Chapter 42 Serial Peripheral Interface (SPI)

42.1 Overview

The serial peripheral interface is an APB slave device. A four wire full duplex serial protocol from Motorola. There are four possible combinations for the serial clock phase and polarity. The clock phase (SCPH) determines whether the serial transfer begins with the falling edge of slave select signals or the first edge of the serial clock. The slave select line is held high when the SPI is idle or disabled. This SPI controller can work as either master or slave mode.

SPI Controller supports the following features:

- Support Motorola SPI, TI Synchronous Serial Protocol and National Semiconductor Microwire interface
- Support 32-bit APB bus
- Support two internal 16-bit wide and 32-location deep FIFOs, one for transmitting and the other for receiving serial data
- Support two chip select signals in master mode
- Support 4, 8, 16 bit serial data transfer
- Support configurable interrupt polarity
- Support asynchronous APB bus and SPI clock
- Support master and slave mode
- Support DMA handshake interface and configurable DMA water level
- Support transmit FIFO empty, underflow, receive FIFO full, overflow, interrupt and all interrupts can be masked
- Support configurable water level of transmit FIFO empty and receive FIFO full interrupt
- Support combine interrupt output
- Support up to half of SPI clock frequency transfer in master mode and one sixth of SPI clock frequency transfer in slave mode
- Support full and half duplex mode transfer
- Stop transmitting SCLK if transmit FIFO is empty or receive FIFO is full in master mode
- Support configurable delay from chip select active to SCLK active in master mode
- Support configurable period of chip select inactive between two parallel data in master mode
- Support big and little endian, MSB and LSB first transfer
- Support two 8-bit audio data store together in one 16-bit wide location
- Support sample RXD 0~3 SPI clock cycles later
- Support configurable SCLK polarity and phase
- Support fix and incremental address access to transmit and receive FIFO

42.2 Block Diagram

The SPI Controller comprises with:

- AMBA APB interface and DMA Controller Interface
- Transmit and receive FIFO controllers and an FSM controller
- Register block
- Shift control and interrupt

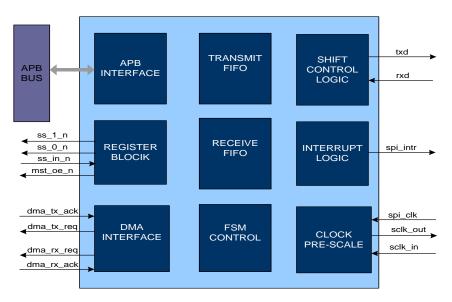


Fig. 42-1 SPI Controller Block diagram

APB INTERFACE

The host processor accesses data, control, and status information on the SPI through the APB interface. The SPI supports APB data bus widths of 8, 16, and 32 bits.

DMA INTERFACE

This block has a handshaking interface to a DMA Controller to request and control transfers. The APB bus is used to perform the data transfer to or from the DMA Controller.

FIFO LOGIC

For transmit and receive transfers, data transmitted from the SPI to the external serial device is written into the transmit FIFO. Data received from the external serialdevice into the SPI is pushed into the receive FIFO. Both fifos are 32x16bits.

FSM CONTROL

Control the state's transformation of the design.

REGISTER BLOCK

All registers in the SPI are addressed at 32-bit boundaries to remain consistent with the AHB bus. Where the physical size of any register is less than 32-bits wide, the upper unused bits of the 32-bit boundary are reserved. Writing to these bits has no effect; reading from these bits returns 0.

SHIFT CONTROL

Shift control logic shift the data from the transmit fifo or to the receive fifo. This logic automatically right-justifies receive data in the receive FIFO buffer.

INTERRUPT CONTROL

The SPI supports combined and individual interrupt requests, each of which can be masked. The combined interrupt request is the ORed result of all other SPI interrupts after masking.

42.3 Function description

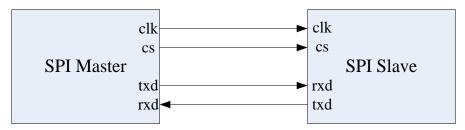


Fig. 42-2 SPI Master and Slave Interconnection

The SPI controller support dynamic switching between master and slave in a system. The diagram show how the SPI controller connects with other SPI devices.

Operation Modes

The SPI can be configured in the following two fundamental modes of operation: Master Mode when SPI_CTRLR0 [20] is 1'b0, Slave Mode when SPI_CTRLR0 [20] is 1'b1.

