PRODUCT DATA SHEET

RK27XX

Revision A1.1 October, 2007

TABLE OF CONTENT

TABLE OF CONTENT	
About This Manual	
Release Note	
Document Version Information	
Document History	9
Chapter 1 Product Overview	
1.1 Overview	
Features	
1.3 Pin Diagram	
1.4 Pin Description	
1.5 Architercture	17
1.5.1 Block Diagram.	1/
Chapter 2 System Configuration	
2.1 Descriptions	
2.1.1 AHB Master Priority	10
2.1.2 Interrupts	18
2.1.3 DMA hardware request	19
2.2 System Address Map	20
2.2.1 Default Memory Map 2.2.2 System Memory Map for ARM	20
2.2.2 System Memory Map for ARM	21
2.2.3 System Memory Map for DSP	24
2.3 System mode configuration	27
2.3.1 Debug mode	27
2.3.2 CPU Boot mode Chapter 3 Dual-Core Communication Unit	2/
Chapter 3 Dual-Core Communication Unit	28
3.1 Design Overview	28
3.1.1 Overview	28
3.1.2 Features	28
3.2 Architecture	
3.2.1 Block Diagram	
3.2.2 CPU_ADDR_REMAP Descriptions	
3.2.3 MAILBOX Block Diagram	
3.2.4 MAILBOX Block Descriptions	
3.3 Registers	
3.3.1 MAILBOX Registers Summary	29
3.3.2 MAILBOX Detail Register Description	
3.4 Function Description	
3.4.2 Programming sequence	
Chapter 4 AHB Bus Arbiter	
4.1.1 Overview	
4.1.2 Features	
4.2 Registers	
4.2.1 Registers Summary	
4.2.2 Detail Register Description	
4.3 Functional Description	
4.3.1 Operation	
Chapter 5 Static/SDRAM Memory Controller	
5.1 Design Overview	
5.2 Architecture 5.2.1 Block Diagram	
5.2.1 Block Diagram	
J.Z.Z DIUCK DESCIPTIONS	72

	5.3 Registers	39
	5.3.1 Registers Summary	39
	5.3.2 Detail Register Description	40
	5.4 Functional Description	
	5.4.1 Memory Integration	
	5.4.2 Initialization	
	5.4.3 Operation	
Chanto	⁶ Interrupt Controller	
•	5.1 Design Overview	
	-	
	6.1.1 Overview	
	6.1.2 Features	
	5.2 Architecture	
	6.2.1 Block Diagram	
	6.2.2 Block Descriptions	
	5.3 Registers	
	6.3.1 Registers Summary	50
	6.3.2 Detail Register Description	51
	5.4 Functional Description	59
	6.4.1 Operation	
Chapte	7 AHB DMA (HDMA)	
	7.1 Design Overview	60
	7.1.1 Overview	
		60
	7.1.2 Teatures	60
	7.2 Architecture	60
	 7.1.2 Teaches 7.2 Architecture 7.2.1 Block Diagram 7.2.2 Block Descriptions 	60
	7.2.2 Block Descriptions	01
	7.3 Registers 7.3.1 Registers Summary	61
	7.3.1 Registers Summary	61
	7.3.2 Detail Register Description	62
	7.4 Functional Description	66
	7.4.1 S/W Trigger DMA Mode	66
	7.4.2 H/W Trigger DMA Mode	
	7.4.3 On-the-Fly DMA Mode	67
	7.5 Application Notes	67
Chapte	8 DW DMA	69
•	3.1 Design Overview	69
	8.1.1 Overview	
	8.1.2 Features	
	3.2 Architecture	
	3.3 Registers	
	8.3.1 Registers Summary	
	8.3.2 Configuration and Channel Enable Registers	
	8.3.3 Channel Registers	
	8.3.4 Interrupt Registers	
	8.3.5 Software Handshaking Registers	
	3.4 Register Access	
	3.5 Illegal Register Access	
	3.6 DW_ahb_dmac Transfer Types	
-	9 AHB-to-AHB Bridge	
	9.1 Design Overview	
	9.1.1 Overview	
	9.1.2 Features	
	0.2 Architecture	97
	9.2.1 Block Diagram	98
	9.2.2 Block Descriptions	
	9.3 Registers	
	9.3.1 Registers Summary	
	9.3.2 Detail Register Description	
	5	-

9.4 Functional Description	102
9.4.1 AHB Bridge Mode Operation	102
9.4.2 AHB DMA Mode Operation	103
9.5 Application Notes	104
Chapter 10 USB 2.0 Host Controller 1	
10.1 Design Overview	105
10.1.1 Overview	
10.1.2 Features	105
Chapter 11 USB 2.0 Device Controller1	106
11.1 Design Overview	106
11.1.1 Overview	106
11.1.2 Features	106
11.2 Architecture	106
11.2.1 Block Diagram	107
11.2.2 Block Descriptions	107
11.3 Registers	108
11.3.1 Registers Summary	108
11.3.2 Detail Register Description	111
11.4 Functional Description	125
11.4.1 Operation	125
11.4.2 Programming sequence	127
Chapter 12 AHB-to-APB Bridge 12.1 Design Overview 12.1.1 Overview 12.1.2 Features 12.1.2 Features	131
12.1 Design Overview	131
12.1.1 Overview	131
12.1.2 Features	131
12.2 Architecture	131
12.2.1 Block Diagram	132
12.2.1 Block Diagram 12.2.2 Block Descriptions	132
12.3 Functional Description	132
12.3.1 Operation	132
Chapter 13 UART (16550) 1	135
13.1 Design Overview	135
13.1.1 Overview	135
13.1.2 Features	135
13.2 Architecture	135
13.2.1 Block Diagram	136
13.2.2 Block Descriptions	136
13.3 Registers	136
13.3.1 Registers Summary	136
13.3.2 Detail Register Description	
13.4 Functional Description	142
13.4.1 Clock Signals	142
13.4.2 Operation	142
Chapter 14 General Purpose IO (GPIO)1	144
14.1 Design Overview	144
14.1.1 Overview	
14.1.2 Features	144
14.2 Architecture	144
14.2.1 Block Diagram	144
14.2.2 Block Descriptions	144
14.3 Registers	145
14.3.1 Registers Summary	145
14.3.2 Detail Register Description	
14.4 Functional Description	
14.4.1 Operation	
14.4.2 Programming sequence	149
14.5 GPIO MUX	153
Chapter 15 Timers 1	155

