Chapter 53 Universal Asynchronous Receiver/Transmitter

(UART)

53.1 Overview

The Universal Asynchronous Receiver/Transmitter (UART) is used for serial communication with a peripheral, modem (data carrier equipment, DCE) or data set. Data is written from a master (CPU) over the APB bus to the UART and it is converted to serial form and transmitted to the destination device. Serial data is also received by the UART and stored for the master (CPU) to read back.

UART Controller supports the following features:

- AMBA APB interface Allows for easy integration into a Synthesizable Components for AMBA 2 implementation
- Support interrupt interface to interrupt controller
- Contain two 64Bytes FIFOs for data receive and transmit
- Programmable serial data baud rate as calculated by the following: baud rate = (serial clock frequency)/(16×divisor)
- UART_BB/UART_BT/UART_GPS/UART_EXP support auto flow-control, UART_DBG do not support auto flow-control
- UART_DBG support IrDA 1.0 SIR mode with up to 115.2 Kbaud data rate
- UART_BB/UART_BT/UART_GPS/UART_EXP are in peripheral subsystem, UART_DBG is in bus subsystem

53.2 Block Diagram

This section provides a description about the functions and behavior under various conditions. The UART Controller comprises with:

- AMBA APB interface
- FIFO controllers
- Register block
- Modem synchronization block and baud clock generation block
- Serial receiver and serial transmitter

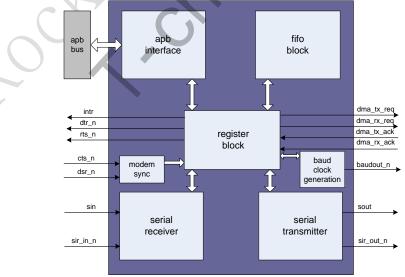


Fig. 53-1 UART Architecture

APB INTERFACE

The host processor accesses data, control, and status information on the UART through the APB interface. The UART supports APB data bus widths of 8, 16, and 32 bits.

Register block

Be responsible for the main UART functionality including control, status and interrupt generation.

Modem Synchronization block

Synchronizes the modem input signal.

FIFO block

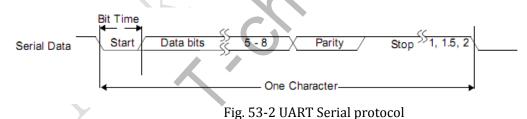
Be responsible for FIFO control and storage (when using internal RAM) or signaling to control external RAM (when used).

Baud Clock Generator

Generate the transmitter and receiver baud clock along with the output reference clock signal (baudout_n).

Serial Transmitter

Converts the parallel data, written to the UART, into serial form and adds all additional bits, as specified by the control register, for transmission. This makeup of serial data, referred to as a character can exit the block in two forms, either serial UART format or IrDA 1.0 SIR format.


Serial Receiver

Converts the serial data character (as specified by the control register) received in either the UART or IrDA 1.0 SIR format to parallel form. Parity error detection, framing error detection and line break detection is carried out in this block.

53.3 Function description

UART (RS232) Serial Protocol

Because the serial communication is asynchronous, additional bits (start and stop) are added to the serial data to indicate the beginning and end. An additional parity bit may be added to the serial character. This bit appears after the last data bit and before the stop bit(s) in the character structure to perform simple error checking on the received data, as shown in Figure.

IrDA 1.0 SIR Protocol

The Infrared Data Association (IrDA) 1.0 Serial Infrared (SIR) mode supports bi-directional data communications with remote devices using infrared radiation as the transmission medium. IrDA 1.0 SIR mode specifies a maximum baud rate of 115.2 Kbaud.

Transmitting a single infrared pulse signals a logic zero, while a logic one is represented by not sending a pulse. The width of each pulse is 3/16ths of a normal serial bit time. Data transfers can only occur in half-duplex fashion when IrDA SIR mode is enabled.

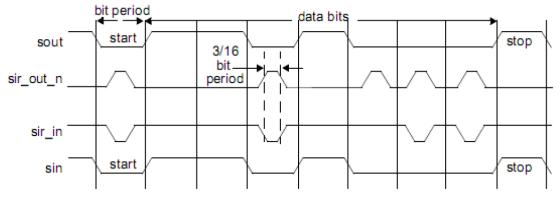
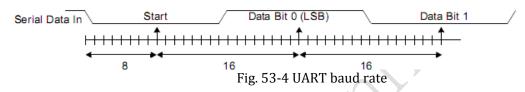



Fig. 53-3 IrDA 1.0

Baud Clock

The baud rate is controlled by the serial clock (sclk or pclk in a single clock implementation) and the Divisor Latch Register (DLH and DLL). As the exact number of baud clocks that each bit was transmitted for is known, calculating the mid-point for sampling is not difficult, that is every 16 baud clocks after the mid point sample of the start bit.

FIFO Support

1. NONE FIFO MODE

If FIFO support is not selected, then no FIFOs are implemented and only a single receive data byte and transmit data byte can be stored at a time in the RBR and THR.

2. FIFO MODE

The FIFO depth of UART1/UART2/UART3 is 32bytes and the FIFO depth of UART0 is 64bytes. The FIFO mode of all the UART is enabled by register FCR[0].

Interrupts

The following interrupt types can be enabled with the IER register.

