Chapter 52 I2C Interface

52.1 Overview

The Inter-Integrated Circuit (I2C) is a two wired (SCL and SDA), bi-directional serial bus that provides an efficient and simple method of information exchange between devices. This I2C bus controller supports master mode acting as a bridge between AMBA protocol and generic I2C bus system.

I2C Controller supports the following features:

- Item Compatible with I2C-bus
- AMBA APB slave interface
- Supports master mode of I2C bus
- Software programmable clock frequency and transfer rate up to 400Kbit/sec
- Supports 7 bits and 10 bits addressing modes
- Interrupt or polling driven multiple bytes data transfer
- Clock stretching and wait state generation
- There are two I2C controller in bus sub-system: I2C PMU, and I2C AUDIO. There are four I2C controller in peripheral sub-system: I2C SENSOR, I2C CAM, I2C_TP, and I2C_HDMI.

52.2 Block Diagram

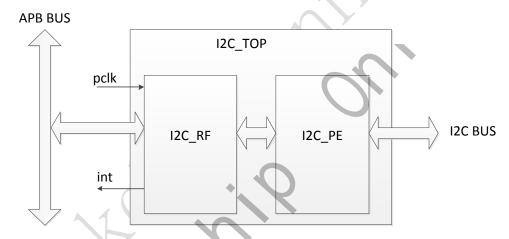


Fig. 52-1 I2C architecture

I2C_RF

I2C_RF module is used to control the I2C controller operation by the host with APB interface. It implements the register set and the interrupt functionality. The CSR component operates synchronously with the pclk clock.

I2C_PE

I2C_PE module implements the I2C master operation for transmit data to and receive data from other I2C devices. The I2C master controller operates synchronously with the pclk.

I2C_TOP

I2C_TOP module is the top module of the I2C controller.

52.3 Function description

This chapter provides a description about the functions and behavior under various conditions.

The I2C controller supports only Master function. It supports the 7-bits/10-bits addressing mode and support general call address. The maximum clock frequency and transfer rate can be up to 400Kbit/sec.

The operations of I2C controller is divided to 2 parts and described separately: initialization and master mode programming.

52.3.1 Initialization

The I2C controller is based on AMBA APB bus architecture and usually is part of a SOC. So before I2C operates, some system setting & configuration must be conformed, which includes:

- I2C interrupt connection type: CPU interrupt scheme should be considered. If the I2C interrupt is connected to extra Interrupt Controller module, we need decide the INTC vector.
- I2C Clock Rate: The I2C controller uses the APB clock as the system clock so the APB clock will determine the I2C bus clock. The correct register setting is subject to the system requirement.

52.3.2 Master Mode Programming

1. SCL Clock: When the I2C controller is programmed in Master mode, the SCL frequency is determine by I2C_CLKDIV register. The SCL frequency is calculated by the following formula:

SCL Divisor = 8*(CLKDIVL + 1 + CLKDIVH + 1)

SCL = PCLK/ SCLK Divisor

2. Data Receiver Register Access

When the i2c controller received MRXCNT bytes data. CPU can get the datas through register RXDATA0 \sim RXDATA7. The controller can receive up to 32 byte data in one transaction.

When MRXCNT register is written, the I2C controller will start to drive SCL to receive data.

3. Transmit Trasmitter Register

Data to transmit are written to TXDATA0 \sim 7 by CPU. The controller can transmit up to 32 byte data in one transaction. The lower byte will be transmitted first.

When MTXCNT register is written, the I2C controller will start to transmit data.

4. Start Command

Write 1 to I2C_CON[3], the controller will send I2C start command.

5. Stop Command

Write 1 to I2C_CON[4], the controller will send I2C stop command

6. I2C Operation mode

There are four i2c operation modes.

When I2C_CON[2:1] is 2'b00, the controller transmit all valid data in TXDATA0~TXDATA7 byte by byte. The controller will transmit lower byte first.