15.1.1 Overview	155
15.1.2 Features	155
	155
15.2 Architecture	155
15.2.1 Block Diagram	156
15.2.2 Block Descriptions	156
15.3 Registers	156
15.3.1 Registers Summary	156
15.3.2 Detail Register Description	
15.4 Functional Description	157
15.4.1 Operation	
Chapter 16 Watchdog Timer (WDT)	
16.1 Design Overview	159
16.1.1 Overview	
16.1.2 Features	
16.2 Architecture	159
16.2.1 Block Diagram	159
16.2.2 Block Descriptions	160
16.3 Registers	
16.3.1 Registers Summary	160
16.3.2 Detail Register Description	160
16.4 Functional Description	161
16.4.1 Operation	161
16.4 Functional Description 16.4.1 Operation Chapter 17 Real Time Clock (RTC) 17.1 Design Overview	162
17.1 Design Overview	162
17.1.1 Overview	102
17.1.2 Features Chapter 18 SPI Master Controller	162
	162
Chapter 18 SPI Master Controller	105
18.1 Design Overview	163
18.1 Design Overview	163 163
18.1 Design Overview 18.1.1 Overview 18.1.2 Features	163 163 163
 18.1 Design Overview 18.1.1 Overview 18.1.2 Features 18.2 Architecture 	163 163 163 163
 18.1 Design Overview	163 163 163 163 164
 18.1 Design Overview	163 163 163 163 164 164
 18.1 Design Overview	163 163 163 163 164 164 164
 18.1 Design Overview	163 163 163 163 164 164 164 165
 18.1 Design Overview	 163 163 163 164 164 164 165 165
 18.1 Design Overview	163 163 163 164 164 164 165 165 170
 18.1 Design Overview	 163 163 163 164 164 164 165 165 170 170
 18.1 Design Overview	 163 163 163 164 164 164 165 165 170 170 173
 18.1 Design Overview	163 163 163 164 164 164 165 165 165 170 170 173 173
 18.1 Design Overview	 163 163 163 164 164 165 165 170 170 173 173
 18.1 Design Overview 18.1.1 Overview 18.1.2 Features 18.2 Architecture 18.2.1 Block Diagram 18.2.2 Block Descriptions 18.3 Registers 18.3.1 Registers Summary 18.3.2 Detail Register Description 18.4 Functional Description 18.4.1 Operation 18.4.1 Operation 19.1 Design Overview 19.1.1 Overview 19.1.2 Features 	163 163 163 164 164 164 165 165 170 170 173 173 173
 18.1 Design Overview	163 163 163 164 164 164 165 165 170 170 173 173 173 173
 18.1 Design Overview 18.1.1 Overview 18.1.2 Features 18.2 Architecture 18.2 Architecture 18.2.1 Block Diagram 18.2.2 Block Descriptions 18.3 Registers 18.3.1 Registers Summary 18.3.2 Detail Register Description 18.4 Functional Description 18.4.1 Operation Chapter 19 I2C Controller 19.1 Design Overview 19.1.2 Features 19.2 Architecture 19.2.1 Block Diagram 	163 163 163 164 164 164 165 165 170 170 173 173 173 173 173
 18.1 Design Overview 18.1.1 Overview 18.1.2 Features 18.2 Architecture 18.2.1 Block Diagram 18.2.2 Block Descriptions 18.3 Registers 18.3.1 Registers Summary 18.3.2 Detail Register Description 18.4 Functional Description 18.4.1 Operation Chapter 19 I2C Controller 19.1 Design Overview 19.1.2 Features 19.2 Architecture 19.2 Block Diagram 19.2.1 Block Diagram 	163 163 163 164 164 164 165 165 170 170 173 173 173 173 173 173 173
18.1 Design Overview 18.1.1 Overview 18.1.2 Features 18.2 Architecture 18.2 Architecture 18.2.1 Block Diagram 18.2.2 Block Descriptions 18.3 Registers 18.3.1 Registers Summary 18.3.2 Detail Register Description 18.4 Functional Description 18.4.1 Operation 18.4.1 Operation 19.1 Design Overview 19.1.1 Overview 19.2 Features 19.2 Architecture 19.2.1 Block Diagram 19.2.2 Block Descriptions 19.3 Registers	163 163 163 164 164 164 165 165 170 173 173 173 173 173 173 173
 18.1 Design Overview	163 163 163 164 164 164 165 165 170 170 173 173 173 173 173 173 174 174
 18.1 Design Overview	163 163 163 164 164 164 165 165 170 173 173 173 173 173 173 174 174
18.1 Design Overview 18.1.1 Overview 18.1.2 Features 18.1.2 Features 18.2 Architecture 18.2.1 Block Diagram 18.2.2 Block Descriptions 18.3.1 Registers 18.3.2 Detail Register Description 18.3.1 Registers Summary 18.3.2 Detail Register Description 18.4 Functional Description 18.4 Functional Description 18.4.1 Operation 18.4.1 Operation 19.1 Design Overview 19.1.1 Overview 19.1.2 Features 19.2.1 Block Diagram 19.2.2 Block Descriptions 19.3 Registers 19.3.1 Register Description 19.3.2 Detail Register Description 19.4 Functional Description	163 163 163 164 164 164 165 165 170 170 173 173 173 173 173 173 174 174 174
18.1 Design Overview 18.1.1 Overview 18.1.2 Features 18.1.2 Features 18.2 Architecture 18.2.1 Block Diagram 18.2.2 Block Descriptions 18.3.1 Registers 18.3.1 Registers Summary 18.3.1 Register Description 18.3.2 Detail Register Description 18.3.4 Functional Description 18.4 Functional Description 18.4.1 Operation 19.1 Design Overview 19.1 Design Overview 19.1.1 Overview 19.1.2 Features 19.2.2 Block Diagram 19.2.2 Block Descriptions 19.3.1 Registers 19.3.1 Register Summary 19.3.2 Detail Register Description 19.4 Functional Description 19.4 Functional Description	163 163 163 164 164 164 165 165 170 170 173 173 173 173 173 173 173 173 174 174 174
18.1 Design Overview 18.1.1 Overview 18.1.2 Features 18.1.2 Features 18.2 Architecture 18.2.1 Block Diagram 18.2.2 Block Descriptions 18.3.1 Registers 18.3.1 Registers Summary 18.3.2 Detail Register Description 18.3.4 Functional Description 18.4 Functional Description 18.4.1 Operation 18.4.1 Operation 19.1 Design Overview 19.1 Design Overview 19.1.1 Overview 19.1.2 Features 19.2.2 Block Diagram 19.2.2 Block Descriptions 19.3.1 Registers 19.3.1 Register Summary 19.3.2 Detail Register Description 19.4 Functional Description 19.4.1 Operation 19.4.2 Programming sequence	163 163 163 164 164 164 165 165 170 173 173 173 173 173 173 174 174 174 174 178 182
18.1 Design Overview 18.1.1 Overview 18.1.2 Features 18.2 Architecture 18.2 Architecture 18.2 Architecture 18.2.1 Block Diagram 18.2.2 Block Descriptions 18.3 Registers 18.3.1 Registers Summary 18.3.2 Detail Register Description 18.4 Functional Description 18.4.1 Operation Chapter 19 I2C Controller 19.1 Design Overview 19.1.2 Features 19.2 Architecture 19.2.2 Block Descriptions 19.3 Registers 19.4 Block Diagram 19.3 Detail Register Description 19.4 Pogration 19.4 Pogration 19.4 Pogration 19.4 Operation 19.4 Programming sequence Chapter 20 I2S Controller	163 163 163 164 164 164 165 165 170 173 173 173 173 173 173 174 174 174 174 178 178 178 178 178
18.1 Design Overview 18.1.1 Overview 18.1.2 Features 18.2 Architecture 18.2.1 Block Diagram 18.2.2 Block Descriptions 18.3.1 Registers 18.3.2 Detail Register Description 18.3.1 Registers Summary 18.3.2 Detail Register Description 18.3.1 Register Description 18.4 Functional Description 18.4.1 Operation 18.4.1 Operation 19.1 Design Overview 19.1.1 Overview 19.1.2 Features 19.2.4 Redisters 19.2.5 Block Diagram 19.2.6 Descriptions 19.3 Registers 19.3.1 Registers Summary 19.3.2 Detail Register Description 19.4 Functional Description 19.4.1 Operation 19.4.2 Programming sequence Chapter 20 I2S Controller 20.1 20.1 Design Overview	163 163 163 164 164 164 165 165 170 173 173 173 173 173 173 174 174 174 178 178 178 178 187
18.1 Design Overview 18.1.1 Overview 18.1.2 Features 18.2 Architecture 18.2.1 Block Diagram 18.2.2 Block Descriptions 18.3.1 Registers 18.3.2 Detail Register Description 18.3.1 Register Description 18.3.2 Detail Register Description 18.3.4 Functional Description 18.4.1 Operation 19.1 Design Overview 19.1.2 Features 19.1.3 Overview 19.1.4 Overview 19.2.5 Block Diagram 19.2.6 Dlock Descriptions 19.3.1 Registers 19.3.1 Register Summary 19.3.2 Detail Register Description 19.4.1 Operation <	163 163 163 164 164 164 165 165 170 173 173 173 173 173 173 173 174 174 174 174 178 187 187
18.1 Design Overview 18.1.1 Overview 18.1.2 Features 18.2 Architecture 18.2.1 Block Diagram 18.2.2 Block Descriptions 18.3.1 Registers 18.3.2 Detail Register Description 18.3.1 Registers Summary 18.3.2 Detail Register Description 18.3.1 Register Description 18.4 Functional Description 18.4.1 Operation 18.4.1 Operation 19.1 Design Overview 19.1.1 Overview 19.1.2 Features 19.2.4 Redisters 19.2.5 Block Diagram 19.2.6 Descriptions 19.3 Registers 19.3.1 Registers Summary 19.3.2 Detail Register Description 19.4 Functional Description 19.4.1 Operation 19.4.2 Programming sequence Chapter 20 I2S Controller 20.1 20.1 Design Overview	163 163 163 163 164 164 165 170 173 173 173 173 173 173 174 174 178 187 187 187 187

20.2.2 Block Descriptions	
20.3 Registers	
20.3.1 Registers Summary	
20.3.2 Detail Register Description	
20.4 Functional Description	
20.4.1 Operation	
20.4.2 Programming sequence	
Chapter 21 SD /MMC Host Controller	
21.1 Design Overview	
21.1.1 Overview	
21.1.2 Features	
21.2 Architecture	
21.2.1 Block Diagram	
21.2.2 Block Descriptions	
21.3 Registers	
21.3.1 Registers Summary	
21.3.2 Detail Register Description	199
21.4 Functional Description	204
21.4.1 Operation	
Chapter 22 PWM Timer	
22.1 Overview	
22.1.1 Key Features 22.2 Architecture	
22.2 Architecture	
22.2.1 Block Diagram	
22.2.1 Block Diagram 22.2.2 Block Descriptions	
22.3 Registers	
22 3 1 Registers Summary	207
22.3.1 Registers Summary	207
Chapter 23 ADC Controller	207
23.1 Overview	209
23.1.1 Key Features	
23.2 Architecture	
23.2.1 Block Diagram	
23.2.2 Block Descriptions	
23.3 Registers	
23.3.1 Registers Summary	
23.3.2 Detail Register Description	
23.4 Function Description	
Chapter 24 System Control Unit (SCU)	
24.1 Design Overview	
24.2 Registers	
24.3 Application Notes	
Chapter 25 LCD Controller	
25.1 Design Overview	
25.2 Register	
25.2.1 Register summary	
25.2.2 Detail Register Description	
25.3 LCD IO MUX	230
Chapter 26 VIP (Video Input Processor)	
26.1 Design Overview	
26.2 Registers	
26.3 Application Description	
26.3.1 Hardware reset	
26.3.2 Software reset	
26.3.3 Initial configuration	
26.3.4 One frame stop mode (Only frame 1 ca	
26.3.5 Ping-Pong mode	
26.3.6 Continuous mode	

Chapter 27 NAND Flash Controller	237
27.1 Design Overview	237
27.1.1 Overview	
27.1.2 Key features	
Chapter 28 High-Speed ADC Interface	
28.1 Design Overview	
28.2 Architecture	
28.3 Register	
28.4 Application Notes	
Chapter 29 Audio codec	
29.1 Design Overview	
29.2 Feature	
29.3 BLOCK DIAGRAM	
29.4 Function register	
29.4.1 Registers Summary	243
29.4.2 Detail Register Description	243
29.5 Application note	252
29.5.1 Power-on and power-off modes	252
29.5.2 Asynchronous reset	
29.5.3 Soft mute mode	252
29.5.4 Power-down and sleep modes	253
29.5.5 Complete stand-by mode	255
29.5.6 Sleep mode	255
29.5.7 Starting and stopping sequences (pop reduction)	
29.5.8 Requirements on mixer and PGATM inputs selection and power-dow	
modes	25/
29.5.9 Programmable attenuation Appendix A – ARM7EJ-S Cache Controller	258
Appendix A – ARM/EJ-S Cache Controller	201
A.1 DESCRIPTION	201
A.3 BLOCK DIAGRAM	201
A.4 FUNCTION REGISTERS	201
A.4.1 Registers Summary:	201
A.4.2 Detail Register Description:	
A.4.2 Detail Register Description	
A.5 OPERATIONS	
	205

About This Manual

The information in this databook includes a functional description, signal and parameter descriptions, and a memory map of RK27xx Multimedia Processors. This databook provides details on how to initialize, configure, and program the ICs.