- Receiver Error
- Receiver Data Available
- Character Timeout (in FIFO mode only)
- Transmitter Holding Register Empty at/below threshold (in Programmable THRE Interrupt mode)
- Modem Status

DMA Support

The uart supports DMA signaling with the use of two output signals (dma_tx_req_n and dma_rx_req_n) to indicate when data is ready to be read or when the transmit FIFO is empty.

The dma_tx_req_n signal is asserted under the following conditions:

- When the Transmitter Holding Register is empty in non-FIFO mode.
- When the transmitter FIFO is empty in FIFO mode with Programmable THRE interrupt mode disabled.
- When the transmitter FIFO is at, or below the programmed threshold with Programmable THRE interrupt mode enabled.

The dma_rx_req_n signal is asserted under the following conditions:

- When there is a single character available in the Receive Buffer Register in non-FIFO mode.
- When the Receiver FIFO is at or above the programmed trigger level in FIFO mode.

Auto Flow Control

The UART can be configured to have a 16750-compatible Auto RTS and Auto CTS serial data flow control mode available. If FIFOs are not implemented, then this mode cannot be selected. When Auto Flow Control mode has been selected, it can be enabled with the Modem Control Register (MCR[5]). Following figure shows a block diagram of the Auto Flow Control functionality.

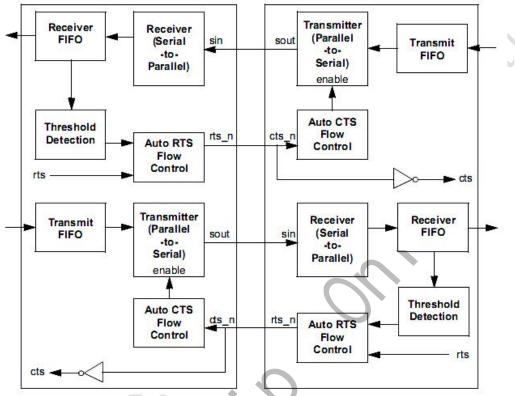


Fig. 53-5 UART Auto flow control block diagram

Auto RTS – Becomes active when the following occurs:

- Auto Flow Control is selected during configuration
- FIFOs are implemented
- RTS (MCR[1] bit and MCR[5]bit are both set)
- FIFOs are enabled (FCR[0]) bit is set)
- SIR mode is disabled (MCR[6] bit is not set)

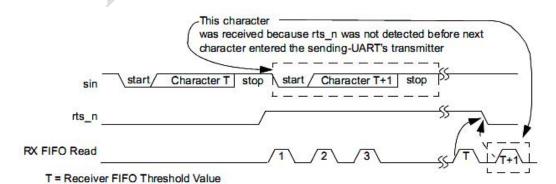


Fig. 53-6 UART AUTO RTS TIMING

Auto CTS – becomes active when the following occurs:

- Auto Flow Control is selected during configuration
- FIFOs are implemented
- AFCE (MCR[5] bit is set)
- FIFOs are enabled through FIFO Control Register FCR[0] bit
- SIR mode is disabled (MCR[6] bit is not set)



Fig. 53-7 UART AUTO CTS TIMING

53.4 Register Description

This section describes the control/status registers of the design. There are 5 UARTs in RK3288, and each one has its own base address.

53.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
UART_RBR	0x0000	W	0x00000000	Receive Buffer Register
UART_THR	0x0000	W	0x00000000	Transmit Holding Register
UART_DLL	0x0000	W	0x00000000	Divisor Latch (Low)
UART_DLH	0x0004	W	0x00000000	Divisor Latch (High)
UART_IER	0x0004	W	0x00000000	Interrupt Enable Register
UART_IIR	0x0008	W	0×0000001	Interrupt Identification Register
UART_FCR	0x0008	W	0x00000000	FIFO Control Register
UART_LCR	0x000c	W	0x00000000	Line Control Register
UART_MCR	0x0010	W	0x00000000	Modem Control Register
UART_LSR	0x0014	W	0x0000060	Line Status Register
UART_MSR	0x0018	W	0x00000000	Modem Status Register
UART_SCR	0x001c	W	0x00000000	Scratchpad Register
UART_SRBR	0x0030~ 0x006c	w	0×00000000	Shadow Receive Buffer Register
UART_STHR	0x0030~ 0x006c	w	0x00000000	Shadow Transmit Holding Register
UART_FAR	0x0070	W	0x00000000	FIFO Access Register
UART_TFR	0x0074	W	0x00000000	Transmit FIFO Read
UART_RFW	0x0078	W	0x00000000	Receive FIFO Write
UART_USR	0x007c	W	0x0000006	UART Status Register
UART_TFL	0x0080	W	0x00000000	Transmit FIFO Level
UART_RFL	0x0084	W	0x00000000	Receive FIFO Level
UART_SRR	0x0088	W	0x0000000	Software Reset Register
UART_SRTS	0x008c	W	0x0000000	Shadow Request to Send
UART_SBCR	0x0090	W	0×00000000	Shadow Break Control Register
UART_SDMAM	0x0094	W	0×00000000	Shadow DMA Mode

FuZhou Rockchip Electronics Co., Ltd.