Transfer Modes

The SPI operates in the following three modes when transferring data on the serial bus.

1. Transmit and Receive

When SPI_CTRLR0 [19:18] == 2'b00, both transmit and receive logic are valid.

2. Transmit Only

When SPI_CTRLR0 [19:18] == 2'b01, the receive data are invalid and should not be stored in the receive FIFO.

3. Receive Only

When SPI_CTRLR0 [19:18] == 2'b10, the transmit data are invalid.

Clock Ratios

A summary of the frequency ratio restrictions between the bit-rate clock (sclk_out / sclk_in) and the SPI peripheral clock (spi_clk) are described as,

When SPI Controller works as master, the $F_{spi\ clk} > = 2 \times (maximum\ F_{sclk}\ out)$

When SPI Controller works as slave, the F_{spi} clk >= 6 × (maximum F_{sclk} in)

With the SPI, the clock polarity (SCPOL) configuration parameter determines whether the inactive state of the serial clock is high or low. To transmit data, both SPI peripherals must have identical serial clock phase (SCPH) and clock polarity (SCPOL) values. The data frame can be 4/8/16 bits in length.

When the configuration parameter SCPH = 0, data transmission begins on the falling edge of the slave select signal. The first data bit is captured by the master and slave peripherals on the first edge of the serial clock; therefore, valid data must be present on the txd and rxd lines prior to the first serial clock edge. The following two figures show a timing diagram for a single SPI data transfer with SCPH = 0. The serial clock is shown for configuration parameters SCPOL = 0 and SCPOL = 1.

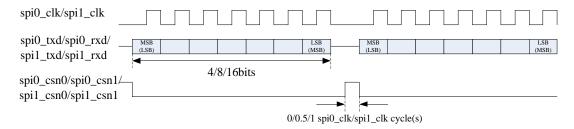


Fig. 42-3 SPI Format (SCPH=0 SCPOL=0)

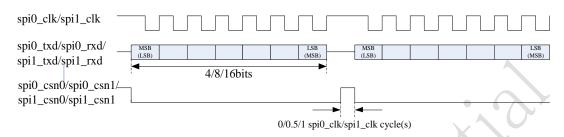


Fig. 42-4 SPI Format (SCPH=0 SCPOL=1)

When the configuration parameter SCPH = 1, both master and slave peripherals begin transmitting data on the first serial clock edge after the slave select line is activated. The first data bit is captured on the second (trailing) serial clock edge. Data are propagated by the master and slave peripherals on the leading edge of the serial clock. During continuous data frame transfers, the slave select line may be held active-low until the last bit of the last frame has been captured. The following two figures show the timing diagram for the SPI format when the configuration parameter SCPH = 1.

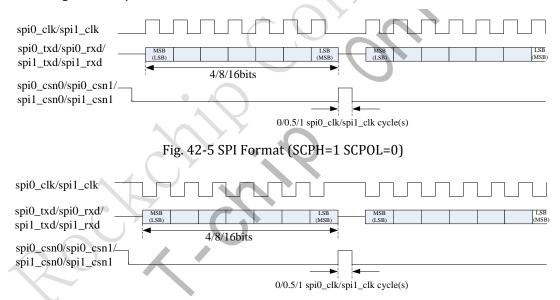


Fig. 42-6 SPI Format (SCPH=1 SCPOL=1)

42.4 Register Description

This section describes the control/status registers of the design. Pay attention that there are two SPI controllers in the chip: spi0 & spi1, so the base address in the following register

descriptions can be either spi0 or spi1 base address.

