Chapter 49 General-Purpose Input/Output Ports (GPIO)

49.1 Overview

GPIO is a programmable General Purpose Programming I/O peripheral. This component is an APB slave device. GPIO controls the output data and direction of external I/O pads. It also can read back the data on external pads using memory-mapped registers.

GPIO supports the following features:

- 32 bits APB bus width
- 32 independently configurable signals
- Separate data registers and data direction registers for each signal
- Software control for each signal, or for each bit of each signal
- Configurable interrupt mode

49.2 Block Diagram

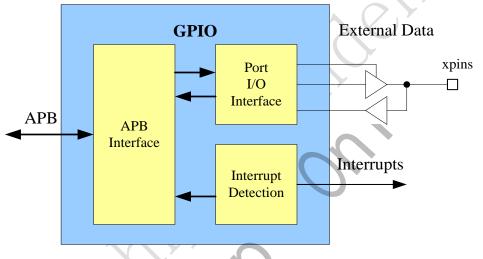


Fig. 49-1 GPIO block diagram

Block descriptions:

APB Interface

The APB Interface implements the APB slave operation. Its data bus width is 32 bits.

Port I/O Interface

External data Interface to or from I/O pads.

Interrupt Detection

Interrupt interface to or from interrupt controller.

49.3 Function description

49.3.1 Operation

Control Mode (software)

Under software control, the data and direction control for the signal are sourced from the data register (GPIO_SWPORTA_DR) and direction control register (GPIO_SWPORTA_DDR).

The direction of the external I/O pad is controlled by a write to the Porta data direction register (GPIO_SWPORTA_DDR). The data written to this memory- mapped register gets mapped onto an output signal, GPIO_PORTA_DDR, of the GPIO peripheral. This output signal controls the direction of an external I/O pad.

The data written to the Porta data register (GPIO_SWPORTA_DR) drives the output buffer of the I/O pad. External data are input on the external data signal, GPIO_EXT_PORTA. Reading the external signal register (GPIO_EXT_PORTA) shows the value on the signal, regardless of the direction. This register is read-only, meaning that it cannot be written from the APB software interface.

Reading External Signals

The data on the GPIO_EXT_PORTA external signal can always be read. The data on the external GPIO signal is read by an APB read of the memory-mapped register, GPIO_EXT_PORTA.

An APB read to the GPIO_EXT_PORTA register yields a value equal to that which is on the GPIO_EXT_PORTA signal.

Interrupts

Port A can be programmed to accept external signals as interrupt sources on any of the bits of the signal. The type of interrupt is programmable with one of the following settings:

- Active-high and level
- Active-low and level
- Rising edge
- Falling edge

The interrupts can be masked by programming the GPIO_INTMASK register. The interrupt status can be read before masking (called raw status) and after masking.

The interrupts are combined into a single interrupt output signal, which has the same polarity as the individual interrupts. In order to mask the combined interrupt, all individual interrupts have to be masked. The single combined interrupt does not have its own mask bit.

Whenever Port A is configured for interrupts, the data direction must be set to Input. If the data direction register is reprogrammed to Output, then any pending interrupts are not lost. However, no new interrupts are generated.

For edge-detected interrupts, the ISR can clear the interrupt by writing a 1 to the GPIO_PORTA_EOI register for the corresponding bit to disable the interrupt. This write also clears the interrupt status and raw status registers. Writing to the GPIO_PORTA_EOI register has no effect on level-sensitive interrupts. If level-sensitive interrupts cause the processor to interrupt, then the ISR can poll the GPIO_INT_RAWSTATUS register until the interrupt source disappears, or it can write to the GPIO_INTMASK register to mask the interrupt before exiting the ISR. If the ISR exits without masking or disabling the interrupt prior to exiting, then the level-sensitive interrupt until the interrupt is cleared at the source.