When I2C_CON[2:1] is 2'b01, the controller will transmit device address in MRXADDR first (Write/Read bit = 0) and then transmit device register address in MRXRADDR. After that, the controller will assert restart signal and resend MRXADDR (Write/Read bit = 1). At last, the controller enter receive mode.

When I2C_CON[2:1] is 2'b10, the controller is in receive mode, it will triggered clock to read MRXCNT byte data.

When I2C_CON[2:1] is 2'b11, the controller will transmit device address in MRXADDR first (Write/Read bit = 1) and then transmit device register address in MRXRADDR. After that, the controller will assert restart signal and resend MRXADDR (Write/Read bit = 1). At last, the controller enter receive mode.

7. Read/Write Command

When I2C_OPMODE(I2C_CON[2:1]) is 2'b01 or 2'b11, the Read/Write command bit is decided by controller itself.

In RX only mode (I2C_CON[2:1] is 2'b10), the Read/Write command bit is decided by MRXADDR[0].

In TX only mode (I2C_CON[[2:1] is 2'b00), the Read/Write command bit is decided by TXDATA[0].

8. Master Interrupt Condition

There are 7 interrupt bits in I2C_ISR register related to master mode.

Byte transmitted finish interrupt (Bit 0): The bit is asserted when Master complete transmitting a byte.

Byte received finish interrupt (Bit 1): The bit is asserted when Master complete receiving a byte.

MTXCNT bytes data transmitted finish interrupt (Bit 2): The bit is asserted when Master complete transmitting MTXCNT bytes.

MRXCNT bytes data received finish interrupt (Bit 3): The bit is asserted when Master complete receiving MRXCNT bytes.

Start interrupt (Bit 4): The bit is asserted when Master finish asserting start command to I2C bus.

Stop interrupt (Bit 5): The bit is asserted when Master finish asserting stop command to I2C bus.

NAK received interrupt (Bit 6): The bit is asserted when Master received a NAK handshake.

9. Last byte acknowledge control

If I2C_CON[5] is 1, the I2C controller will transmit NAK handshake to slave when the last byte received in RX only mode.

If I2C_CON[5] is 0, the I2C controller will transmit ACK handshake to slave when the last byte received in RX only mode.

10. How to handle nak handshake received

If I2C_CON[6] is 1, the I2C controller will stop all transactions when NAK handshake received. And the software should take responsibility to handle the problem.

If I2C_CON[6] is 0, the I2C controller will ignore all NAK handshake received.

11. I2C controller data transfer waveform

Bit transferring

(a) Data Validity

The SDA line must be stable during the high period of SCL, and the data on SDA line can only be changed when SCL is in low state.

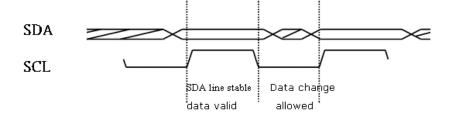


Fig. 52-2 I2C DATA Validity

(b) START and STOP conditions

START condition occurs when SDA goes low while SCL is in high period. STOP condition is generated when SDA line goes high while SCL is in high state.

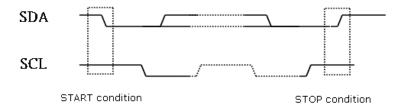


Fig. 52-3 I2C Start and stop conditions

Data transfer

(a) Acknowledge

After a byte of data transferring (clocks labeled as $1\sim8$), in 9^{th} clock the receiver must assert an ACK signal on SDA line, if the receiver pulls SDA line to low, it means "ACK", on the contrary, it's "NOT ACK".

Fig. 52-4 I2C Acknowledge

(b) Byte transfer

The master own I2C bus might initiate multi byte to transfer to a slave. The transfer starts from a "START" command and ends in a "STOP" command. After every byte transfer, the receiver must reply an ACK to transmitter.