42.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
SPI_CTRLR0	0x0000	W	0x00000002	Control Register 0
SPI_CTRLR1	0x0004	W	0x00000000	Control Register 1
SPI_ENR	0x0008	W	0x00000000	SPI Enable
SPI_SER	0x000c	W	0x00000000	Slave Enable Register
SPI_BAUDR	0x0010	W	0x0000000	Baud Rate Select
SPI_TXFTLR	0x0014	W	0x00000000	Transmit FIFO Threshold Level
SPI_RXFTLR	0x0018	W	0×00000000	Receive FIFO Threshold Level
SPI_TXFLR	0x001c	W	0x00000000	Transmit FIFO Level
SPI_RXFLR	0x0020	W	0x00000000	Receive FIFO Level
SPI_SR	0x0024	W	0x000000c	SPI Status
SPI_IPR	0x0028	W	0x00000000	Interrupt Polarity
SPI_IMR	0x002c	W	0x00000000	Interrupt Mask
SPI_ISR	0x0030	W	0x00000000	Interrupt Status
SPI_RISR	0x0034	W	0x0000001	Raw Interrupt Status
SPI_ICR	0x0038	W	0x00000000	Interrupt Clear
SPI_DMACR	0x003c	W	0x00000000	DMA Control
SPI_DMATDLR	0x0040	W	0x00000000	DMA Transmit Data Level
SPI_DMARDLR	0x0044	W	0x00000000	DMA Receive Data Level
SPI_TXDR	0x0400~ 0x07fc	W	0x00000000	Transmit FIFO Data
SPI_RXDR	0x0800~ 0x0bfc	W	0x00000000	Receive FIFO Data

Notes: <u>Size</u>: **B**-Byte (8 bits) access, **HW**-Half WORD (16 bits) access, **W**-WORD (32 bits) access

42.4.2 Detail Register Description

SPI_CTRLR0

Address: Operational Base + offset (0x0000)

Control Register 0

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
		MTM	
			Microwire Transfer Mode
21 RW	0x0	Valid when frame format is set to National	
		Semiconductors Microwire.	
		1'b0: non-sequential transfer	
		1'b1: sequential transfer	

Bit	Attr	Reset Value	Description
			ОРМ
20	DW	0.40	Operation Mode
20	RW	0x0	1'b0: Master Mode
			1'b1: Slave Mode
			XFM
			Transfer Mode
19:18	RW	0×0	2'b00 :Transmit & Receive
19.10	KVV	UXU	2'b01 : Transmit Only
			2'b10 : Receive Only
			2'b11 :reserved
			FRF
			Frame Format
17:16	RW	0x0	2'b00: Motorola SPI
17.10		OXO	2'b01: Texas Instruments SSP
			2'b10: National Semiconductors Microwire
			2'b11 : Reserved
			RSD
			Rxd Sample Delay
			When SPI is configured as a master, if the rxd
			data cannot be sampled by the sclk_out edge
			at the right time, this register should be
			configured to define the number of the spi_clk
15:14	RW	0x0	cycles after the active sclk_out edge to
			sample rxd data later when SPI works at high
			frequency.
		A	2'b00:do not delay
			2'b01:1 cycle delay
			2'b10:2 cycles delay
		1 0	2'b11:3 cycles delay BHT
			Byte and Halfword Transform
13	RW	0x0	Valid when data frame size is 8bit.
13	IXVV	UXU	1'b0: apb 16bit write/read, spi 8bit write/read
	\cup		1'b1: apb 8bit write/read, spi 8bit write/read
			FBM
7			First Bit Mode
12	RW	0x0	1'b0: first bit is MSB
			1'b1: first bit is LSB
			EM
			Endian Mode
	DIA		Serial endian mode can be configured by this
11	RW	0x0	bit. Apb endian mode is always little endian.
			1'b0: little endian
			1'b1: big endian

Bit	Attr	Reset Value	Description
			SSD
			ss_n to sclk_out delay
			Valid when the frame format is set to Motorola
10	RW	0×0	SPI and SPI used as a master.
10	KVV	UXU	1'b0: the period between ss_n active and
			sclk_out active is half sclk_out cycles.
			1'b1: the period between ss_n active and
			sclk_out active is one sclk_out cycle.
			CSM
			Chip Select Mode
			Valid when the frame format is set to Motorola
			SPI and SPI used as a master.
			2'b00: ss_n keep low after every frame data is
9:8	RW	0x0	transferred.
			2'b01: ss_n be high for half sclk_out cycles
			after every frame data is transferred.
			2'b10: ss_n be high for one sclk_out cycle
			after every frame data is transferred.
			2'b11: reserved
		0×0	SCPOL
			Serial Clock Polarity
7	RW		Valid when the frame format is set to Motorola
			SPI.
			1'b0: Inactive state of serial clock is low
			1'b1: Inactive state of serial clock is high
		A	SCPH
6			Serial Clock Phase
			Valid when the frame format is set to Motorola SPI.
	RW	0×0	1'b0: Serial clock toggles in middle of first
			data bit
			1'b1: Serial clock toggles at start of first data
			bit
	V)		טונ

