Chapter 50 WatchDog

50.1 Overview

Watchdog Timer (WDT) is an APB slave peripheral that can be used to prevent system lockup that may be caused by conflicting parts or programs in a SoC. The WDT would generated interrupt or reset signal when it's counter reaches zero, then a reset controller would reset the system.

WDT supports the following features:

- 32 bits APB bus width
- WDT counter's clock is pclk
- 32 bits WDT counter width
- Counter counts down from a preset value to 0 to indicate the occurrence of a timeout
- WDT can perform two types of operations when timeout occurs:
 - Generate a system reset
 - First generate an interrupt and if this is not cleared by the service routine by the time a second timeout occurs then generate a system reset
- Programmable reset pulse length
- Total 16 defined-ranges of main timeout period

50.2 Block Diagram

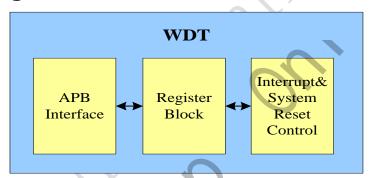


Fig. 50-1 WDT block diagram

Block Descriptions:

APB Interface

The APB Interface implements the APB slave operation. It's data bus width is 32 bits.

Register Block

A register block that read coherence for the current count register.

Interrupt & system reset control

An interrupt/system reset generation block comprising of a decrementing counter and control logic.

50.3 Function description

50.3.1 Operation

Counter

The WDT counts from a preset (timeout) value in descending order to zero. When the counter reaches zero, depending on the output response mode selected, either a system reset or an

interrupt occurs. When the counter reaches zero, it wraps to the selected timeout value and continues decrementing. The user can restart the counter to its initial value. This is programmed by writing to the restart register at any time. The process of restarting the watchdog counter is sometimes referred as kicking the dog. As a safety feature to prevent accidental restarts, the value 0x76 must be written to the Current Counter Value Register (WDT_CRR).

Interrupts

The WDT can be programmed to generate an interrupt (and then a system reset) when a timeout occurs. When a 1 is written to the response mode field (RMOD, bit 1) of the Watchdog Timer Control Register (WDT_CR), the WDT generates an interrupt. If it is not cleared by the time a second timeout occurs, then it generates a system reset. If a restart occurs at the same time the watchdog counter reaches zero, an interrupt is not generated.

System Resets


When a 0 is written to the output response mode field (RMOD, bit 1) of the Watchdog Timer Control Register (WDT CR), the WDT generates a system reset when a timeout occurs.

Reset Pulse Length

The reset pulse length is the number of pclk cycles for which a system reset is asserted. When a system reset is generated, it remains asserted for the number of cycles specified by the reset pulse length or until the system is reset. A counter restart has no effect on the system reset once it has been asserted.

Operation Flow Chart (Response mode=1)

- 1. Select required timeout period.
- 2. Set reset pulse length, response mode, and enable WDT.
- 3. Write 0x76 to WDT_CRR.
- 4. Starts back to selected timeout period.
- $5. \ Can \ clear \ by \ reading \ WDT_EOI \ or \ restarting \ (kicking) \ the \ counter \ by \ writing \ 0x76 \ to \ WDT_CRR.$

Fig. 50-2 WDT Operation Flow

50.4 Register Description

This section describes the control/status registers of the design.

50.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
WDT_CR	0x0000	W	0x0000000a	Control Register
WDT_TORR	0x0004	W	0x0000000	Timeout range Register
WDT_CCVR	0x0008	W	0x0000000	Current counter value Register
WDT_CRR	0x000c	W	0x0000000	Counter restart Register
WDT_STAT	0x0010	W	0x0000000	Interrupt status Register
WDT_EOI	0x0014	W	0x00000000	Interrupt clear Register

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

50.4.2 Detail Register Description

WDT_CR

Address: Operational Base + offset (0x0000)

Control Register

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			rst_pluse_lenth
			Reset pulse length.
			This is used to select the number of pclk cycles
			for which the system reset stays asserted.
			3'b000: 2 pclk cycles
4:2	RW	0x2	3'b001: 4 pclk cycles
7.2		UNZ	3'b010: 8 pclk cycles
			3'b011: 16 pclk cycles
			3'b100: 32 pclk cycles
			3'b101: 64 pclk cycles
			3'b110: 128 pclk cycles
			3'b111: 256 pclk cycles
			resp_mode
		0×1 0×0	Response mode.
			Selects the output response generated to a timeout.
1	RW		1'b0: Generate a system reset
			1'b1: First generate an interrupt and if it is not
			cleared by the time a second timeout occurs then
			generate a system reset
			wdt_en
0	RW		WDT enable
			1'b0: WDT disabled
			1'b1: WDT enabled

WDT_TORR

Address: Operational Base + offset (0x0004)

Timeout range Register

Bit	Attr	Reset Value		Description
31:4	RO	0x0	reserved	>

Bit	Attr	Reset Value	Description
			timeout_period
			Timeout period.
			This field is used to select the timeout period from
			which the watchdog counter restarts. A change of the
			timeout period takes effect only after the next
			counter restart (kick).
			The range of values available for a 32-bit watchdog
			counter are:
			4'b0000: 0x0000ffff
			4'b0001: 0x0001ffff
	RW		4'b0010: 0x0003ffff
3:0		0x0	4'b0011: 0x0007ffff
			4'b0100: 0x000fffff
			4'b0101: 0x001fffff
			4'b0110: 0x003fffff
			4'b0111: 0x007fffff
			4'b1000: 0x00ffffff
			4'b1001: 0x01ffffff
			4'b1010: 0x03ffffff
			4'b1011: 0x07ffffff
			4'b1100: 0x0fffffff
			4'b1101: 0x1fffffff
			4'b1110: 0x3fffffff
			4'b1111: 0x7fffffff

WDT_CCVR

Address: Operational Base + offset (0x0008)

Current counter value Register

Bit	Attr	Reset Value	Description
			cur_cnt
			Current counter value
31:0	RO	0x00000000	This register, when read, is the current value of the
			internal counter. This value is read coherently when
			ever it is read

WDT_CRR

Address: Operational Base + offset (0x000c)

Counter restart Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved

Bit	Attr	Reset Value	Description
		0×00	cnt_restart
7:0 W1C			Counter restart
	W1C		This register is used to restart the WDT counter. As a
	WIC		safety feature to prevent accidental restarts, the
			value 0x76 must be written. A restart also clears the
			WDT interrupt. Reading this register returns zero.

WDT_STAT

Address: Operational Base + offset (0x0010)

Interrupt status Register

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0 RO		0×0	wdt_status
	DO.		This register shows the interrupt status of the WDT.
	RU		1'b1: Interrupt is active regardless of polarity.
			1'b0: Interrupt is inactive.

WDT_EOI

Address: Operational Base + offset (0x0014)

Interrupt clear Register

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0 R		0x0	wdt_int_clr
	D.O.		Clears the watchdog interrupt.
	RO		This can be used to clear the interrupt without
			restarting the watchdog counter.

50.5 Application Notes

Please refer to the function description section.