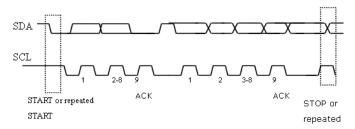


Fig. 52-5 I2C byte transfer

52.4 Register Description

This section describes the control/status registers of the design.

52.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
I2C_CON	0x0000	W	0x0000000	control register
I2C_CLKDIV	0x0004	W	0x00060006	Clock divisor register
I2C_MRXADDR	0x0008	W	0x00000000	the slave address accessed for master receive mode
I2C_MRXRADDR	0x000c	W	0x00000000	the slave register address accessed for master recevie mode
I2C_MTXCNT	0x0010	W	0x0000000	master transmit count
I2C_MRXCNT	0x0014	W	0x0000000	master receive count
I2C_IEN	0x0018	W	0x0000000	interrupt enable register
I2C_IPD	0x001c	W	0x0000000	interrupt pending register
I2C_FCNT	0x0020	W	0x0000000	finished count
I2C_TXDATA0	0x0100	W	0x0000000	I2C transmit data register 0
I2C_TXDATA1	0x0104	W	0x0000000	I2C transmit data register 1
I2C_TXDATA2	0x0108	W	0x0000000	I2C transmit data register 2
I2C_TXDATA3	0x010c	W	0x0000000	I2C transmit data register 3
I2C_TXDATA4	0x0110	W	0x0000000	I2C transmit data register 4
I2C_TXDATA5	0x0114	W	0x0000000	I2C transmit data register 5
I2C_TXDATA6	0x0118	W	0x00000000	I2C transmit data register 6
I2C_TXDATA7	0x011c	W	0x0000000	I2C transmit data register 7
I2C_RXDATA0	0x0200	W	0x0000000	I2C receive data register 0
I2C_RXDATA1	0x0204	W	0x0000000	I2C receive data register 1
I2C_RXDATA2	0x0208	W	0x0000000	I2C receive data register 2
I2C_RXDATA3	0x020c	W	0x0000000	I2C receive data register 3
I2C_RXDATA4	0x0210	W	0x0000000	I2C receive data register 4
I2C_RXDATA5	0x0214	W	0x0000000	I2C receive data register 5
I2C_RXDATA6	0x0218	W	0x0000000	I2C receive data register 6
I2C_RXDATA7	0x021c	W	0x00000000	I2C receive data register 7

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

52.4.2 Detail Register Description

I2C_CON

Address: Operational Base + offset (0x0000)

control register

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
		00	act2nak
6	RW		operation when NAK handshake is received
6 KW	0×0	1'b0: ignored	
			1'b1: stop transaction

Bit	Attr	Reset Value	Description
			ack
			last byte acknowledge control
5	RW	0x0	last byte acknowledge control in master receive
3	KVV	UXU	mode .
			1'b0: ACK
			1'b1: NAK
			stop
4	W1C	0x0	stop enable
4	WIC	UXU	when this bit is written to 1, I2C will generate stop
			signal. It cleared itself when stop operation ends.
			start
3	W1C	0x0	start enable
	WIC	UXU	when this bit is written to 1, I2C will generate start
			signal. It cleared itself when start operation ends.
			i2c_mode
		0x0	2'b00: transmit only
			2'b01: transmit address (device + register address)
2:1	RW		> restart> transmit address -> receive only
2.1	KVV		2'b10: receive only
			2'b11: transmit address (device + register address,
			write/read bit is 1)> restart> transmit address
			(device address)> receive data
0	RW	0×0	i2c_en
U	IK VV		i2c module enable

I2C_CLKDIV

Address: Operational Base + offset (0x0004)

Clock divisor register

Bit	Attr	Reset Value	Description
			CLKDIVH
31:16	RW	0x0006	SCL high level clock count
			$T(SCL_HIGH) = T(PCLK) * CLKDIVH * 8$
			CLKDIVL
15:0	RW	0x0006	SCL low level clock count
			T (SCL_LOW) = T(PCLK) * CLKDIVL * 8