Release Note

Document Version Information

Product Version Information							
Product Name RK27xx							
Version Number A1.1							
Previous Version							
Release Date	Release Date October 26,2007						

Document History

	-		
Version Number	Release Date	Change Notes	
A 0.1	July 3 2007	First release	
A 0.2	July 22 2007	System configuration	modified
		System control unit	modified
		LCD controller	added
A0.3	August 9, 2007	Audio codec	added
A0.4	August 11, 2007	DW DMA	added
		Pin Description	modified
A1.0	Setptember	Upated	
	13,2007		
A1.1	October 26,2007	RK2706 Pin define	modified
		IO direction	modified
		PWM	modified

Chapter 1 Product Overview

1.1 Overview

The RK27xx is an integrated system-on-chip with Dual Core architecture, which will focus on multimedia product application such as MP3, MP4, PMP etc. The Dual-Core architecture integrated ARM7EJC and DSP micro processor and by co-operating of those two CPUs, RK27xx can get high performance on Low-Power platform . The chapter 1 and chapter 2 will introduce the features, block diagram, and signal descriptions of RK27xx and the chapter 3 through chapter 24 will describe the full function of each module in detail. The ARM7EJC detail specification and instruction set refer to ARM's Technical Manual.

1.2 Features

• System Operation

- Dual Core Architecture (ARM7EJC+DSP)
- Support system boot sequentially from ARM7EJC to DSP
- Selectable JTAG debug method
 - ARM7EJC debug only
 - DSP debug only
 - ◆ ARM7EJC+DSP dual core debug
 - Selectable booting method
 - Boot from NOR Flash
 - Boot from Embedded ROM
- Internal memory space
 - DSP IMEM 32Kwords
 - DSP DMEM 32Kwords
 - ARM7EJC Embedded Sync SRAM 4Kbytes
 - ARM7EJC Embedded Boot ROM 8Kbytes
- Clock & Power Management
 - Use one 24MHz crystal oscillator
 - Use three PLL (For ARM/DSP/CODEC+HSADC)
 - Support different AHB Bus and ARM7EJC clock ratio
 - ◆ 1:1 and 1:2 mode
 - Max frequency of every domain
 - ARM7EJC 200MHz (default 12MHz)
 - AHB BUS 133MHz (default 12MHz)
 - APB BUS 133MHz (default 12MHz)
 - DSP 150MHz (default 24MHz)
 - Power management mode
 - Normal, slow, idle, stop, and power-off mode

• Processor

- ARM7EJC
 - Max frequency 200MHz
 - ARMv5TE architecture with Jazella technology
 - 8x Java performance improvement
 - Five-stage pipeline
 - DSP extensions with 32x16 MAC
 - Small, cost-effective, processor macro cell
 - Unified Cache architecture , Size is 16KB(8words/line)
 - Two way configurable write-through cache
- DSP
 - Max frequency 150MHz

- RISC-based four-way superscalar architecture
- Eight-stage pipeline
- Support 4GB address space
- Dual-Core communication unit
 - Support dual cores system
 - Mailbox handshaking with interrupt mechanism
 - Support two AHB slave ports
 - Each mailbox element includes one data word register, one command word register, and one flag bit that can represent one interrupt
 - 4 interrupts to Host Interrupt Controller
 - 4 interrupts to Client Interrupt Controller
- Memory controller
 - Static/SDRAM Memory controller
 - Dynamic memory interface support
 - Asynchronous static memory device support including SRAM, ROM and Flash with or without asynchronous page mode
 - Support 1 independent AHB slave port for control register, and up to 2 individual AHB slave port for data access
 - Support 1 chip selects for SDRAM and 2 chip selects for static memory
 - support 16-bit wide SDRAM and 8-bit or 16-bit wide static memory
 - Support industrial standard SDRAM from 16MBytes to 128MBytes devices
 - 16Mbytes access space per static memory support
 - NAND Flash controller
 - Support 4 chip selects for NAND flash
 - support 8-bit wide data
 - ♦ Flexible CPU interface support
 - Embedded 4x512bytes size buffer to improve performance
 - Support internal DMA transfer from/to flash
 - 512bytes、2Kbytes、4Kbytes page size support
 - Hardware ECC
 - SD controller
 - Compliant with SD spec. Version 1.01 except SPI mode
 - Compliant with Multimedia Card system specification V3.3 except SPI mode, Stream R/W mode and I/O (Interrupt) mode
 - Variable SD/MMC card clock rate 0 25 MHz which depends on APB clock frequency
 - Controllable SD/MMC card clock to save power consumption
 - Support MMU ping-pong structure to enhance the SD/MMC data transfer performance
 - Support DMA transfer

• Sensor controller

- Support 24MHz 、48MHz、27MHz clock input
- Support CCIR656 PAL/NTSC
- Support YUYV and UYVY format input
- Support YUV 4:2:2 and YUV 4:2:0 format output
- Support up to 3.0 Mega Pixels sensor input
- LCD controller
 - Support video data input format
 - 24bit RGB
 - 16bit RGB
 - YUV 4:2:2
 - YUV 4:2:0
 - Support serial 8bit RGB LCD panel with dummy data or not
 - Support Parallel 24bit (max) RGB LCD panel
 - Built-in 2 640x32bit buffer
 - Support DMA transfer
- DMA Controller

- 3 DMA Controller on-chip
- AHB DMA (HDMA)
 - Integrated in AHB BUS0
 - Two DMA channels support
 - 8 hardware request handshaking support
 - Built-in 32x16 data FIFO
 - Support hardware and software trigger DMA transfer mode
- AHB-to-AHB Bridge (A2A)
 - Integrated between AHB BUS0 and AHB BUS1
 - Provide AHB-to-AHB bus protocol translation
 - Support AHB-to-AHB DMA or Single AHB DMA
 - Two DMA Channels support
 - On-the-fly mode between two level bus support
 - 4 hardware request handshaking support
 - Support hardware and software trigger DMA transfer mode
- DW DMA
 - Integrated in AHB BUS1
 - Four DMA Channels support
 - 8 hardware request handshaking support
 - Support hardware and software trigger DMA transfer mode
 - Build-in 4 data FIFO : 64bytes/64bytes/64bytes
 - Scatter/Gather transfer support
 - LLP transfer support
 - Two master for on-the-fly support
- USB interface
 - UHC(USB HOST Controller) and UDC(USB DEV Controller) share PHY
 - Only support UHC or UDC work at the same time
 - USB2.0 Host Controller
 - USB 2.0 high speed host controller and specification compliant
 - ◆ Intel[™] EHCI host controller interface specification compliant
 - OHCI host controller interface specification compliant
 - ◆ Supports USB Transceiver Macro cell Interface+ (UTMI+ level 3)
 - USB2.0 Device Controller
 - Complies with the Universal Serial Bus specification Rev. 2.0, Supports USB Full Speed (12Mb/sec) and High Speed (480 Mb/sec), is Backward compatible with USB1.1
 - On-chip USB2.0 PHY and Parallel Bus Interface Engine (PIE)
 - Suspend / Resume operation Supports USB remote wake-up
- Low_speed Peripheral interface
 - Serial Peripheral Interface (SPI) Master Controller
 - Four transfer protocols available with selectable clock polarity and clock phase
 - Different bit rates available for SCLK
 - Bi-direction mode
 - UART (16550)
 - ♦ 2 UART support
 - UARTO support modem function
 - Supports up to 3Mbps baud-rate
 - Programmable baud rate generator. This enables division of the internal clock by (1 ~ 65535 x 16) and generates an internal x16 clock
 - Standard asynchronous communication bits (start, stop and parity).
 - I2C controller
 - Multi masters operation
 - Software programmable clock frequency and transfer rate up to 400Kbit/sec
 - Supports 7 bits and 10 bits addressing modes
 - I2S
 - Support mono/stereo audio file

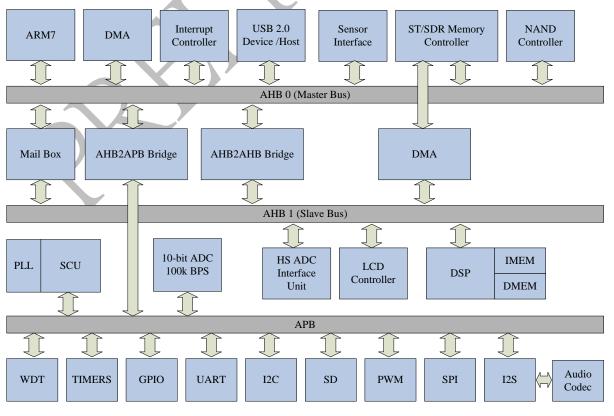
- Support audio resolution: 8, 16 bits
- Support audio sample rate from 32 to 96 KHz
- Support I2S, Left-Justified, Right-Justified digital serial audio data interface
- PWM
 - Built-in three 32 bit timer modulers
 - Programmable counter
 - Chained timer for long period purpose
 - 4-channel 32-bit timer with Pulse Width Modulation (PWM)
 - Programmable duty-cycle, and frequency output
- General Purpose IO (GPIO)
 - Support 48 individually programmable input/output pins
 - Support GPIO with interrupt capability
- Timers
 - Built-in three 32 bits timer modules
 - Programmable counter
 - Watchdog Timer (WDT)
 - Watchdog function
 - Built-in 32 bits programmable reset counter
- Real Time Clock (RTC)
 - Support perpetual RTC core power
 - Programmable alarm with interrupt for system power wake up
 - System power off sequence with output control pin
 - RTC core power loss indication
- Analog IP interface
 - ADC Converter
 - 4-channel single-ended 10-bit 1MSPS Successive Approximation Register (SAR) analog-to-digital converter
 - Supply 2.5V to 3.6V for analog and 0.9V to 1.3V for digital interface
 - Very Low Power : <0.4mW power consumption at 1MSPS</p>
 - CODEC
 - Support built-in codec or external codec through I2S interface
 - Build in Stereo 24-bit Delta-Sigma DAC with on-chip headphone amplifier
 - Build in Stereo 16-bit Sigma-Delta ADC
- Operation Frequency
 - ARM7: up to 200MHz
 - DSP : up to 150MHz
 - AMBA AHB bus: up to 133 MHz
 - AMBA APB bus: up to 66 MHz
- Package
 - RK2706 LQPG128
 - RK2708/RK2710 LQFP144
 - BGA169
- Operation Temperature Range
 0°C to +125°C
- Operation Voltage Range
 - Core: 1.2 V
 - I/O:3.3V