Bit	Attr	Reset Value	Description
Bit 5:2	RW	0x0	CFS Control Frame Size Selects the length of the control word for the Microwire frame format. 4'b0000~4'b0010: reserved 4'b0011: 4-bit serial data transfer 4'b0100: 5-bit serial data transfer 4'b0101: 6-bit serial data transfer 4'b0110: 7-bit serial data transfer 4'b0111: 8-bit serial data transfer 4'b1000: 9-bit serial data transfer 4'b1001: 10-bit serial data transfer 4'b1010: 11-bit serial data transfer 4'b1011: 12-bit serial data transfer 4'b1101: 13-bit serial data transfer 4'b1101: 15-bit serial data transfer
			4'b1111: 16-bit serial data transfer
1:0	RW	0x2	DFS Data Frame Size Selects the data frame length. 2'b00: 4bit data 2'b01: 8bit data 2'b10: 16bit data 2'b11: reserved

SPI_CTRLR1

Address: Operational Base + offset (0x0004)

Control Register 1

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			NDM
			Number of Data Frames
			When Transfer Mode is receive only, this
			register field sets the number of data frames
15:0 RW	0x0000	to be continuously received by the SPI. The	
15.0		00000	SPI continues to receive serial data until the
			number of data frames received is equal to
			this register value plus 1, which enables you
			to receive up to 64 KB of data in a continuous
			transfer.

SPI_ENR

Address: Operational Base + offset (0x0008)

SPI Enable

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
			ENR
			SPI Enable
0	RW	0x0	Enables and disables all SPI operations.
			Transmit and receive FIFO buffers are cleared
			when the device is disabled.

SPI_SER

Address: Operational Base + offset (0x000c)

Slave Enable Register

Tradic Register			
Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1:0 RW	W IOXO	SER	
		Slave Select Enable	
		This register is valid only when SPI is	
		configured as a master device.	

SPI_BAUDR

Address: Operational Base + offset (0x0010)

Baud Rate Select

Rate Sele	-	1	
Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:0	RW	0×0000	BAUDR Baud Rate Select SPI Clock Divider. This register is valid only when the SPI is configured as a master device. The LSB for this field is always set to 0 and is unaffected by a write operation, which ensures an even value is held in this register. If the value is 0, the serial output clock (sclk_out) is disabled. The frequency of the sclk_out is derived from the following equation: Fsclk_out = Fspi_clk/ SCKDV Where SCKDV is any even value between 2 and 65534. For example: for Fspi_clk = 3.6864MHz and SCKDV = 2 Fsclk_out = 3.6864/2= 1.8432MHz

SPI_TXFTLR

Address: Operational Base + offset (0x0014)

Transmit FIFO Threshold Level

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
		TXFTLR	
			Transmit FIFO Threshold Level
4:0	RW	0x00	When the number of transmit FIFO entries is
			less than or equal to this value, the transmit
			FIFO empty interrupt is triggered.

SPI_RXFTLR

Address: Operational Base + offset (0x0018)

Receive FIFO Threshold Level

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
		RXFTLR	
			Receive FIFO Threshold Level
4:0	RW	0x00	When the number of receive FIFO entries is
			greater than or equal to this value + 1, the
			receive FIFO full interrupt is triggered.

SPI_TXFLR

Address: Operational Base + offset (0x001c)

Transmit FIFO Level

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0		10×00	TXFLR
	RO		Transmit FIFO Level
			Contains the number of valid data entries in
			the transmit FIFO.

SPI_RXFLR

Address: Operational Base + offset (0x0020)

Receive FIFO Level

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RO	0x00	RXFLR
			Receive FIFO Level
			Contains the number of valid data entries in
			the receive FIFO.

SPI_SR

Address: Operational Base + offset (0x0024)

SPI Status

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			RFF
4	RO	0×0	Receive FIFO Full
4	KO	UXU	1'b0: Receive FIFO is not full
			1'b1: Receive FIFO is full
			RFE
3	RO	0x1	Receive FIFO Empty
3	KO	UXI	1'b0: Receive FIFO is not empty
			1'b1: Receive FIFO is empty
		0x1	TFE
2	RO		Transmit FIFO Empty
2	KO		1'b0: Transmit FIFO is not empty
			1'b1: Transmit FIFO is empty
			TFF
1	RO	0x0	Transmit FIFO Full
		KO UXU	1'b0: Transmit FIFO is not full
			1'b1: Transmit FIFO is full
			BSF
			SPI Busy Flag
			When set, indicates that a serial transfer is in
0	RO	0×0	progress; when cleared indicates that the SPI
			is idle or disabled.
			1'b0: SPI is idle or disabled
			1'b1: SPI is actively transferring data