I2C_MRXADDR

Address: Operational Base + offset (0x0008)

the slave address accessed for master receive mode

Bit	Attr	Reset Value	Description
31:27	RO	0x0	reserved
26 RW	0x0	addhvld	
		address high byte valid	
25 RW	0x0	addmvld	
		address middle byte valid	

Bit	Attr	Reset Value	Description
24 RW	DW	0×0	addlvld
	KVV		address low byte valid
23:0 R		0x000000	saddr
	RW		master address register
			the lowest bit indicate write or read

I2C_MRXRADDR

Address: Operational Base + offset (0x000c)

the slave register address accessed for master receive mode

Bit	Attr	Reset Value	Description
31:27	RO	0x0	reserved
26	DW	0.40	sraddhvld
26	RW	0x0	address high byte valid
25 RW	0x0	sraddmvld	
		address middle byte valid	
24	24	0×0	sraddlvld
24 RW	KVV		address low byte valid
23:0	DW	0x000000	sraddr
	KVV		slave register address accessed

I2C_MTXCNT

Address: Operational Base + offset (0x0010)

master transmit count

aoco. c.a.		J. 1 C	
Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0x00	mtxcnt master transmit count

I2C_MRXCNT

Address: Operational Base + offset (0x0014)

master receive count

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0 RW	0×00	mrxcnt	
5.0	I VV	0.000	master receive count

I2C_IEN

Address: Operational Base + offset (0x0018)

interrupt enable register

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6 RW	0x0	nakrcvien	
		NAK handshake received interrupt enable	

Bit	Attr	Reset Value	Description
Е	DW	00	stopien
5	RW	0x0	stop operation finished interrupt enable
4	RW	0x0	startien
4	KVV	UXU	start operation finished interrupt enable
2	RW	0x0	mbrfien
3	KVV		MRXCNT data received finished interrupt enable
2	RW	0x0	mbtfien
2	RVV		MTXCNT data transmit finished interrupt enable
1	RW	/ 0x0	brfien
1			byte receive finished interrupt enable
0	DW	0.40	btfien
0	RW	0x0	byte transmit finished interrupt enable

I2C_IPD

Address: Operational Base + offset (0x001c)

interrupt pending register

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6	RW	0×0	nakrcvipd
U	KVV	UXU	NAK handshake received interrupt pending bit
5	RW	0×0	stopipd
3	KVV	UXU	stop operation finished interrupt pending bit
4	RW	0x0	startipd
4	KVV		start operation finished interrupt pending bit
3	RW	0x0	mbrfipd
3	KVV		MRXCNT data received finished interrupt pending bit
2	DW	.W 0x0	mbtfipd
2	FCVV		MTXCNT data transmit finished interrupt pending bit
1	RW	0.0	brfipd
1		0x0	byte receive finished interrupt pending bit
0	DW	0.00	btfipd
U	0 RW	0x0	byte transmit finished interrupt pending bit

I2C_FCNT

Address: Operational Base + offset (0x0020)

finished count

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
			fcnt
			finished count
5:0	RW	0x00	the count of data which has been transmitted or
			received
			for debug purpose

I2C_TXDATA0

Address: Operational Base + offset (0x0100)

I2C transmit data register 0

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	txdata0

I2C_TXDATA1

Address: Operational Base + offset (0x0104)

I2C transmit data register 1

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	txdata1

I2C_TXDATA2

Address: Operational Base + offset (0x0108)

I2C transmit data register 2

Bit	Attr	Reset Value		Description
31:0	RW	0x0000000	txdata2	

I2C_TXDATA3

Address: Operational Base + offset (0x010c)

I2C transmit data register 3

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	txdata3

I2C_TXDATA4

Address: Operational Base + offset (0x0110)