1.3 Pin Diagram

1.4 Pin Description

RK2706	RK2708	RK2710			
PIN128	PIN144	PIN144	Names	Direction	PIN Description
1	1	1	NPOR	I Pull up	Power on Reset
2	2	2	SDT_A6	0	SDRAM/SRAM addr[6]
3	3	3	SDT_A5	0	SDRAM/SRAM addr[5]
4	4	4	SDT_A4	0	SDRAM/SRAM addr[4]
5	5	5	SDT_A3	0	SDRAM/SRAM addr[3]
6	6	6	SDT_A2	0	SDRAM/SRAM data[2]
7	7	7	SDT_A1	0	SDRAM/SRAM data[1]
8	8	8	SDT_A0	0	SDRAM/SRAM data[0]
9	9	9	LCD_D0	0	lcd data[0]
10	10	10	LCD_D1	0	lcd data[1]
11	11	11	LCD_D2	0	Icd data[2]
12	12	12	LCD_D3	0	Icd data[3]
13	13	13	VDDIO	Р	IO POWER SUPPLY 3.3V
14	14	14	VSS	Р	GROUND
15	15	15	XIN24M	I OSC	Crystal 24M input
16	16	16	XOUT24M	O OSC	Crystal 24M output
17	17	17	VDD	Р	CORE POWER SUPPLY 1.2V
18	18	18	LCD_D4	0	lcd data[4]
19	19	19	LCD_D5	0	lcd data[5]
20	20	20	LCD_D6	0	lcd data[6]
21	21	21	LCD_D7	0	lcd data[7]
22	22	22	PE0/LCD_D8	IO Pull up/O	GPIO E0/LCD data[8]
23	23	23	PE1/LCD_D9	IO Pull up/O	GPIO E1/LCD data[9]
24	24	24	PE2/LCD_D10	IO Pull up/O	GPIO E2/LCD data[10]
25	25	25	PE3/LCD_D11	IO Pull up/O	GPIO E3/LCD data[11]
26	26	26	PE4/LCD_D12	IO Pull up/O	GPIO E4/LCD data[12]
27	27	27	PE5/LCD_D13	IO Pull up/O	GPIO E5/LCD data[13]
28	28	28	PE6/LCD_D14	IO Pull up/O	GPIO E6/LCD data[14]
29	29	29	PE7/LCD_D15	IO Pull up/O	GPIO E7/LCD data[15]
30	30	30		IO Pull up/O/O	GPIO A1/LCD
		50	PA0/LCD_D16/RXD0		data[16]/UART0 rxd
31	31	31		IO Pull up/O/O	GPIO A1/LCD
			PA1/LCD_D17/TXD0		data[17]/UART0 txd
32	32	32	LCD_CLK/LCD_RS	О	RGB dot clock / MUC pannel
				- ··	RS
X	33	33	VIP_D0/HADC_D0	I pull up	HS adc data[0]
X	34	34	VIP_D1/HADC_D1	I pull up	HS adc data[1]
X	35	35	VIP_D2/HADC_D2	I pull up	HS adc data[2]
X	36	36	VIP_D3/HADC_D3	I pull up	HS adc data[3]
X	27	27		Taultura	
X	37	37	VIP_D4/HADC_D4	I pull up	VIP data[0]
X	38	38	VIP_D5/HADC_D5	I pull up	VIP data[1]
X	39	39	VIP_D6/HADC_D6	I pull up	VIP data[2]
X	40	40	VIP_D7/HADC_D7	I pull up	VIP data[3]
33	41	41	LCD_HSYNC		RGB HSYNC/MCU_WR
34	42	42	PA7/LCD_VSYNC	IO Pull up/O	GPIO

					A7/RGB_VSYNC/MCU_CS
35	43	43	FLASH_RDY	I pull up	NAND FLASH R/B
36	44	44	FLASH_RDN	0	NAND FLASH RD
37	45	45	FLASH_CS0	0	NAND FLASH CS0
38	46	46	FLASH D7	В	nand flash data[7]
39	47	47	FLASH D6	В	nand flash data[6]
40	48	48	FLASH D5	В	nand flash data[5]
41	49	49	FLASH D4	В	nand flash data[4]
42	50	50	FLASH D3	В	nand flash data[3]
43	51	51	FLASH_D2	В	nand flash data[2]
44	52	52	FLASH D1	В	nand flash data[1]
45	53	52	FLASH_D0	В	nand flash data[0]
46	54	54	FLASH CLE	0	nand flash cle
47	55	55	FLASH_ALE	0	nand flash ale
48	56	55	FLASH WRN	0	NAND FLASH WR
49	57	57	VDD	P	CORE POWER SUPPLY 1.2V
			VSS	P	GROUND
50 51	58 59	58 59	VSS VDDIO	P	IO POWER SUPPLY 3.3V
51	59	59		P	
52	60	60	PB2/SDDATA0/SPI_MISO	IO Pull up/B/B	GPIO B2/SD DATA
		'			OUT/SPI_MISO
53	61	61	PB3/SDCMD/SPI_MOSI	IO Pull up/B/B	GPIO B3/SD DATA
.	60	60			IN/SPI_MOSI
54	62	62	PB5/SDCLK/SPI_CLK	IO Pull up/O/O	GPIO B3/SD CLK/SPI_CLK
55	63	63	CODEC_AIL1	AI	L-channel analog input 1
56	64	64	CODEC_AIR1	AI	R-channel analog input 1
57	65	65	CODEC_MIC	AI	Mic input
58	66	66	CODEC_VCOM	AO	Internal biasing voltage
59	67	67	CODEC_VSSA	Р	Ground for Codec
60	68	68	CODEC_VDDA	Р	Power supply for CODEC, 3.3V
61	69	69	CODEC_AOHPL	AO	L-channel headphone output
62	70	70	CODEC_VSSAO	P	Ground for amplifiers
					Power supply for amplifiers
63	71	71	CODEC_VDDAO	Р	3.3V
64	72	72	CODEC_AOHPR	AO	R-channel headphone output
65	73	73	PA5/FLASH CS1	IO Pull up/O	GPIO A5/FLASH CS1
			SDA/FLASH_CS3/PB7	IO Pull up/O/IO	SCL/NAND FLASH CS3/GPIO
66	74	74	007,712,000,127	Pull up	B7
			SCL/FLASH_CS2/PB6	IO Pull up/O/IO	SCL/NAND FLASH CS2/GPIO
67	75	75		Pull up	B6
68	76	76	PC0	IO Pull down	GPIO CO
69	77	77	PC1/LCD_DEN	IO Pull down/O	GPIO C1/RGB DEN
70	78	78	PC2/I2S_SCLK	IO Pull down/B	GPIO C2/I2S SCLK
70	70	70	PC3/I2S_LRCK	IO Pull down/B	GPIO C3/I2S LRCK
72	80	80	PC4/I2S_SDI	IO Pull down/I	GPIO C4/I2S DATA IN
72	81	81	PC5/I2S_SD0	IO Pull down/O	GPIO C5/I2S DATA IN
73	81	82	PC6/I2SCLK	IO Pull down/O	GPIO C6/I2S CLOCK OUT
74	83	83	PC0/12SCLK PC7/ST_CSN1	IO Pull up/O	GPIO C7/static memory CS1
75	65	65	· _	-	
Х	84	84	PF0/VIP_CLKO	IO pull up/O	GPIO F7/VIP clock out


Rock-Chips Confidential

		-			empe comidentia
х	85	х	PD0/SDPCA/TXD1	IO Pull up/O/O	GPIO D0/SD Power control/Uart1 txd
x	86	x	PD1/SDCDA/RXD1	IO Pull up/O/O	GPIO D1/SD detect/Uart1 rxd
Х	87	85	PD3/SD_CKE	IO Pull up/O	GPIO D3/SDRAM CKE
Х	Х	86	PD6/PWM2	IO Pull down/O	GPIO D6/PWM2
Х	Х	87	PD5/PWM1	IO Pull down/O	GPIO D5/PWM1
76	88	88	PD4/PWM0	IO/O	GPIO D4/PWM0
77	89	89	VDDIO	Р	IO POWER SUPPLY 3.3V
78	90	90	VSS	Р	GROUND
79	91	91	VDD	Р	CORE POWER SUPPLY 1.2V
80	92	92	SDT_D15	В	SDRAM/SRAM data[15]
81	93	93	SDT_D14	В	SDRAM/SRAM data[14]
82	94	94	SDT_D13	В	SDRAM/SRAM data[13]
83	95	95	SDT_D12	В	SDRAM/SRAM data[12]
84	96	96	SDT_D11	В	SDRAM/SRAM data[11]
85	97	97	VBUS_DET	I Pull down	USB VBUS detect
86	98	98	LADC_AIN0	А	10bit adc channel0 input
87	99	99	LADC_AIN1	А	10bit adc channel1 input
88	100	100	LADC_AIN2	A	10bit adc channel2 input
89	101	101	LADC_VSSA	Р	10bit adc analog ground
90	102	102	PHY_VDDA	Р	USB PHY Analog Power 3.0V-3.3V
91	103	103	PHY_DN	A	USB DN
92	104	104	PHY_DP	A	USB DP
93	105	105	PHY_VSSA	Р	USB PHY Analog Ground
94	106	106	PHY_REF	А	Resistor for USB, 6.04K 1%
95	107	107	PHY_VDDP	Р	USB PHY PLL POWER, 1.2V
96	108	108	PHY_VSSP	Р	USB PHY PLL Ground
97	109	109	SDT_D10	В	SDRAM/SRAM data[10]
98	110	110	SDT_D9	В	SDRAM/SRAM data[8]
99	111	111	SDT_D8	В	SDRAM/SRAM data[8]
100	112	112	SDT_D7	В	SDRAM/SRAM data[7]
101	113	113	SDT_D6	В	SDRAM/SRAM data[6]
102	114	114	SDT_D5	В	SDRAM/SRAM data[5]
103	115	115	SDT_D4	В	SDRAM/SRAM data[4]
104	116	116	SDT_D3	В	SDRAM/SRAM data[3]
105	117	117	SDT_D2	В	SDRAM/SRAM data[2]
106	118	118	SDT_D1	В	SDRAM/SRAM data[1]
107	119	119	SDT_D0	В	SDRAM/SRAM data[0]
108	120	120	SD_DQM1	0	SDRAM dqm[1]
109	121	121	SD_DQM0	0	SDRAM dqm[0]
110	122	122	SD_WEN	0	SDRAM wen
111	123	123	VDDIO	Р	IO POWER SUPPLY 3.3V
112	124	124	VSS	Р	GROUND
113	125	125	VDD	Р	CORE POWER SUPPLY 1.2V
114	126	126	SD_CASN	0	SDRAM casn
115	127	127	SD_RASN	0	SDRAM rasn
116	128	128	SD_CLK	0	SDRAM clkout