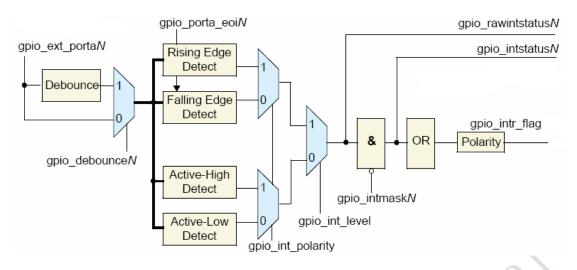


Fig. 49-2 GPIO Interrupt RTL Block Diagram

Debounce operation

Port A has been configured to include the debounce capability interrupt feature. The external signal can be debounced to remove any spurious glitches that are less than one period of the external debouncing clock.

When input interrupt signals are debounced using a debounce clock (pclk), the signals must be active for a minimum of two cycles of the debounce clock to guarantee that they are registered. Any input pulse widths less than a debounce clock period are bounced. A pulse width between one and two debounce clock widths may or may not propagate, depending on its phase relationship to the debounce clock. If the input pulse spans two rising edges of the debounce clock, it is registered. If it spans only one rising edge, it is not registered.

Synchronization of Interrupt Signals to the System Clock

Interrupt signals are internally synchronized to pclk. Synchronization to pclk must occur for edge-detect signals. With level-sensitive interrupts, synchronization is optional and under software control (GPIO_LS_SYNC).

49.3.2 Programming

Programming Considerations

- Reading from an unused location or unused bits in a particular register always returns zeros. There is no error mechanism in the APB.
- Programming the GPIO registers for interrupt capability, edge-sensitive or level-sensitive interrupts, and interrupt polarity should be completed prior to enabling the interrupts on Port A in order to prevent spurious glitches on the interrupt lines to the interrupt controller.
- Writing to the interrupt clear register clears an edge-detected interrupt and has no effect on alevel-sensitive interrupt.

9 GPIOs' hierarchy in the chip

GPIO0 is in PD_PMU subsystem, GPIO1~8 are in PD_ALIVE subsystem.

49.4 Register Description

This section describes the control/status registers of the design. Software should read and write these registers using 32-bits accesses. There are 9 GPIOs (GPIO0 ~ GPIO8), and each of them has same register group. Therefore, 9 GPIOs' register groups have 9 different base

address.

49.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
GPIO_SWPORTA_DR	0x0000	W	0x00000000	Port A data register
GPIO_SWPORTA_DD R	0x0004	W	0x00000000	Port A data direction register
GPIO_INTEN	0x0030	W	0x0000000	Interrupt enable register
GPIO_INTMASK	0x0034	W	0x0000000	Interrupt mask register
GPIO_INTTYPE_LEVE L	0x0038	W	0x00000000	Interrupt level register
GPIO_INT_POLARITY	0x003c	W	0x0000000	Interrupt polarity register
GPIO_INT_STATUS	0x0040	W	0x0000000	Interrupt status of port A
GPIO_INT_RAWSTAT US	0x0044	W	0x00000000	Raw Interrupt status of port A
GPIO_DEBOUNCE	0x0048	W	0x0000000	Debounce enable register
GPIO_PORTA_EOI	0x004c	W	0x0000000	Port A clear interrupt register
GPIO_EXT_PORTA	0x0050	W	0x0000000	Port A external port register
GPIO_LS_SYNC	0x0060	W	0×0000000	Level_sensitive synchronization enable register

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

49.4.2 Detail Register Description

GPIO_SWPORTA_DR

Address: Operational Base + offset (0x0000) Port A data register

Bit	Attr	Reset Value	Description
			gpio_swporta_dr
			Values written to this register are output on
31:0	31:0 RW 0x0000	0x00000000	the I/O signals for Port A if the corresponding
51.0	NVV	0x0000000	data direction bits for Port A are set to Output
			mode. The value read back is equal to the last
×			value written to this register.