I2C transmit data register 4

Bit	Attr	Reset Value	, ,	Description
31:0	RW	0x00000000	txdata4	

I2C_TXDATA5

Address: Operational Base + offset (0x0114)

I2C transmit data register 5

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	txdata5

I2C_TXDATA6

Address: Operational Base + offset (0x0118)

I2C transmit data register 6

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	txdata6

I2C_TXDATA7

Address: Operational Base + offset (0x011c)

I2C transmit data register 7

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	txdata7

I2C_RXDATA0

Address: Operational Base + offset (0x0200)

I2C receive data register 0

Bit	Attr	Reset Value	Description
31:0	RO	0x00000000	rxdata0

I2C_RXDATA1

Address: Operational Base + offset (0x0204)

I2C receive data register 1

Bit	Attr	Reset Value	Description	
31:0	RO	0x00000000	rxdata1	

I2C_RXDATA2

Address: Operational Base + offset (0x0208)

I2C receive data register 2

Bit	Attr	Reset Value	Description	
31:0	RO	0x0000000	rxdata2	

I2C_RXDATA3

Address: Operational Base + offset (0x020c)

I2C receive data register 3

Bit	Attr	Reset Value		Description
31:0	RO	0x00000000	rxdata3	

I2C_RXDATA4

Address: Operational Base + offset (0x0210)

I2C receive data register 4

Bit	Attr	Reset Value		Description
31:0	RO	0x00000000	rxdata4	

I2C_RXDATA5

Address: Operational Base + offset (0x0214)

I2C receive data register 5

Bit	Attr	Reset Value	Description
31:0	RO	0x00000000	rxdata5

I2C_RXDATA6

Address: Operational Base + offset (0x0218)

I2C receive data register 6

Bit	Attr	Reset Value	Description	
31:0	RO	0x00000000	rxdata6	

I2C_RXDATA7

Address: Operational Base + offset (0x021c)

I2C receive data register 7

Bit	Attr	Reset Value	Description
31:0	RO	0x00000000	rxdata7

52.5 Interface description

Table 52-1 I2C Interface Description

Module pin	Direction	Pad name	IOMUX		
I2C PMU Interface					
i2c_pmu_sda	I/O	IO_I2C0PMUsda_P MUgpio0b7	GRF_GPIO0B_IOMUX[1 4]=1		
i2c_pmu_scl	I/O	IO_I2C0PMUscl_P MUgpio0c0	GRF_GPIOOC_IOMUX[0]=1		
	I2C	SENSOR Interface			
i2c_sensor_sda	I/O	IO_I2C1SENSORsd a_SCrst_GPIO1830 gpio8a4	GRF_GPIO8A_IOMUX[9:8]=01		
i2c_sensor_scl	I/O	IO_I2C1SENSORsc l_SCclk_GPIO1830 gpio8a5	GRF_GPIO8A_IOMUX[1 1:10]=01		
	I20	C AUDIO Interface			
i2c_audio_sda	I/O	IO_I2C2AUDIOsda _AUDIOgpio6b1	GRF_GPIO6B_IOMUX[2]=1		
i2c_audio_scl	I/O	IO_I2C2AUDIOscl_ AUDIOgpio6b2	GRF_GPIO6B_IOMUX[4]=1		
I2C CAM Interface					
i2c_cam_sda	I/O	IO_I2C3CAMsda_D VPgpio2c1	GRF_GPIO2C_IOMUX[2]=1		
i2c_cam_scl	I/O	IO_I2C3CAMscl_D VPgpio2c0	GRF_GPIO2C_IOMUX[0]=1		
I2C TP Interface					
i2c_tp_sda	I/O	IO_I2C4TPsda_GPI O30gpio7c1	GRF_GPIO7CL_IOMUX[4]=1		
i2c_tp_scl	I/O	IO_I2C4TPscl_GPI O30gpio7c2	GRF_GPIO7CL_IOMUX[8]=1		
I2C HDMI Interface					
i2c_hdmi_sda	I/O	IO_I2C5HDMIsda_ EDPHDMII2Csda_G PIO30gpio7c3	GRF_GPIO7CL_IOMUX[13:12]=01		
i2c_hdmi_scl I/O		IO_I2C5HDMIscl_E DPHDMII2Cscl_GPI O30gpio7c4	GRF_GPIO7CH_IOMUX [1:0]=01		