SPI_IPR

Address: Operational Base + offset (0x0028)

Interrupt Polarity

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
			IPR
		Y C	Interrupt Polarity
0	RW	0x0	Interrupt Polarity Register
			1'b0: Active Interrupt Polarity Level is HIGH
			1'b1: Active Interrupt Polarity Level is LOW

SPI_IMR

Address: Operational Base + offset (0x002c)

Interrupt Mask

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4		0x0	RFFIM
	DVA		Receive FIFO Full Interrupt Mask
	RW		1'b0: spi_rxf_intr interrupt is masked
			1'b1: spi_rxf_intr interrupt is not masked

Bit	Attr	Reset Value	Description
			RFOIM
3	RW	0×0	Receive FIFO Overflow Interrupt Mask
3	KVV	UXU	1'b0: spi_rxo_intr interrupt is masked
			1'b1: spi_rxo_intr interrupt is not masked
			RFUIM
2	RW	0×0	Receive FIFO Underflow Interrupt Mask
2	KVV		1'b0: spi_rxu_intr interrupt is masked
			1'b1: spi_rxu_intr interrupt is not masked
			TFOIM
1	RW	0x0	Transmit FIFO Overflow Interrupt Mask
1			1'b0: spi_txo_intr interrupt is masked
			1'b1: spi_txo_intr interrupt is not masked
		0x0	TFEIM
0	RW		Transmit FIFO Empty Interrupt Mask
			1'b0: spi_txe_intr interrupt is masked
			1'b1: spi_txe_intr interrupt is not masked

SPI_ISR

Address: Operational Base + offset (0x0030)

Interrupt Status

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
			RFFIS
			Receive FIFO Full Interrupt Status
4	RO	0x0	1'b0: spi_rxf_intr interrupt is not active after
7	KO	0.00	masking
			1'b1: spi_rxf_intr interrupt is full after
			masking
		1 U'.	RFOIS
		0×0	Receive FIFO Overflow Interrupt Status
3	RO		1'b0: spi_rxo_intr interrupt is not active after
	NO -		masking
			1'b1: spi_rxo_intr interrupt is active after
	_		masking
			RFUIS
		0×0	Receive FIFO Underflow Interrupt Status
2	RO		1'b0: spi_rxu_intr interrupt is not active after
	NO.		masking
			1'b1: spi_rxu_intr interrupt is active after
			masking

Bit	Attr	Reset Value	Description
			TFOIS
			Transmit FIFO Overflow Interrupt Status
1	RO	0×0	1'b0: spi_txo_intr interrupt is not active after
1	KU	UXU	masking
			1'b1: spi_txo_intr interrupt is active after
			masking
		0x0	TFEIS
	RO		Transmit FIFO Empty Interrupt Status
0			1'b0: spi_txe_intr interrupt is not active after
			masking
			1'b1: spi_txe_intr interrupt is active after
			masking

SPI_RISR

Address: Operational Base + offset (0x0034)
Raw Interrupt Status

iterrupt Status			
Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
			RFFRIS
			Receive FIFO Full Raw Interrupt Status
4	RO	0×0	1'b0: spi_rxf_intr interrupt is not active prior
-	KO	0.00	to masking
			1'b1: spi_rxf_intr interrupt is full prior to
			masking
			RFORIS
		A	Receive FIFO Overflow Raw Interrupt Status
3	RO	0x0	1'b0: spi_rxo_intr interrupt is not active prior
	KO		to masking
			1'b1: spi_rxo_intr interrupt is active prior to
			masking
	RO	Y' C	RFURIS
		0x0	Receive FIFO Underflow Raw Interrupt Status
2			1'b0: spi_rxu_intr interrupt is not active prior
			to masking
			1'b1: spi_rxu_intr interrupt is active prior to
			masking
			TFORIS
1			Transmit FIFO Overflow Raw Interrupt Status
	RO	0×0	1'b0: spi_txo_intr interrupt is not active prior
			to masking
			1'b1: spi_txo_intr interrupt is active prior to
			masking