Name	Offset	Size	Reset Value	Description
UART_SFE	0x0098	W	0x00000000	Shadow FIFO Enable
UART_SRT	0x009c	W	0x00000000	Shadow RCVR Trigger
UART_STET	0x00a0	W	0x0000000	Shadow TX Empty Trigger
UART_HTX	0x00a4	W	0x0000000	Halt TX
UART_DMASA	0x00a8	W	0x0000000	DMA Software Acknowledge
	0x00f4 V	w	0x00000000	Component Parameter
UART_CPR				Register
UART_UCV	0x00f8	W	0x3330382a	UART Component Version
UART_CTR	0x00fc	W	0x44570110	Component Type Register

Notes: <u>Size</u>: **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

53.4.2 Detail Register Description

UART_RBR

Address: Operational Base + offset (0x0000) Receive Buffer Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0×00	data_input Data byte received on the serial input port (sin) in UART mode, or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line Status Register (LCR) is set. If in non-FIFO mode (FIFO_MODE == NONE) or FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it is overwritten, resulting in an over-run error. If in FIFO mode (FIFO_MODE != NONE) and FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO is preserved, but any incoming data are lost and an over-run error occurs.

UART_THR

Address: Operational Base + offset (0x0000) Transmit Holding Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved

	data_output
7:0 RW 0x00	Data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If in non-FIFO mode or FIFOs are disabled (FCR[0] = 0) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If in FIFO mode and FIFOs are enabled (FCR[0] = 1) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.

UART_DLL

Address: Operational Base + offset (0x0000)Divisor Latch (Low)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	CO, ≈	0×00	baud_rate_divisor_L Lower 8-bits of a 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART. This register may only be accessed when the DLAB bit (LCR[7]) is set and the UART is not busy (USR[0] is zero). The output baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows: baud rate = (serial clock frequency) / (16 * divisor). Note that with the Divisor Latch Registers (DLL and DLH) set to zero, the baud clock is disabled and no serial communications occur. Also, once the DLH is set, at least 8 clock cycles of the slowest UART clock should be allowed to pass before transmitting or receiving data.

UART_DLH

Address: Operational Base + offset (0x0004) Divisor Latch (High)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0x00	baud_rate_divisor_H Upper 8 bits of a 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART.

UART_IER

Address: Operational Base + offset (0x0004) Interrupt Enable Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			prog_thre_int_en Programmable THRE Interrupt Mode Enable
7	RW	0×0	This is used to enable/disable the generation of THRE Interrupt.
			1'b0: disabled
			1'b1: enabled
6:4	RO	0x0	reserved
			modem_status_int_en Enable Modem Status Interrupt. This is used to enable/disable the generation
3	RW	0x0	of Modem Status Interrupt. This is the fourth highest priority interrupt. 1'b0: disabled 1'b1: enabled
		FCY'	receive_line_status_int_en Enable Receiver Line Status Interrupt. This is used to enable/disable the generation
2	RW	0×0	of Receiver Line Status Interrupt. This is the highest priority interrupt. 1'b0: disabled 1'b1: enabled
1	RW	0×0	trans_hold_empty_int_en Enable Transmit Holding Register Empty Interrupt.

Bit	Attr	Reset Value	Description
			receive_data_available_int_en
			Enable Received Data Available Interrupt.
			This is used to enable/disable the generation
			of Received Data Available Interrupt and the
0	RW	0x0	Character Timeout Interrupt (if in FIFO mode
			and FIFOs enabled). These are the second
			highest priority interrupts.
			1'b0: disabled
			1'b1: enabled

UART_IIR

Address: Operational Base + offset (0x0008) Interrupt Identification Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			fifos_en
			FIFOs Enabled.
7:6	RO	0x0	This is used to indicate whether the FIFOs are
/.0	κυ	0.00	enabled or disabled.
			2'b00: disabled
			2'b11: enabled
5:4	RO	0x0	reserved
			int_id
			Interrupt ID
			This indicates the highest priority pending
			interrupt which can be one of the following
			types:
3:0	RO	0x1	4'b0000: modem status
5.0			4'b0001: no interrupt pending
			4'b0010: THR empty
	C	YC	4'b0100: received data available
0			4'b0110: receiver line status
			4'b0111: busy detect
\sim			4'b1100: character timeout
	·		

UART_FCR

Address: Operational Base + offset (0x0008)

FIFO Control Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved

Bit	Attr	Reset Value	Description
Bit 7:6	Attr WO	Reset Value 0x0	rcvr_trigger RCVR Trigger. This is used to select the trigger level in the receiver FIFO at which the Received Data Available Interrupt is generated. In auto flow control mode it is used to determine when the rts_n signal is de-asserted. It also determines when the dma_rx_req_n signal is asserted in certain modes of operation. The following trigger levels are supported: 2'b00: 1 character in the FIFO 2'b01: FIFO 1/4 full 2'b10: FIFO 1/2 full
5:4	wo	0×0	2'b11: FIFO 2 less than full tx_empty_trigger TX Empty Trigger. This is used to select the empty threshold level at which the THRE Interrupts are generated when the mode is active. It also determines when the dma_tx_req_n signal is asserted when in certain modes of operation. The following trigger levels are supported: 2'b00: FIFO empty 2'b01: 2 characters in the FIFO 2'b10: FIFO 1/4 full 2'b11: FIFO 1/2 full
3	wo	0×0	dma_mode DMA Mode This determines the DMA signalling mode used for the dma_tx_req_n and dma_rx_req_n output signals when additional DMA handshaking signals are not selected . 1'b0: mode 0 1'b1: mode 11100 = character timeout. xmit_fifo_reset XMIT FIFO Reset.
2	wo	0×0	This resets the control portion of the transmit FIFO and treats the FIFO as empty. This also de-asserts the DMA TX request and single signals when additional DMA handshaking signals are select. Note that this bit is 'self-clearing'. It is not necessary to clear this bit.