117	129	129	SD_CSN	О	SDRAM csn
118	130	130	SD_BA0	0	SDRAM ba[0]
119	131	131	SD_BA1	0	SDRAM ba[1]
120	100	122			SDRAM/SRAM
120	132	132	SDT_A12/PF2	O/IO Pull up	addr[12]/GPIO F2
121	133	133	SDT_A11/PF1	O/IO Pull up	SDRAM/SRAM
121	155	135	SUT_ATT/PFT		addr[11]/GPIO F1
122	134	134	SDT_A10	0	SDRAM/SRAM addr[10]
123	135	135	SDT_A9	0	SDRAM/SRAM addr[9]
124	136	136	SDT_A8	0	SDRAM/SRAM addr[8]
125	137	137	SDT_A7	0	SDRAM/SRAM addr[7]
Х	138	138	TEST	I PullDown	Test mode
Х	139	Х	VIP_PCLK	l pullup	VIP pclk
Х	140	139	VIP_VSYNC/HADC_D9	l pullup	VIP vsync
Х	141	140	VIP_HSYNC/HADC_D8	l pullup	VIP hsync
Х	Х	141	HADC_CLK	0	hsadc clk output
126	142	142	ZPLL_VDDA	Р	DSP PLL power 1.2V
127	143	143	PLL_VSSA	Р	DSP PLL Ground
128	144	144	APLL_VDDA	Р	ARM PLL power 1.2V
				$\sim \gamma$	
NOTE:	Р		power supply pad		
	10		IO pad		
	0		output pad		
	I		input pad		

1.5 Architercture

1.5.1 Block Diagram

Chapter 2 System Configuration

2.1 Descriptions

2.1.1 AHB Master Priority

AHB Arbiter decides the priority of AHB masters. The RK27xx provides two bus arbiters on each AHB bus (AHB0 and AHB1). The lower master has higher priority when their priority levels are set to a same value. For detail arbiter control register setting, please reference AHB bus arbiter chapter.

The following table describes the priority of IPs on each BUS.

Priority of AHB_0 Masters		
Master No.	Priority	Block
5	Highest	VIP
6		UHC
7		UDC
10		HDMA
14		A2A&DMA
15	Lowest	ARM7EJ

Priority of AHB 1 Masters

Master No.	Priority	Block
1	Highest	A2A
14		DWDMA
15	Lowest	DSP / DCM

2.1.2 Interrupts

The RK27xx provides an interrupt controller for ARM7EJC processor, which has 32 interrupt sources for internal blocks or external devices usage , and generates one interrupt request IRQ to ARM7EJC. Each interrupts trigged type can be configured by software. For detail interrupt controller setting, please reference interrupt controller chapter. Another, for DSP processor, 13 external interrupts are reserved for user, which are always edge sensed , and must remain asserted high for at least one clock period.

The following table describes interrupt source number for two processors. The following table describes each interrupt controller's source number.

Source #	Source Description	Polarity
31 (High)	Software Interrupt	-
30	Software Interrupt	-
29	Software Interrupt	-
28	DSP	High level
27	LCDC	High level
26	NANDC	High level
25	DWDMA	High level
24	VIP	High level
23	GPIO1 (a/b group)	High level
22	ADC	High level
21	PWM3	High level
20	PWM2	High level
19	PWM1	High level
18	PWM0	High level

INTCO (ARM Interrupts)

17	UHC	High level
16	UDC	High level
15	I2S	High level
14	I2C	High level
13	A2A bridge & DMA	High level
12	HDMA	High level
12 11	SPI master controller	High level
10	SD	High level
9	SCU	High level
8	RTC	High level
7	AHB0 MAILBOX	High level
6	SoftWare Interrupt	-
5	GPIO0 (a/b group)	High level
4	Timer0_2	High level
3	Timer0_1	High level
2	Timer0_0	High level
1	UART1	High level
0 (Low)	UART0	High level

INTC1 (DSP interrupts)

Source #	Source Description	Polarity
nmi	ARM7EJC	High level
13	Software Interrupt	High level
12 11	Software Interrupt	High level
11	PWM0	High level
10	GPIO0 (c/d group)	High level
9	HS_ADC	High level
8	LCDC	High level
7	VIP	High level
6	Timer1 (internal)	High level
5	Timer0 (internal)	High level
4	AHB1 MAILBOX	High level
3	DWDMA	High level
2	A2A bridge & DMA	High level
1	HDMA	High level
0	UHC or UDC (combinational)	High level

2.1.3 DMA hardware request

The RK27xx provides 3 DMA controllers, total 20 hardware dma request interfaces, which have different request polarity requirements. The following table describes DMA hardware request connection.

HDMA		
Source #	Source Description	Polarity
0	UART0 rxd	LOW level
1	UART0 txd	LOW level
2	UART1 rxd	LOW level
3	UART1 txd	LOW level
4	SPI rxd	LOW level
5	SPI txd	LOW level
6	I2S txd	LOW level
7	I2S rxd	LOW level

A2A bridge &DMA

Source #	Source Description	Polarity
0	SD/MMC	LOW level
1	Reserved	-
2	Reserved	-
3	Reserved	-

DWDMA

Source #	Source Description	Polarity
0	HS_ADC	High level
1	Reserved	High level
2	Reserved	High level
3	Reserved	High level
4	LCDC line, for Y channel	High level
5	LCDC line backup, for UV channel	High level
6	LCDC blank, for Y&UV channel	High level
7	LCDC FIFO, for RGB channel	High level

2.2 System Address Map

2.2.1 Default Memory Map

The 32-bit address bus can address up to 4GB of memory. This space is sub-divided into a numbers of memory banks and control registers. The RK27xx uses little endian only for memory and registers access.

For ARM processor, RK27xx core provides address decode re-map function. It cans speed-up whole system performance. The detail memory map is as follow.

2.2.2 System Memory Map for ARM

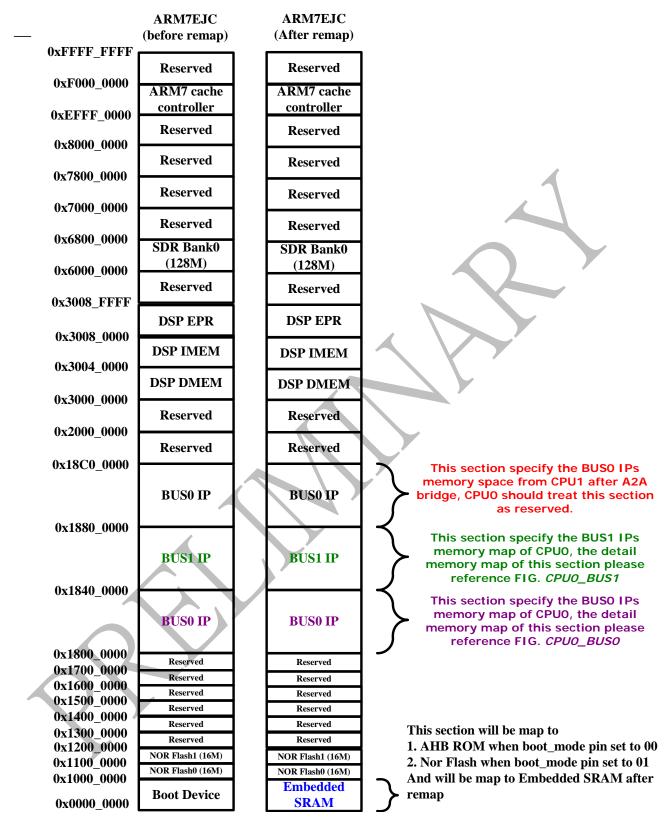


FIG. ARM_BUSO

1000 0000	
1808_0000	Reserved
1002 -000	(272K)
1803_c000	APB0 GPI01
1803_8000	(16K)
1803_8000	Reserved
1803_4000	Reserveu
1003_4000	APB0 ADC0
1803_0000	(16K)
1803_0000	APB0 PWM
1802_C000	(16K)
1802_000	APB0 12S
1802_8000	(16K)
1802_8000	APB0 SD
1802_4000	(16K)
1802_4000	APB0 12C
1802 0000	(16K)
1802_0000	APB0 SCU
1001 0000	(16K)
1801_C000	APB0 SPI
1001 0000	(16K)
1801_8000	APB0 RTC
1801_4000	(16K)
1801_4000	APB0 WDT
1801 0000	(16K)
1801_0000	APB0 GPI 00
1800 0000	(16K)
1800_C000	APB0 UART1
1900 9000	(16K)
1800_8000	APBO UARTO
1800_4000	(16K)
1000_4000	APB0 TIMER
1800_0000	(16K)
1000_0000	