Bit	Attr	Reset Value	Description
	RO	0×1	TFERIS
			Transmit FIFO Empty Raw Interrupt Status
0			1'b0: spi_txe_intr interrupt is not active prior
U			to masking
			1'b1: spi_txe_intr interrupt is active prior to
			masking

SPI_ICR

Address: Operational Base + offset (0x0038)

Interrupt Clear

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
			CTFOI
3	wo	0×0	Clear Transmit FIFO Overflow Interrupt
3	VVO	UXU	Write 1 to Clear Transmit FIFO Overflow
			Interrupt
		O 0x0	CRFOI
2	wo		Clear Receive FIFO Overflow Interrupt
_	VVO		Write 1 to Clear Receive FIFO Overflow
			Interrupt
		0 0x0	CRFUI
1	wo		Clear Receive FIFO Underflow Interrupt
1	WO UXU	Write 1 to Clear Receive FIFO Underflow	
		Interrupt	
			CCI
0	WO 0x0	0x0	Clear Combined Interrupt
			Write 1 to Clear Combined Interrupt

SPI_DMACR

Address: Operational Base + offset (0x003c)

DMA Control

Bit	Attr	Reset Value	Description		
31:2	RO	0x0	reserved		
	RW	0x0	TDE		
1			Transmit DMA Enable		
1			1'b0: Transmit DMA disabled		
			1'b1: Transmit DMA enabled		
0	RW	0x0	RDE		
			Receive DMA Enable		
			1'b0: Receive DMA disabled		
			1'b1: Receive DMA enabled		

SPI_DMATDLR

Address: Operational Base + offset (0x0040)

DMA Transmit Data Level

Bit	Attr	Reset Value	Description	
31:5	RO	0x0	reserved	
4:0	RW	0x00	TDL	
			Transmit Data Level	
			This bit field controls the level at which a DMA	
			request is made by the transmit logic. It is	
			equal to the watermark level; that is, the	
			dma_tx_req signal is generated when the	
			number of valid data entries in the transmit	
			FIFO is equal to or below this field value, and	
			Transmit DMA Enable (DMACR[1]) = 1.	

SPI_DMARDLR

Address: Operational Base + offset (0x0044)

DMA Receive Data Level

Bit	Attr	Reset Value	Description	
31:5	RO	0x0	reserved	
			RDL	
			Receive Data Level	
			This bit field controls the level at which a DMA	
			request is made by the receive logic. The	
4:0	RW	0x00	watermark level = DMARDL+1; that is,	
			dma_rx_req is generated when the number of	
			valid data entries in the receive FIFO is equal	
			to or above this field value + 1, and Receive	
			DMA Enable(DMACR[0])=1.	

SPI_TXDR

Address: Operational Base + offset $(0x0400 \sim 0x07fc)$

Transmit FIFO Data

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:0	wo	0x0000	TXDR
			Transimt FIFO Data Register.
			When it is written to, data are moved into the
			transmit FIFO.

SPI_RXDR

Address: Operational Base + offset (0x0800~0x0bfc)

Receive FIFO Data

Bit	Attr	Reset Value	Description	
31:16	RO	0x0	reserved	
15:0	RW	0x0000	RXDR	
			Receive FIFO Data Register.	
			When the register is read, data in the receive	
			FIFO is accessed.	