Bit	Attr	Reset Value	Description
1	wo	0x0	rcvr_fifo_reset RCVR FIFO Reset. This resets the control portion of the receive FIFO and treats the FIFO as empty. This also de-asserts the DMA RX request and single signals when additional DMA handshaking signals are selected. Note that this bit is 'self-clearing'. It is not necessary to clear this bit.
0	wo	0×0	fifo_en FIFO Enable. FIFO Enable. This enables/disables the transmit (XMIT) and receive (RCVR) FIFOs. Whenever the value of this bit is changed both the XMIT and RCVR controller portion of FIFOs is reset.

UART_LCR

Address: Operational Base + offset (0x000c) Line Control Register

ontrol Re	gister		
Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			div_lat_access
			Divisor Latch Access Bit.
			Writeable only when UART is not busy
			(USR[0] is zero), always readable. This bit is
7	RW	0x0	used to enable reading and writing of the
		CY	Divisor Latch register (DLL and DLH) to set the
			baud rate of the UART. This bit must be
			cleared after initial baud rate setup in order to
	C	Y C	access other registers.
			break_ctrl
			Break Control Bit.
			This is used to cause a break condition to be
			transmitted to the receiving device. If set to
Ť			one the serial output is forced to the spacing
			(logic 0) state. When not in Loopback Mode,
6	RW	0x0	as determined by MCR[4], the sout line is
			forced low until the Break bit is cleared. If
			MCR[6] set to one, the sir_out_n line is
			continuously pulsed. When in Loopback Mode,
			the break condition is internally looped back
			to the receiver and the sir_out_n line is forced
			low.
5	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			even_parity_sel
			Even Parity Select.
			Writeable only when UART is not busy
			(USR[0] is zero), always readable. This is
4	RW	0x0	used to select between even and odd parity,
			when parity is enabled (PEN set to one). If set
			to one, an even number of logic 1s is
			transmitted or checked. If set to zero, an odd
			number of logic 1s is transmitted or checked.
			parity_en
			Parity Enable.
			Writeable only when UART is not busy
			(USR[0] is zero), always readable. This bit is
3	RW	0x0	used to enable and disable parity generation
			and detection in transmitted and received
			serial character respectively.
			1'b0: parity disabled
			1'b1: parity enabled
			stop_bits_num
			Number of stop bits.
			Writeable only when UART is not busy
			(USR[0] is zero), always readable. This is
			used to select the number of stop bits per
			character that the peripheral transmits and
			receives. If set to zero, one stop bit is
		•	transmitted in the serial data.If set to one and
2	RW	0x0	the data bits are set to 5 (LCR[1:0] set to
			zero) one and a half stop bits is transmitted.
			Otherwise, twostop bits are transmitted. Note
			that regardless of the number of stop bits
			select, the receiver checks only the first stop
	L		bit.
		11	1'b0: 1 stop bit
			1'b1: 1.5 stop bits when DLS (LCR[1:0]) is
			zero, else 2 stop bit.

Bit	Attr	Reset Value	Description
1:0	RW	0×0	data_length_sel Data Length Select. Writeable only when UART is not busy (USR[0] is zero), always readable. This is used to select the number of data bits per character that the peripheral transmits and receives. The number of bit that may be selected areas follows: 2'b00: 5 bits 1'b01: 6 bits 1'b10: 7 bits 1'b11: 8 bits

UART_MCR

Address: Operational Base + offset (0x0010) Modem Control Register

MCR s: Operational Base + offset (0x0010) Control Register				
Attr	Reset Value	Description		
RO	0x0	reserved		
		sir_mode_en		
		SIR Mode Enable.		
		SIR Mode Enable.		
RW	0x0	This is used to enable/disable the IrDA SIR		
		Mode.		
		1'b0: IrDA SIR Mode disabled		
		1'b1: IrDA SIR Mode enabled		
	0x0	auto_flow_ctrl_en		
۵ ۱ ۸/		Auto Flow Control Enable.		
		1'b0: Auto Flow Control Mode disabled		
A.		1'b1: Auto Flow Control Mode enabled		
	0×0	loopback		
RW		LoopBack Bit.		
		This is used to put the UART into a diagnostic		
		mode for test purposes.		
		out2		
		OUT2.		
		This is used to directly control the		
>\\/	0x0	user-designated Output2 (out2_n) output.		
		The value written to this location is inverted		
		and driven out on out2_n, that is:		
		1'b0: out2_n de-asserted (logic 1)		
		1'b1: out2_n asserted (logic 0)		
2\\/	0×0	out1		
		OUT1		
	Attr Attr O W	Attr Reset Value Image: Color of the set value 0x0 Image: Color of the value 0x0		