52.6 Ap plicatio n Notes

The I2C controller core operation flow chart below is to describe how the software configures and performs an I2C transaction through this I2C controller core. Description s are divided into 3 sections, transmit only mode, receive only mode,

and mix mode. Users are strongly advised to following.

Transmit only mode (I2C_CON[1:0]=2′b00)

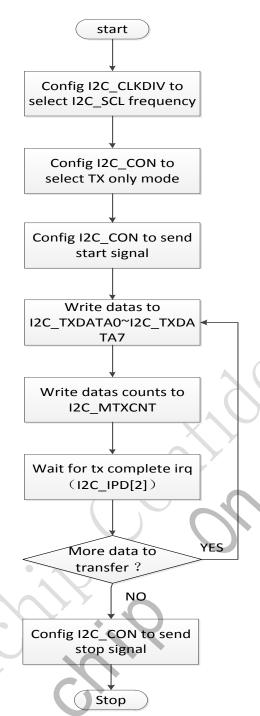


Fig. 52-6 I2C Flow chat for transmit only mode

Receive only mode (I2C_CON[1:0]=2'b10)

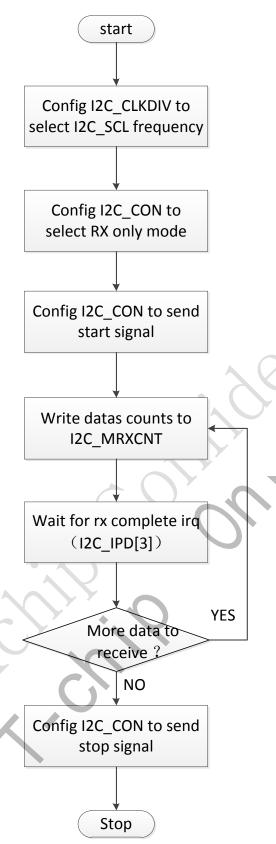


Fig. 52-7 I2C Flow chat for receive only mode

Mix mode (I2C_CON[1:0]=2'b01 or I2C_CON[1:0]=2'b11)

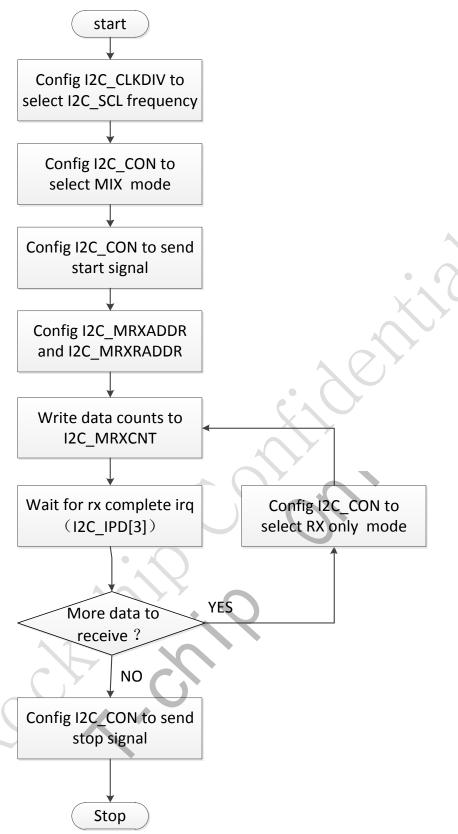


Fig. 52-8 I2C Flow chat for mix mode