difference is that the update of shadow register will be taken after assertion of the block terminate interrupt.

It is important to note that the repetition defined in the design is a little different from the repetition defined in IEC-61957. The repetition is always defined as the length (measured in IEC-60958 frame) between Pa of two consecutive data-bursts. Therefore the user needs to calculation the new repetition value if the definition of the repetition is different for some audio formats such as AC-3.