Bit	Attr	Reset Value	Description	
			req_to_send	
			Request to Send.	
			This is used to directly control the Request to	
1	RW	0x0	Send (rts_n) output. The Request To Send	
			(rts_n) output is used to inform the modem or	
			data set that the UART is ready to exchange	
			data.	
			data_terminal_ready	
	RW	0x0	Data Terminal Ready.	
			This is used to directly control the Data	
0			Terminal Ready (dtr_n) output. The value	
0	RW	UXU	written to this location is inverted and driven	
			out on dtr_n, that is:	
			1'b0: dtr_n de-asserted (logic 1)	
			1'b1: dtr_n asserted (logic 0)	
_LSR				
	s: Operational Base + offset (0x0014) atus Register			

UART_LSR

Address: Operational Base + offset (0x0014)Line Status Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7	RO	0×0	receiver_fifo_error Receiver FIFO Error bit. This bit is relevant FIFOs are enabled (FCR[0] set to one). This is used to indicate if there is at least one parity error, framing error, or break indication in the FIFO. 1'b0: no error in RX FIFO 1'b1: error in RX FIFO
6	RO	0×1	trans_empty Transmitter Empty bit. Transmitter Empty bit. If FIFOs enabled (FCR[0] set to one), this bit is set whenever the Transmitter Shift Register and the FIFO are both empty. If FIFOs are disabled, this bit is set whenever the Transmitter Holding Register and the Transmitter Shift Register are both empty.

Bit	Attr	Reset Value	Description
			trans_hold_reg_empty
			Transmit Holding Register Empty bit.
			If THRE mode is disabled (IER[7] set to zero)
			and regardless of FIFO's being
			implemented/enabled or not, this bit indicates
			that the THR or TX FIFO is empty.
			This bit is set whenever data is transferred
			from the THR or TX FIFO to the transmitter
5	RO	0x1	shift register and no new data has been
			written to the THR or TX FIFO. This also
			causes a THRE Interrupt to occur, if the THRE
			Interrupt is enabled. If IER[7] set to one and
			FCR[0] set to one respectively, the
			functionality is switched to indicate the
			transmitter FIFO is full, and no longer controls
			THRE interrupts, which are then controlled by
			the FCR[5:4] threshold setting.
			break_int
			Break Interrupt bit.
4	RO	0x0	This is used to indicate the detection of a
			break sequence on the serial input data.
			framing_error
			Framing Error bit.
2		00	This is used to indicate the occurrence of a
3	RO	0x0	framing error in the receiver. A framing error
		•	occurs when the receiver does not detect a
			valid STOP bit in the received data.
			parity_eror
			Parity Error bit.
2	RO	0x0	This is used to indicate the occurrence of a
			parity error in the receiver if the Parity Enable
			(PEN) bit (LCR[3]) is set.
		11	overrun_error
			Overrun error bit.
1	RO	0x0	This is used to indicate the occurrence of an
-			overrun error. This occurs if a new data
			character was received before the previous
			data was read.
			data_ready
			Data Ready bit.
			This is used to indicate that the receiver
0	RO	0x0	contains at least one character in the RBR or
			the receiver FIFO.
			1'b0: no data ready
			1'b1: data ready

UART_MSR

Address: Operational Base + offset (0x0018) Modem Status Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			data_carrior_detect
7			Data Carrier Detect.
7	RO	0x0	This is used to indicate the current state of the
			modem control line dcd_n.
			ring_indicator
C			Ring Indicator.
6	RO	0x0	This is used to indicate the current state of the
			modem control line ri_n.
			data_set_ready
-			Data Set Ready.
5	RO	0x0	This is used to indicate the current state of the
			modem control line dsr_n.
			clear_to_send
		00	Clear to Send.
4	RO	0x0	This is used to indicate the current state of the
			modem control line cts_n.
			delta_data_carrier_detect
			Delta Data Carrier Detect.
3	RO	0x0	This is used to indicate that the modem
			control line dcd_n has changed since the last
			time the MSR was read.
			trailing_edge_ring_indicator
			Trailing Edge of Ring Indicator.
		C Y	Trailing Edge of Ring Indicator. This is used to
2	RO	0x0	indicate that a change on the input ri_n (from
			an active-low to an inactive-high state) has
	C	Y' C	occurred since the last time the MSR was
			read.
			delta_data_set_ready
			Delta Data Set Ready.
1	RO	0x0	This is used to indicate that the modem
			control line dsr_n has changed since the last
			time the MSR was read.
			delta_clear_to_send
			Delta Clear to Send.
0	RO	0x0	This is used to indicate that the modem
			control line cts_n has changed since the last
			time the MSR was read.

UART_SCR Address: Operational Base + offset (0x001c)

Scratchpad Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
51.0	κυ		
			temp_store_space
7:0	RW	0x00	This register is for programmers to use as a
			temporary storage space.

UART_SRBR

Address: Operational Base + offset (0x0030~0x006c) Shadow Receive Buffer Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RO	0×00	shadow_rbr This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it is overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO are preserved, but any incoming data is lost. An overrun error also occurs.

UART_STHR

Address: Operational Base + offset (0x0030~0x006c) Shadow Transmit Holding Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RO	0x00	shadow_thr This is a shadow register for the THR.