GPIO_SWPORTA_DDR

Address: Operational Base + offset (0x0004)

Port A data direction register

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	gpio_swporta_ddr Values written to this register independently control the direction of the corresponding data bit in Port A. 1'b0: Input (default) 1'b1: Output

GPIO_INTEN

Address: Operational Base + offset (0x0030) Interrupt enable register

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	<pre>gpio_int_en Allows each bit of Port A to be configured for interrupts. Whenever a 1 is written to a bit of this register, it configures the corresponding bit on Port A to become an interrupt; otherwise, Port A operates as a normal GPIO signal. Interrupts are disabled on the corresponding bits of Port A if the corresponding data direction register is set to Output. 1'b0: Configure Port A bit as normal GPIO signal (default) 1'b1: Configure Port A bit as interrupt</pre>

GPIO_INTMASK

Address: Operational Base + offset (0x0034) Interrupt mask register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	gpio_int_mask Controls whether an interrupt on Port A can create an interrupt for the interrupt controller by not masking it. Whenever a 1 is written to a bit in this register, it masks the interrupt generation capability for this signal; otherwise interrupts are allowed through. 1'b0: Interrupt bits are unmasked (default) 1'b1: Mask interrupt

GPIO_INTTYPE_LEVEL

Address: Operational Base + offset (0x0038)

Interrupt level register

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
			gpio_inttype_level
			Controls the type of interrupt that can occur
31:0	RW	0x00000000	on Port A.
			1'b0: Level-sensitive (default)
			1'b1: Edge-sensitive

GPIO_INT_POLARITY

Address: Operational Base + offset (0x003c) Interrupt polarity register

Bit	: Attr	Reset Value	Description
31:0	RW	0×00000000	gpio_int_polarity Controls the polarity of edge or level sensitivity that can occur on input of Port A. 1'b0: Active-low (default) 1'b1: Active-high

GPIO_INT_STATUS

Address: Operational Base + offset (0x0040) Interrupt status of port A

Bit	Attr	Reset Value	Description
31:0 R	RO	0x000000000	gpio_int_status Interrupt status of Port A

GPIO_INT_RAWSTATUS

Address: Operational Base + offset (0x0044) Raw Interrupt status of port A

Bit	Attr	Reset Value	Description
31:0	RO	0×00000000	gpio_int_rawstatus Raw interrupt of status of Port A (premasking
			bits

GPIO_DEBOUNCE

Address: Operational Base + offset (0x0048)

Debounce	enable	register	
----------	--------	----------	--

Bit	Attr	Reset Value	Value Description	
31:0	RW	0×00000000	<pre>gpio_debounce Controls whether an external signal that is the source of an interrupt needs to be debounced to remove any spurious glitches. Writing a 1 to a bit in this register enables the debouncing circuitry. A signal must be valid for two periods of an external clock before it is internally processed. 1'b0: No debounce (default) 1'b1: Enable debounce</pre>	

GPIO_PORTA_EOI

Address: Operational Base + offset (0x004c) Port A clear interrupt register

Bit	Attr	Reset Value	Description	
31:0	wo	0×00000000	gpio_porta_eoi Controls the clearing of edge type interrupts from Port A. When a 1 is written into a corresponding bit of this register, the interrupt is cleared. All interrupts are cleared when Port A is not configured for interrupts. 1'b0: No interrupt clear (default) 1'b1: Clear interrupt	

GPIO_EXT_PORTA

Address: Operational Base + offset (0x0050) Port A external port register

Bit	Attr	Reset Value	Description	
31:0	RO	0×00000000	gpio_ext_porta When Port A is configured as Input, then reading this location reads the values on the signal. When the data direction of Port A is set as Output, reading this location reads the data register for Port A.	