180E_8000	
1002_0000	Reserved
180E_0000	(32K)
_	Reserved (64K)
180D_0000	
	Reserved (48K)
180C_4000	
	(16K)
180C_0000	Reserved
1005 0000	(16K)
180B_C000	Reserved
180B_8000	(16K)
1808_8000	Reserved
180B_4000	(16K)
1000_4000	AHB0 SDRSTMC
180B_0000	(16K)
_	Reserved
180A_C000	(16K)
	Reserved (16K)
180A_8000	
	(16K)
180A_4000	AHBO UDC
	(16K)
180A_0000	Reserved
1809_C000	(16K)
1809_0000	Reserved
1809 8000	(16K)
1007_0000	AHBO A2A DMA
1809_4000	(16K)
_	AHBO HDMA (16K)
1809_0000	
	DebugIF(16K)
1808_C000	AHB0 CPU Mailbox
	(16K)
1808_8000	AHB0 Arbiter
1000 1000	(16K)
1808_4000	AHBO INTC
1808_0000	(16K)

1840_0000	Reserved
1830_0000	(1M) Reserved
182F_C000	(16K) Reserved (16K)
182F_8000	Reserved (16K)
182F_4000 182F_0000	Reserved (16K)
182F_0000	Reserved (16K)
182E_8000	Reserved (16K)
1824_0000	Reserved (688K)
1820_4000	Reserved AHB0 Emd_SRAM
1820_0000	(8K) AHBO ES6
1810_0000	(1M) AHB0 ES5
180F_C000	(16K) AHB0 ES4
	(16K)
180F_8000	AHBO ES3
180F_8000 180F_4000	(16K) AHBO ROM
_	(16K)

FIG. ARM_BUS1

Reserved (336K) Reserved (16K) Reserved (16K)

184E_8000	Reserved (128K)]
184C_8000	Reserved (16K)	1
184C_4000	Reserved (16K)	1000
184C_0000	Reserved (16K)	1880_ 1870_
184B_C000	Reserved (16K)	1870_ 186F_
184B_8000	Reserved (16K)	
184B_4000	Reserved (16K)	186F_ 186F_
184B_0000	Reserved (16K)	186F_ 186F_
184A_C000	Reserved (16K)	
184A_8000	Reserved (16K)	- 186E_
184A_4000	Reserved (16K)	186E_
184A_0000	Reserved (16K)	1864_
1849_C000	Reserved (16K)	1860_
1849_8000	Reserved (16K)	1850_
1849_4000	Reserved (16K)	– 184F_
1849_0000	Reserved (16K)	184F_
1848_C000	Reserved (16K)	- 184F_
1848_8000	AHB1 Arbiter (16K)	184F_
1848_4000	Reserved (16K)	184E_
1848_0000 L	(TOK)	184E_

1880_0000	Reserved
1870_0000	(1M)
	Reserved (16K)
-	Reserved (16K)
186F_8000	Reserved
186F_4000	(16K) AHB1 DWDMA
186F 0000	(16K)
	AHB1 HS_ADC (16K)
186E_C000	AHB1 LCDC
186E_8000	(16K)
10/ 4 0000	Reserved (688K)
1864_0000	Reserved (256K)
1860_0000	Reserved
1850_0000	(1M)
	Reserved (16K)
184F_C000	Reserved (16K)
184F_8000	Reserved
184F_4000	(16K) Reserved
184F_0000	(16K)
1047_0000	Reserved (16K)
184E_C000	Reserved
184E_8000	(16K)
_	

1848_0000	
1040_0000	
1842_C000	
1842_8000	
1842_4000	
1842_0000	
_	
1841_C000	
1841_8000	
1841_4000	
1841_0000	
1840_C000	
1840_8000	
1840_4000	
1840_0000	

2.2.3 System Memory Map for DSP

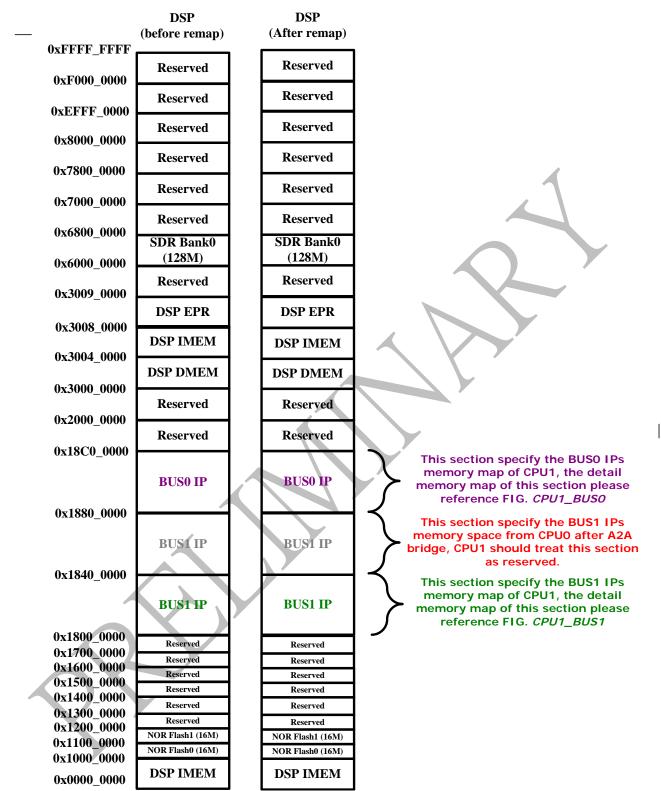


FIG. DSP_BUS0

1888_0000

1883_c000

1883_8000

1883_4000

1883_0000

1882_C000

1882_8000

1882_4000

1882_0000

1881_C000

1881_8000

1881_4000

1881_0000

1880_C000

1880_8000

1880_4000

1880_0000

	188E_8000			
	1002_0000	Reserved		
	188E_0000	(32K)		
		Reserved		
	188D_0000	(64K)		
		Reserved (48K)		
	188C_4000			
		AHB0 VIP (16K)		
Reserved	188C_0000	Reserved	1000 0000	
(272K)		(16K)	18C0_0000	Reserved
APB0 GPI 01	188B_C000	Reserved	18B0_0000	(1M)
(16K)		(16K)	1860_0000	Reserved
	188B_8000	Reserved	18AF_C000	(16K)
Reserved		(16K)		Reserved
APB0 ADC0	188B_4000	AHBO SDRSTMC	18AF_8000	(16K)
(16K)	4005 0000	(16K)	_	Reserved
APB0 PWM	188B_0000	Reserved	18AF_4000	(16K)
(16K)	1004 0000	(16K)		Reserved
APB0 12S	188A_C000	Reserved	18AF_0000	(16K)
(16K)	188A_8000	(16K)		Reserved
APB0 SD	100A_0000	AHB0 UHC	18AE_C000	(16K)
(16K)	188A_4000	(16K)		Reserved (16K)
APB0 I 2C	1004_4000	AHB0 UDC	18AE_8000	
(16K)	188A_0000	(16K)		Reserved (688K)
APBO SCU		Reserved	18A4_0000	(00010)
(16K)	1889_C000	(16K)		Reserved
APBO SPI		Reserved	18A0_4000	AHB0 Emd_SRAM
(16K)	1889_8000	(16K)		(4K)
APBO RTC (16K)		AHBO A2A DMA (16K)	18A0_0000	Reserved
APB0 WDT	1889_4000	AHBO HDMA	1890_0000	(1M)
(16K)		(16K)	1890_0000	Reserved
APB0 GPI 00	1889_0000	Reserved	1005 0000	(16K)
(16K)		(16K)	188F_C000	Reserved
APBO UART1	1888_C000	Reserved	188F_8000	(16K)
(16K)		(16K)		Reserved
APBO UARTO	1888_8000	AHB0 Arbiter	188F_4000	(16K)
(16K)	1000 4000	(16K)		AHBO ROM
APB0 TIMER	1888_4000	AHB0 INTC	188E_C000	(8K)
(16K)	1888_0000	(16K)		AHBO NANDC (16K)
	- 1000_0000		188E_8000	

Rockchip Electronic

FIG. DSP_BUS1

Reserved (336K)

Reserved (16K)

Reserved (16K)

Reserved

(16K)

Reserved (16K)

Reserved

(16K)

Reserved

(16K)

Reserved

(16K)

Reserved (16K)

Reserved (16K)

Reserved

(16K)

Reserved

(16K)

180E_8000		1	
	Reserved		
180C_8000	(128K)		
_	Reserved		
180C_4000	(16K)		
1000_4000	Reserved		
180C_0000	(16K)	1840_0000 r	
1000_0000	Reserved	1040_0000	Reserved
180B_C000	(16K)	1830_0000	(1M)
1006_0000	Reserved	1830_0000	Reserved
	(16K)		(16K)
180B_8000	Reserved	182F_C000	Reserved
	(16K)		(16K)
180B_4000	Reserved	182F_8000	Reserved
	(16K)		(16K)
180B_0000	Reserved	182F_4000	AHB1 DWDMA
	(16K)		(16K)
180A_C000		182F_0000	
	Reserved (16K)		AHB1 HSADC
180A_8000		182E_C000	(16K)
	Reserved		AHB1 LCDC
180A_4000	(16K)	182E_8000	(16K)
	Reserved		Reserved
180A_0000	(16K)	1824_0000	(688K)
1004_0000	Reserved	1024_0000	Reserved
1809_C000	(16K)	1820_0000	(256K)
1809_0000	Reserved	1820_0000	Reserved
4000 0000	(16K)		(1M)
1809_8000	Reserved	1810_0000	Reserved
	(16K)		(16K)
1809_4000	Reserved	180F_C000	Reserved
	(16K)		(16K)
1809_0000	AHB1 CPU	180F_8000	Reserved
	DebugIF(16K)		(16K)
1808_C000	AHB1 CPU Mailbox	180F_4000	Reserved
	(16K)		(16K)
1808_8000		180F_0000	÷ ÷
	AHB1 Arbiter		Reserved
1808_4000	(16K)	180E_C000	(16K)
	Reserved		Reserved
1808_0000	(16K)	180E_8000	(16K)