UART_FAR

Address: Operational Base + offset (0x0070) FIFO Access Register

Bit Attr	Reset Value	Description
----------	--------------------	-------------

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
			fifo_access_test_en
			This register is use to enable a FIFO access
			mode for testing, so that the receive FIFO can
			be written by the master and the transmit
			FIFO can be read by the master when FIFOs
0	RW	0x0	are implemented and enabled. When FIFOs
			are not enabled it allows the RBR to be written
			by the master and the THR to be read by the
			master.
			1'b0: FIFO access mode disabled
			1'b1: FIFO access mode enabled

UART_TFR

Address: Operational Base + offset (0x0074) Transmit FIFO Read

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			trans_fifo_read
			Transmit FIFO Read.
			These bits are only valid when FIFO access
			mode is enabled (FAR[0] is set to one).When
7:0	RO	0x00	FIFOs are implemented and enabled, reading
			this register gives the data at the top of the
			transmit FIFO. Each consecutive read pops
			the transmit FIFO and gives the next data
			value that is currently at the top of the FIFO.

UART_RFW

Address: Operational Base + offset (0x0078) Receive FIFO Write

Bit	Attr	Reset Value	Description
31:10	RO	0x0	reserved
			receive_fifo_framing_error
0	wo		Receive FIFO Framing Error.
9	9 WO	0×0	These bits are only valid when FIFO access
			mode is enabled (FAR[0] is set to one).
			receive_fifo_parity_error
0	wo	0x0	Receive FIFO Parity Error.
8	WO		These bits are only valid when FIFO access
			mode is enabled (FAR[0] is set to one).

Bit	Attr	Reset Value	Description
			receive_fifo_write Receive FIFO Write Data.
			These bits are only valid when FIFO access mode is enabled (FAR[0] is set to one). When
7:0	7:0 WO	0x00	FIFOs are enabled, the data that is written to the RFWD is pushed into the receive FIFO.
			Each consecutive write pushes the new data to the next write location in the receive FIFO.
			When FIFOs not enabled, the data that is written to the RFWD is pushed into the RBR.

•

UART_USR

Address: Operational Base + offset (0x007c) UART Status Register

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
			receive_fifo_full
			Receive FIFO Full.
			This is used to indicate that the receive FIFO is
4	RO	0x0	completely full.
-		0.00	1'b0: Receive FIFO not full
			1'b1: Receive FIFO Full
			This bit is cleared when the RX FIFO is no
			longer full.
			receive_fifo_not_empty
			Receive FIFO Not Empty.
			This is used to indicate that the receive FIFO
3	RO	0x0	contains one or more entries.
			1'b0: Receive FIFO is empty
			1'b1: Receive FIFO is not empty
		Y C	This bit is cleared when the RX FIFO is empty.
			trasn_fifo_empty
	\bigcirc		Transmit FIFO Empty.
			This is used to indicate that the transmit FIFO
2	RO	0x1	is completely empty.
			1'b0: Transmit FIFO is not empty
			1'b1: Transmit FIFO is empty
			This bit is cleared when the TX FIFO is no
			longer empty

Bit	Attr	Reset Value	Description
			trans_fifo_not_full
			Transmit FIFO Not Full.
			This is used to indicate that the transmit FIFO
1	RO	0x1	in not full.
			1'b0: Transmit FIFO is full
			1'b1: Transmit FIFO is not full
			This bit is cleared when the TX FIFO is full.
			uart_busy
			UART Busy.
			UART Busy. This is indicates that a serial
0	RO	0x0	transfer is in progress, when cleared indicates
			that the UART is idle or inactive.
			1'b0: UART is idle or inactive
			1'b1: UART is busy (actively transferring data)

UART_TFL

Address: Operational Base + offset (0x0080) Transmit FIFO Level

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
	4:0 RW	/ 0x00	trans_fifo_level
4:0			Transmit FIFO Level.
			This is indicates the number of data entries in
			the transmit FIFO.

UART_RFL

Address: Operational Base + offset (0x0084) Receive FIFO Level

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
		0x00	receive_fifo_level
4:0	RO		Receive FIFO Level.
4.0	RU	0,00	This is indicates the number of data entries in
	\bigcap		the receive FIFO.

UART_SRR

Address: Operational Base + offset (0x0088) Software Reset Register

Bit	Attr	Reset Value	Description
31:3	RO	0x0	reserved
2	wo	0x0	xmit_fifo_reset XMIT FIFO Reset. This is a shadow register for the XMIT FIFO Reset bit (FCR[2]).

Bit	Attr	Reset Value	Description
			rcvr_fifo_reset
1	wo	0x0	RCVR FIFO Reset.
	000	UXU	This is a shadow register for the RCVR FIFO
			Reset bit (FCR[1]).
		0x0	uart_reset
			UART Reset.
0	wo		This asynchronously resets the UART and
0	WU		synchronously removes the reset assertion.
			For a two clock implementation both pclk and
			sclk domains are reset.

UART_SRTS

Address: Operational Base + offset (0x008c) Shadow Request to Send

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
			shadow_req_to_send
			Shadow Request to Send.
0 0.00	0x0	This is a shadow register for the RTS bit	
0	0 RW	0x0	(MCR[1]), this can be used to remove the
			burden of having to performing a
			read-modify-write on the MCR.