GPIO_LS_SYNC

Address: Operational Base + offset (0x0060) Level_sensitive synchronization enable register

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
	RW	0×0	gpio_ls_sync
0			Writing a 1 to this register results in all
			level-sensitive interrupts being synchronized
			to pclk_intr.
			1'b0: No synchronization to pclk_intr (default)
			1'b1: Synchronize to pclk_intr

49.5 Interface description

Table 49-1 GPIO interface description

Module Pin	Dir	Pad Name	IOMUX Setting	
GPIO0 Interface				
gpio0_porta[7:0]	I/O	GPIO0_A[7:0]	GRF_GPIO0A_IOMUX[15:0]	
gpi00_poi ta[7.0]			=16'h0000	
$anio0$ $norto[1E_10]$	I/O	GPIO0_B[7:0]	GRF_GPIO0B_IOMUX[15:0]	
gpio0_porta[15:8]			=16'h0000	
gpio0_porta[23:16]	I/O	GPIO0_C[7:0]	GRF_GPIO0C_IOMUX[15:0]	

FuZhou Rockchip Electronics Co.,Ltd.

RK3288 TRM

			=16'h0000	
anio $porto[21,24]$	1/0		GRF_GPIO0D_IOMUX[15:0]	
gpio0_porta[31:24]	I/O	GPIO0_D[7:0]	=16'h0000	
		GPIO1 Interface		
anio1 $norto[7:0]$	0] I/O	GPIO1_A[7:0]	GRF_GPIO1A_IOMUX[15:0]	
gpio1_porta[7:0]			=16'h0000	
$anio1$ $norto[1E_10]$	I/O	GPIO1_B[7:0]	GRF_GPIO1B_IOMUX[15:0]	
gpio1_porta[15:8]			=16'h0000	
	I/O	GPIO1_C[7:0]	GRF_GPIO1C_IOMUX[15:0]	
gpio1_porta[23:16]			=16'h0000	
			GRF_GPIO1D_IOMUX[15:0]	
gpio1_porta[31:24]	I/O	GPIO1_D[7:0]	=16'h0000	
		GPIO2 Interface		
anio2 $norto[7,0]$	T/O		GRF_GPIO2A_IOMUX[15:0]	
gpio2_porta[7:0]	I/O	GPIO2_A[7:0]	=16'h0000	
ania) nanta[1[.0]	I/O	GPIO2_B[7:0]	GRF_GPIO2B_IOMUX[15:0]	
gpio2_porta[15:8]			=16'h0000	
	I/O	GPIO2_C[7:0]	GRF_GPIO2C_IOMUX[15:0]	
gpio2_porta[23:16]			=16'h0000	
			GRF_GPIO2D_IOMUX[15:0]	
gpio2_porta[31:24]	I/O	GPIO2_D[7:0]	=16'h0000	
		GPIO3 Interface		
)] I/O	GPIO3_A[7:0]	GRF_GPIO3A_IOMUX[15:0]	
gpio3_porta[7:0]			=16'h0000	
	I/O	GPIO3_B[7:0]	GRF_GPIO3B_IOMUX[15:0]	
gpio3_porta[15:8]			=16'h0000	
	I/O	GPIO3_C[7:0]	GRF_GPIO3C_IOMUX[15:0]	
gpio3_porta[23:16]			=16'h0000	
			GRF_GPIO3D_IOMUX[15:0]	
gpio3_porta[31:24]	I/O	GPIO3_D[7:0]	=16'h0000	

49.6 Application Notes

Steps to set GPIO's direction

- Write GPIO_SWPORT_DDR[x] as 1 to set this gpio as output direction and Write GPIO_SWPORT_DDR[x] as 0 to set this gpio as input direction.
- Default GPIO's direction is input direction.

Steps to set GPIO's level

- Write GPIO_SWPORT_DDR[x] as 1 to set this gpio as output direction.
- Write GPIO_SWPORT_DR[x] as v to set this GPIO's value.

Steps to get GPIO's level

- Write GPIO_SWPORT_DDR[x] as 0 to set this gpio as input direction.
- Read from GPIO_EXT_PORT[x] to get GPIO's value

Steps to set GPIO as interrupt source

• Write GPIO_SWPORT_DDR[x] as 0 to set this gpio as input direction.

- Write GPIO_INTTYPE_LEVEL[x] as v1 and write GPIO_INT_POLARITY[x] as v2 to set interrupt type
- Write GPIO_INTEN[x] as 1 to enable GPIO's interrupt

Note: Please switch iomux to GPIO mode first!

Rock chile