180E_8000

1808_0000 1802_C000 1802_8000 1802_4000 1802_0000 1801_C000 1801_8000 1801_4000 1801_0000 1800_C000 1800_8000 1800_4000 1800_0000

2.3 System mode configuration

2.3.1 Debug mode

	OP_MODE[1:0]	Description
OP_MODE0	2′b00	ARM7
OP_MODE1	Reserved	Reserved
OP_MODE2	2′b10	ARM7 + DSP
OP_MODE3	2′b11	DSP

2.3.2 CPU Boot mode

	BT_MODE	Description
BOOT_MODE0	1′b0	Boot from Embedded AHB_ROM
BOOT_MODE1	1′b1	Boot from NOR Flash (SDTMC)

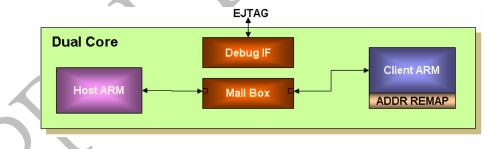
Chapter 3 Dual-Core Communication Unit

3.1 Design Overview

3.1.1 Overview

The Dual-Core Communication Unit contains 3 units, CPU Address Remap unit, communication unit - MAILBOX and Debug Interface unit - DBGIF. The CPU Address Remap unit provides processor address translation function that inter-processors will not conflict on execution the start address 0x00000000. The MAILBOX provides inter-processor an effective communication channel with the interrupt mechanism. The Debug Interface unit provides Dual-Core system debugging capability with one EJTAG on Multi-ICE of ARM.

3.1.2 Features

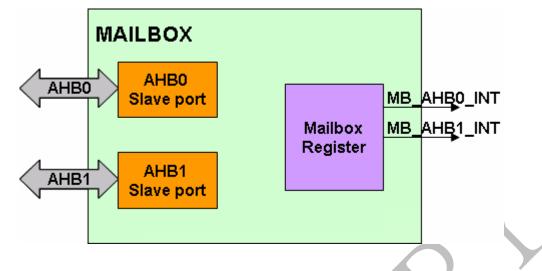

- Support dual cores system
- MAILBOX communication unit
- Support two AHB slave ports
- Each mailbox element includes one data word register, one command word register, and one flag bit that can represent one interrupt
- 4 interrupts to Host Interrupt Controller
- 4 interrupts to Client Interrupt Controller

3.2 Architecture

This chapter provides a description about the functions and behavior under various conditions.

The Dual-Core Unit includes one CPU Address Remap unit and communication unit MAILBOX.

3.2.1 Block Diagram



3.2.2 CPU_ADDR_REMAP Descriptions

CPU_ADDR_REMAP- CPU Address Remap

The CPU Address Remap implements CPU address translation to support dual-core architecture. While booting process, both CPU copy its own ROM code to private memory area. After booting process done, CPU begins to execute its task. But both CPUs' execution address starts from 0x00000000, the same address. They will point to the same ROM code. CPU address remap will let CPU's address to map to different memory block to support dual-core system.

3.2.3 MAILBOX Block Diagram

3.2.4 MAILBOX Block Descriptions

MAILBOX - Dual-Core communication unit

The MAILBOX implements 2 AHB slave ports that are compliance with AHB2.0. The two slave ports connect to host CPU AHB bus and Client CPU AHB bus respectively. It can be programmed independently by processors from their private AHB bus. Each MAILBOX element contains one data word register, one command word register, and one flag bit that generates one interrupt. The MAILBOX have 4 Host2Client MAILBOX elements that can generate 4 interrupts to Client Vectored Interrupt Controller and 4 Client2Host MAILBOX elements that can generate 4 interrupts to Client Vectored Interrupt Controller. It operates synchronously with the HCLK clock from the AHB bus.

3.3 Registers

Size Name Offset **Reset Value** Description

MAILBOX Registers Summary 3.3.1

MAILBOX_ID	0x0000	R	0x00000000	MAILBOX AHB Bus ID
H2C_STA	0x0010	RW	0x00000000	Host CPU to client CPU MAILBOX status
H2C0	0x0020	RW	0x00000000	Data word for the H2C0 MAILBOX
Н2СОЬ	0x0024	RW	0x00000000	Command word for the H2C0 MAILBOX
H2C1	0x0028	RW	0x00000000	Data word for the H2C1 MAILBOX
H2C1b	0x002C	RW	0x00000000	Command word for the H2C1 MAILBOX
H2C2	0x0030	RW	0x00000000	Data word for the H2C2 MAILBOX
H2C2b	0x0034	RW	0x00000000	Command word for the H2C2 MAILBOX
H2C3	0x0038	RW	0x00000000	Data word for the H2C3 MAILBOX
H2C3b	0x003C	RW	0x00000000	Command word for the H2C3 MAILBOX
C2H_STA	0x0040	RW	0x0000000	Client CPU to host CPU MAILBOX status

C2H0	0x0050	RW	0x00000000	Data word for the C2H0 MAILBOX
C2H0b	0x0054	RW	0x00000000	Command word for the C2H0 MAILBOX
C2H1	0x0058	RW	0x00000000	Data word for the C2H1 MAILBOX
C2H1b	0x005C	RW	0x0000000	Command word for the C2H1 MAILBOX
C2H2	0x0060	RW	0x00000000	Data word for the C2H2 MAILBOX
C2H2b	0x0064	RW	0x0000000	Command word for the C2H2 MAILBOX
C2H3	0x0068	RW	0x0000000	Data word for the C2H3 MAILBOX
C2H3b	0x006C	RW	0x0000000	Command word for the C2H3 MAILBOX

Notes:

Size: B – Byte (8 bits) access, HW – Half WORD (16 bits) access, W – WORD (32 bits) access

3.3.2 MAILBOX Detail Register Description

MAILBOX_ID

Address: Operational Base + offset(0x00) MAILBOX AHB Bus ID

TALLOON		10 10	
bit	Attr	Reset Value	Description
31:1	R	0x0000000	Reserved
0	R	0x0000000	If read from AHB0, MAILBOX_ID[0]=0x0. If read from AHB1, MAILBOX_ID[0]=0x1.

H2C_STA

Address: Operational Base + offset(0x10) Host CPU to client CPU mailbox status

HOSL CPU	ost CPU to client CPU mailbox status				
bit	Attr	Reset Value	Description		
31:4	R	0x00000000	Reserved		
3	R	0x0000000	H2C3_FLAG		
Ś	\mathbb{R}		Indicate that the H2C3 mailbox interrupt has been generated. Set by host CPU writing to H2C3b; cleared by client CPU reading of H2C3b. Before host CPU write H2C3 mailbox data word and command word, host CPU need to check if H2C3_FLAG is clear. Before client CPU read out H2C3 mailbox, client CPU need to check if H2C3_FLAG is set.		
2	R	0x0000000	H2C2_FLAG Indicate that the H2C2 mailbox interrupt has been generated. Set by host CPU writing to H2C2b; cleared by client CPU reading of H2C2b. Before host CPU write H2C2 mailbox data word and command word, host CPU need to check if H2C2_FLAG is clear. Before client CPU read out H2C2 mailbox, client CPU need to check if H2C2_FLAG is set.		
1	R	0x00000000	H2C1_FLAG Indicate that the H2C1 mailbox interrupt has been generated. Set by host CPU writing to H2C1b; cleared by client CPU reading of H2C1b. Before host		

			CPU write H2C1 mailbox data word and command word, host CPU need to check if H2C1_FLAG is clear. Before client CPU read out H2C1 mailbox, client CPU need to check if H2C1_FLAG is set.
0	R	0x0000000	H2C0_FLAG Indicate that the H2C0 mailbox interrupt has been generated. Set by host CPU writing to H2C0b; cleared by client CPU reading of H2C0b. Before host CPU write H2C0 mailbox data word and command word, host CPU need to check if H2C0_FLAG is clear. Before client CPU read out H2C0 mailbox, client CPU need to check if H2C0_FLAG is set.

H2Cx (x = 0, 1, 2, 3)

Address: Operational Base + offset(0x20,0x28,0x30,0x38)

Data word for the H2C0 MAILBOX

bit	Attr	Reset Value	Description
31:0	RW	0x0000000	Data word for the H2Cx AILBOX. It can be written only by host CPU and read by client CPU. Writing to this register does not generate an interrupt.

H2Cx (x = 0, 1, 2, 3)

Address: Operational Base + offset(0x24,0x2C,0x34,0x3C) Command word for the H2C0 MAILBOX

commun			
bit	Attr	Reset Value	Description
31:0	RW	0x00000000	Command word for the H2Cx MAILBOX.
			It can be written only by host CPU and read by client
			CPU. Writing to this register generates the H2Cx
			interrupt and sets H2Cx_FLAG. When client CPU
			reads this register, the interrupt and flag are cleared.