UART_SBCR

Address: Operational Base + offset (0x0090) Shadow Break Control Register

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
		\mathbf{C}	shadow_break_ctrl
0	RW	0x0	Shadow Break Control Bit.
			This is a shadow register for the Break bit
			(LCR[6]), this can be used to remove the
			burden of having to performing a read modify
	$\mathbf{\nabla}$		write on the LCR.

UART_SDMAM

Address: Operational Base + offset (0x0094) Shadow DMA Mode

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
	5.44		shadow_dma_mode Shadow DMA Mode.
0	RW 0x0		This is a shadow register for the DMA mode bit (FCR[3]).

UART_SFE

Address: Operational Base + offset (0x0098)

Shadow FIFO Enable

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
	RW	0×0	shadow_fifo_en
0			Shadow FIFO Enable.
0			Shadow FIFO Enable. This is a shadow register
			for the FIFO enable bit (FCR[0]).

UART_SRT

Address: Operational Base + offset (0x009c)Shadow RCVR Trigger

Bit	Attr	Reset Value	Description	
31:1	RO	0x0	reserved	
1:0	RW	0x0	shadow_rcvr_trigger Shadow RCVR Trigger. This is a shadow register for the RCVR trigger bits (FCR[7:6]).	
_STET			$\mathcal{A}\mathcal{O}^{\mathbf{Y}}$	

UART_STET

Address: Operational Base + offset (0x00a0)Shadow TX Empty Trigger

Bit	Attr	Reset Value	Description	
31:1	RO	0x0	reserved	
1:0	RW	0x0	shadow_tx_empty_trigger Shadow TX Empty Trigger. This is a shadow register for the TX empty trigger bits (FCR[5:4]).	

UART_HTX

Address: Operational Base + offset (0x00a4) Halt TX

IX				
	Bit	Attr	Reset Value	Description
	31:1	RO	0x0	reserved
				halt_tx_en
				This register is use to halt transmissions for
			11	testing, so that the transmit FIFO can be filled
C		RW	0x0	by the master when FIFOs are implemented
				and enabled.
				1'b0: Halt TX disabled
				1'b1: Halt TX enabled

UART_DMASA

Address: Operational Base + offset (0x00a8)

DMA Software Acknowledge

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved

Bit	Attr	Reset Value	Description
	WO 0x0		dma_software_ack
			This register is use to perform a DMA software
0		UXU	acknowledge if a transfer needs to be
			terminated due to an error condition.

UART_UCV

Address: Operational Base + offset (0x00f8)

UART Component Version

Bit	Attr	Reset Value	Description
31:0	RO	0x3330382a	ver
51.0	κυ	0X33303028	ASCII value for each number in the version

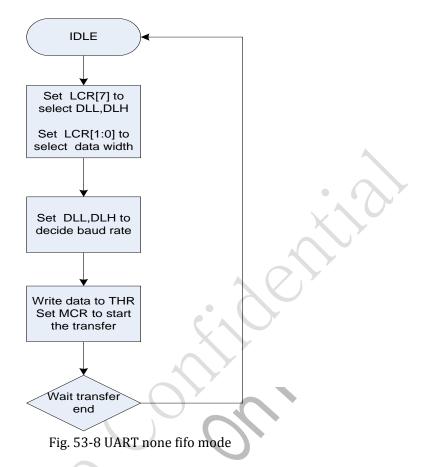
UART_CTR

Address: Operational Base + offset (0x00fc) Component Type Register

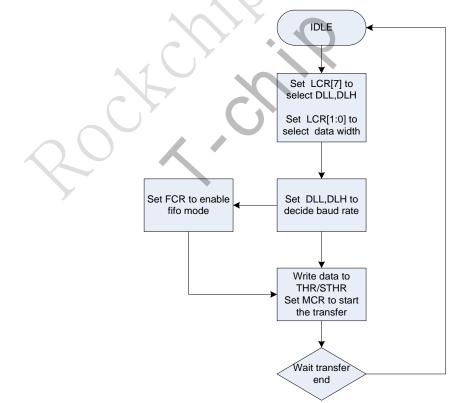
Compo	рпент тур	e Regisi	.er	
	Bit	Attr	Reset Value	

Bi	it	Attr	Reset Value	Description	
31:0)	RO	0x44570110	peripheral_id This register contains the peripherals identification code.	