42.5 Interface description

Table 42-1 SPI interface description

Module Pin	Direction	Pad Name	IOMUX Setting
spi0_clk	I/O	IO_SPI0clk_TS0data4_UAR	GRF GPIO5B IOM
		T4EXPctsn_BBgpio5b4	UX[9:8]=01
spi0_csn0	I/O	IO_SPI0csn0_TS0data5_U	GRF_GPIO5B_IOM
		ART4EXPrtsn_BBgpio5b5	UX[11:10]=01
spi0_txd	0	IO_SPI0txd_TS0data6_UA	GRF_GPIO5B_IOM
		RT4EXPsout_BBgpio5b6	UX[13:12]=01
spi0_rxd	I	IO_SPI0rxd_TS0data7_UA	GRF_GPIO5B_IOM
		RT4EXPsin_BBgpio5b7	UX[15:14]=01
spi0_csn1	0	IO_SPI0csn1_TS0sync_BB	GRF_GPIO5C_IOM
		gpio5c0	UX[1:0]=01
spi1_clk	I/O	IO_ISPshutteren_SPI1clk_	GRF_GPIO7B_IOM
		GPIO30gpio7b4	UX[9:8]=10
spi1_csn0	I/O	IO_ISPflashtrigout_SPI1cs	GRF_GPIO7B_IOM
		n0_GPIO30gpio7b5	UX[11:10]=10
spi1_rxd	0	IO_ISPprelighttrig_SPI1rxd	GRF_GPIO7B_IOM
		_GPIO30gpio7b6	UX[13:12]=10
spi1_txd	I	IO_ISPshuttertrig_SPI1txd	GRF_GPIO7B_IOM
		_GPIO30gpio7b7	UX[15:14]=10
spi2_clk	I/O	IO_SPI2clk_SCio_GPIO183	GRF_GPIO8A_IOM
		0gpio8a6	UX[13:12]=01
spi2_csn0	I/O	IO_SPI2csn0_SCdetect_GP	GRF_GPIO8A_IOM
		IO1830gpio8a7	UX[15:14]=01
spi2_rxd	I	IO_SPI2rxd_SCrst_GPIO18	GRF_GPIO8B_IOM
		30gpio8b0	UX[1:0]=01
spi2_txd	0	IO_SPI2txd_SCclk_GPIO18	GRF_GPIO8B_IOM
		30gpio8b1	UX[3:2]=01
spi2_csn1	0	IO_SPI2csn1_SCiot1_GPIO	GRF_GPIO8A_IOM
		1830gpio8a3	UX[7:6]=01

Note: spi0_csn1, spi1_csn1,spi2_csn1 can only be used in master mode

42.6 Application Notes

Clock Ratios

A summary of the frequency ratio restrictions between the bit-rate clock (sclk_out/sclk_in) and the SPI peripheral clock (spi_clk) are described as,

When SPI Controller works as master, the $F_{spi\ clk} >= 2 \times (maximum\ F_{sclk}\ out)$

When SPI Controller works as slave, the $F_{spi_clk} >= 6 \times (maximum F_{sclk_in})$

Master Transfer Flow

When configured as a serial-master device, the SPI initiates and controls all serial transfers. The serial bit-rate clock, generated and controlled by the SPI, is driven out on the sclk_out line. When the SPI is disabled (SPI_ENR = 0), no serial transfers can occur and sclk_out is held in "inactive" state, as defined by the serial protocol under which it operates.

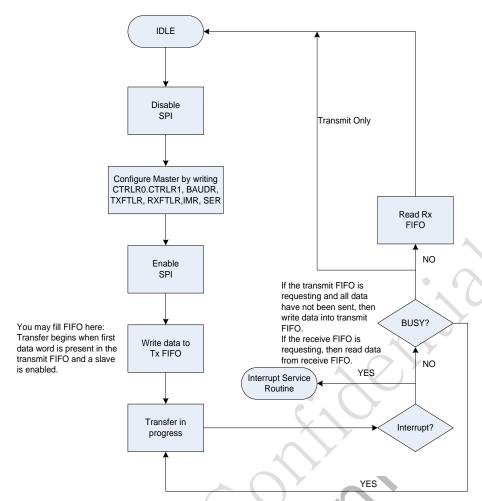


Fig. 42-7 SPI Master transfer flow diagram

Slave Transfer Flow

When the SPI is configured as a slave device, all serial transfers are initiated and controlled by the serial bus master.

When the SPI serial slave is selected during configuration, it enables its txd data onto the serial bus. All data transfers to and from the serial slave are regulated on the serial clock line (sclk_in), driven from the serial-master device. Data are propagated from the serial slave on one edge of the serial clock line and sampled on the opposite edge.

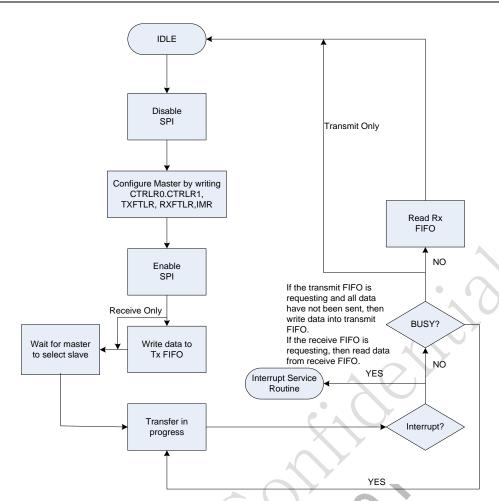


Fig. 42-8 SPI Slave transfer flow diagram