53.5 Interface description


Table 53-1 UART Interface Description

Module pin	Direction	Pad name	ΙΟΜUΧ		
UART_BT Interface					
uartbt_sin	Ι	GPIO4_C[0]	GPIO1A_IOMUX[0]=1		
uartbt_sout	0	GPIO4_C[1]	GPIO1A_IOMUX[2]=1		
uartbt_cts_n	Ι	GPIO4_C[2]	GPIO1A_IOMUX[4]=1		
uartbt_rts_n	0	GPIO4_C[3]	GPIO1A_IOMUX[6]=1		
		JART_BB Interf			
uartbb_sin	I		GPIO1A_IOMUX[1:0]=01		
uartbb_sout	0	GPIO5_B[1]	GPIO1A_IOMUX[3:2]=01		
uartbb_cts_n	I	GPIO5_B[2]	GPIO1A_IOMUX[5:4]=01		
uartbb_rts_n	0	GPIO5_B[3]	GPIO1A_IOMUX[7:6]=01		
	U	ART_DBG Inter	face		
uartdbg_sin	Ι	GPIO7_C[6]	GPIO7CH_IOMUX[9:8]=01		
uartdbg_sout	0	GPIO7_C[7]	GPIO7CH_IOMUX[14:12]=001		
uartdbg_sirsin	Ι	GPIO7_C[6]	GPIO7CH_IOMUX[9:8]=10		
Uartdbg_sirout	0	GPIO7_C[7]	GPIO7CH_IOMUX[14:12]=010		
	U	ART_GPS Inter	face		
uartgps_sin	Ι	GPIO7_A[7]	GPIO7A_IOMUX[15:14]=01		
uartgps_sout	0	GPIO7_B[0]	GPIO7B_IOMUX[1:0]=01		
uartgps_cts_n	Ι	GPIO7_B[1]	GPIO7B_IOMUX[3:2]=01		
uartgps_rts_n	0	GPIO7_B[2]	GPIO7B_IOMUX[5:4]=01		
	UART_EXP Interface				
uartexp_sin	Ι	GPIO5_B[7]	GPIO5B_IOMUX[15:14]=11		
uartexp_sout	0	GPIO5_B[6]	GPIO5B_IOMUX[13:12]=11		
uartexp_cts_n	Ι	GPIO5_B[4]	GPIO5B_IOMUX[9:8]=11		
uartexp_rts_n	0	GPIO5_B[5]	GPIO5B_IOMUX[11:10]=11		


53.6 Ap

plication Notes

53.6.1 None FIFO Mode Transfer Flow

53.6.2 FIFO Mode Transfer Flow

Fig. 53-9 UART fifo mode

The UART is an APB slave performing:

Serial-to-parallel conversion on data received from a peripheral device.

Parallel-to-serial conversion on data transmitted to the peripheral device.

The CPU reads and writes data and control/status information through the APB interface. The transmitting and receiving paths are buffered with internal FIFO memories enabling up to 64-bytes to be stored independently in both transmit and receive modes. A baud rate generator can generate a common transmit and receive internal clock input. The baud rates will depend on the internal clock frequency. The UART will also provide transmit, receive and exception interrupts to system. A DMA interface is implemented for improving the system performance.

53.6.3 Baud Rate Calculation

UART clock generation

The following figures shows the UART clock generation.

UART source clocks can be selected from CODEC PLL and GENERAL PLL outputs. UART_BT source clocks can also be selected from NEW PLL and USBPHY 480M. UART clocks can be generated by 1 to 64 division of its source clock, or can be fractionally divided again, or be provided by XIN24M.

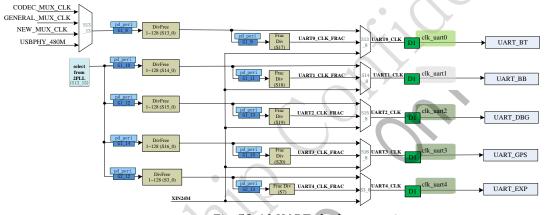


Fig. 53-10 UART clock generation

UART baud rate configuration

The following table provides some reference configuration for different UART baud rates.

	Table 53-2 UART baud rate configuration
Baud Rate	Reference Configuration
115.2 Kbps	Configure GENERAL PLL to get 648MHz clock output;
	Divide 648MHz clock by 1152/50625 to get 14.7456MHz clock;
	Config UART_DLL to 8.
460.8 Kbps	Configure GENERAL PLL to get 648MHz clock output;
	Divide 648MHz clock by 1152/50625 to get 14.7456MHz clock;
	Configure UART_DLL to 2.
921.6 Kbps	Configure GENERAL PLL to get 648MHz clock output;
	Divide 648MHz clock by 1152/50625 to get 14.7456MHz clock;
	Configure UART_DLL to 1.
1.5 Mbps	Choose GENERAL PLL to get 384MHz clock output;
	Divide 384MHz clock by 16 to get 24MHz clock;
	Configure UART_DLL to 1
3 Mbps	Choose GENERAL PLL to get 384MHz clock output;
	Divide 384MHz clock by 8 to get 48MHz clock;
	Configure UART_DLL to 1
4 Mbps	Configure GENERAL PLL to get 384MHz clock output;

Table 53-2 UART baud rate configuration

Divide 384MHz clock by 6 to get 64MHz clock; Configure UART_DLL to 1

53.6.4 CTS_n and RTS_n Polarity Configurable

The polarity of cts_n and rts_n ports can be configured by GRF registers.

- GRF_SOC_CON13[4:0] (grf_uart_cts_sel[4:0]) used to configure the polarity of cts_n. Every bit for one UART, bit4 is for UART_EXP, bit3 is for UART_GPS, bit2 is for UART_DBG, bit1 is for UART_BB, bit0 is for UART_BT.
- GRF_SOC_CON13[9:5] (grf_uart_rts_sel[4:0]) used to configure the polarity of rts_n. Every bit for one UART, bit4 is for UART_EXP, bit3 is for UART_GPS, bit2 is for UART_DBG, bit1 is for UART_BB, bit0 is for UART_BT.
- When grf_uart_cts_sel[*] is configured as 1'b1, cts_n is high active. Otherwise, low active.
- When grf_uart_rts_sel[*] is configured as 1'b1, rts_n is high active. Otherwise, low active.