C2H_STA

Address: Operational Base + offset(0x40) Client CPU to host CPU mailbox status

	lient CPU to host CPU mailbox status		
bit	Attr	Reset Value	Description
31:4	R	0x00000000	Reserved
3	R	0x00000000	C2H3_FLAG
	\boldsymbol{X}		Indicate that the C2H3 mailbox interrupt has been generated. Set by client CPU writing to C2H3b; cleared by host CPU reading of C2H3b. Before client CPU write C2H3 mailbox data word and command word, client CPU need to check if C2H3_FLAG is clear. Before host CPU read out C2H3 mailbox, host CPU need to check if C2H3_FLAG is set.
2	R	0x0000000	C2H2_FLAG Indicate that the C2H2 mailbox interrupt has been generated. Set by client CPU writing to C2H2b; cleared by host CPU reading of C2H2b. Before client CPU write C2H2 mailbox data word and command word, client CPU need to check if C2H2_FLAG is clear. Before host CPU read out C2H2 mailbox, host CPU need to check if C2H2_FLAG is set.
1	R	0x0000000	C2H1_FLAG Indicate that the C2H1 mailbox interrupt has been generated. Set by client CPU writing to C2H1b;

			cleared by host CPU reading of C2H1b. Before client CPU write C2H1 mailbox data word and command word, client CPU need to check if C2H1_FLAG is clear. Before host CPU read out C2H1 mailbox, host CPU need to check if C2H1_FLAG is set.
0	R	0x0000000	C2H0_FLAG Indicate that the C2H0 mailbox interrupt has been generated. Set by client CPU writing to C2H0b; cleared by host CPU reading of C2H0b. Before client CPU write C2H0 mailbox data word and command word, client CPU need to check if C2H0_FLAG is clear. Before host CPU read out C2H0 mailbox, host CPU need to check if C2H0_FLAG is set.

C2Hx (x = 0, 1, 2, 3)

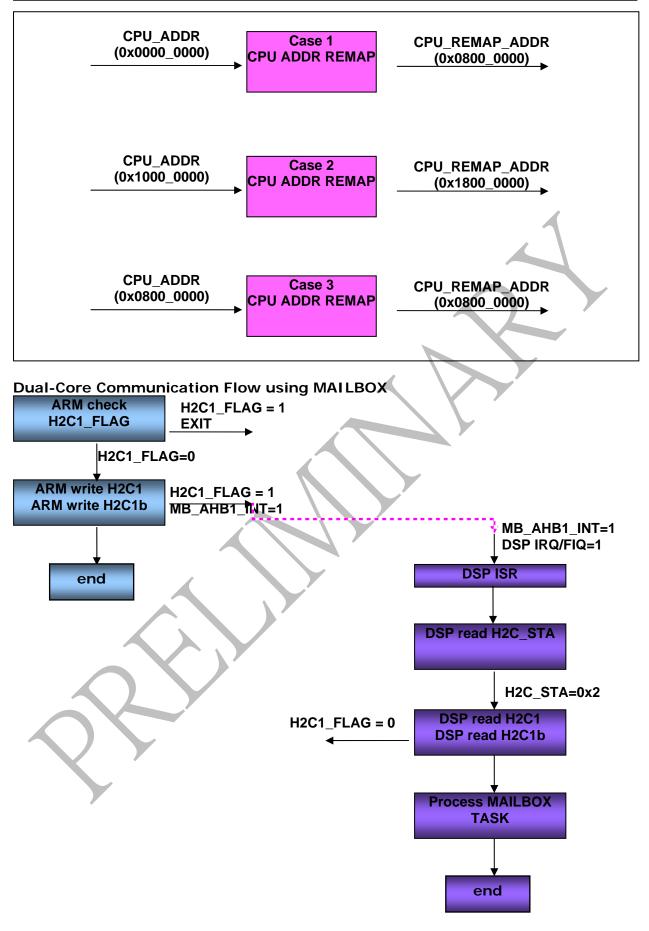
Address: Operational Base + offset (0x50, 0x58, 0x60, 0x58)

Data word for the C2H0 MAILBOX

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	Data word for the C2Hx MAILBOX. It can be written only by client CPU and read by host CPU. Writing to this register does not generate an interrupt.

C2Hxb (x = 0, 1, 2, 3)

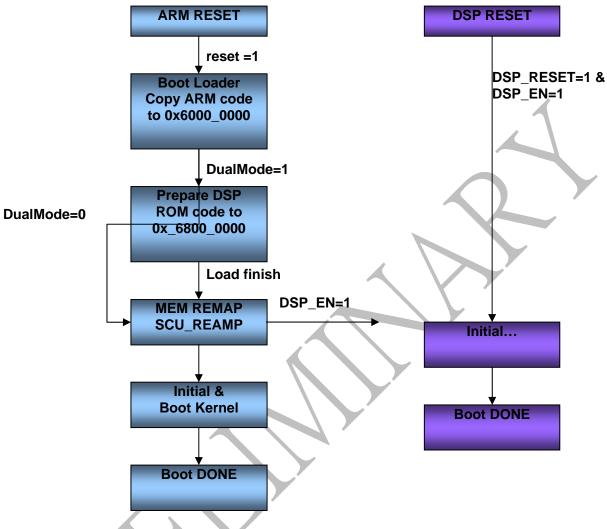
Address: Operational Base + offset (0x54, 0x5C, 0x64, 0x6C) Command word for the C2H0 MAILBOX


bit	Attr	Reset Value	Description
31:0	RW	0x00000000	Command word for the C2Hx MAILBOX.
			It can be written only by client CPU and read by host CPU. Writing to this register generates the C2Hx mailbox interrupt and sets C2Hx_FLAG. When host CPU reads this register, the interrupt and flag are cleared.

Notes: Attr: RW - Read/writable, R - read only, W - write only

3.4 Function Description

3.4.1 Operation


CPU Address Remap

3.4.2 Programming sequence

Sequential booting

After power-on reset, the DSP will still on-reset6state until DSP enable DSP. Then DSP will leave reset state to active

ARM7EJS Power Down Flow

Set ARM7EJS CLKEN LOW, then stop CLK, and sustain at HIGH

ARM7EJS Wake-up Flow

Enable CLK, then set ARM7EJS CLKEN HIGH.

Chapter 4 AHB Bus Arbiter

4.1 Design Overview

4.1.1 Overview

The AHB bus arbiter can arbitrate 16 AHB masters including default master. Each bus master requests control of the bus and the arbiter decides which has the highest priority and issues a grant signal accordingly if fixed arbitration scheme is selected. The arbitration scheme is designed to be 16-stage programmable priority. The following table gives the default arbitration priority. If users wish to change the arbitration priority, they may program the corresponding register bit.

In order to fully comply with the AMBA specification 2.0, the arbiter must provide the following functions:

LOCK transfer control

Fixed arbitration scheme

4.1.2 Features

- Provide round robin, fixed priority, programmable arbitration scheme
- Provide 2-stage, 16-level programmable for fixed priority arbitration
- Capable to handle up to 16 AHB masters

4.2 Registers

This section describes the control/status registers of the design.

4.2.1 Registers Summary

Name	Offset	Size	Reset Value	Description
ARB_MODE	0x0000	W	0×00000001	Arbiter mode selection.
ARB_PRIOx	0x0004 ~ 0x003C	W	0x00000000	Arbiter priority encoder register for Master number x $(x= 1 \sim 15)$.

Notes:

<u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

4.2.2 Detail Register Description

ARB_MODE

Address: Operational Base + offset(0x00) Brief function description of register ARB_MODE

Bit	Attr	Reset Value	Description
31:1	-	-	Reserved.
0	RW	0x1	Arbitration scheme mode. 1: 2-stage, fixed arbitration. 0: Round robin.

ARB_PRIOx ($x=1 \sim 15$)

Address: Operational Base + offset(0x4 * x)

Brief function description of register ARB_PRIOx ($x=1 \sim 15$)

bit	Attr	Reset Value	Description
31:4	-	-	Reserved.

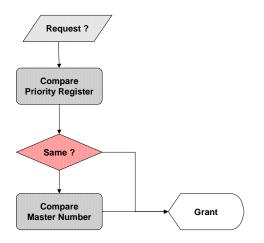
3:0	RW	0x0	Priority level for Master x. The priority level can be	
			between 0 (lowest) and 15 (highest).	
Nataa, Ad		Deed/www.teelele	D waad antik M/ wwite antik	

Notes: Attr: RW – Read/writable, R – read only, W – write only

4.3 Functional Description

4.3.1 Operation

A bus master may request the bus during any cycle by setting its HBUSREQ HIGH. This is then sampled by the arbiter on the rising edge of HCLK, and passed through the priority algorithm to decide which master will have access to the bus during the next cycle. The HGRANT then goes HIGH to indicate which master is currently granted. Also the HMASTER will indicate the granted master number. The HLOCK may be used to ensure that, during an indivisible transfer, the current grant outputs do not change. HLOCK must be asserted at least one cycle before the locked transfer to prevent the arbiter from changing the HGRANT.


During reset, the CPU core is selected as the currently granted master.

The Leopard Generic Core chip requires a default master, which is selected when no masters are granted to the bus. The default master always performs IDLE transfers while it is granted to the bus. The default master is also selected during IDLE mode.

2-Stage fixed arbitration

During reset, the programmable priority register of each master is set to the default priority level. If the default priority level is same, the master number determines the arbitration priority. Please refer to **AHB Master Priority** in Description section of Chapter 3 Architecture for the AHB master number.

When the priority register is changed, arbiter will compare the contents of the priority register. If the corresponding priority is higher than other masters, arbiter will grant bus to that master. If the priority contents are the same, arbiter will compare the master number as given in the previous table. Figure below shows the arbitration procedure.

Round Robin arbitration

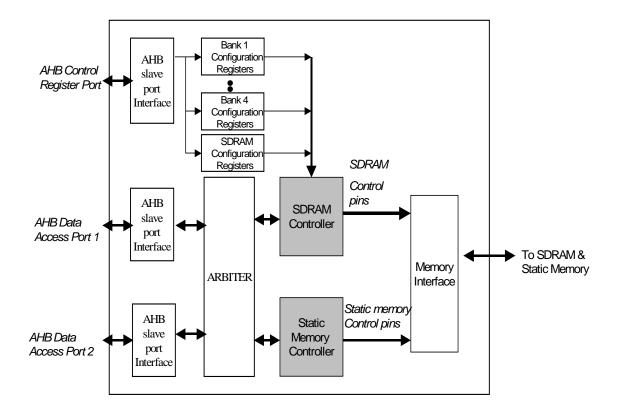
When the arbitration scheme used is the round-robin style. The round robin arbiter grants access in a manner that is meant to allow some degree of fairness among the various masters. Conceptually, each master is assigned a position on a wheel. When the highest priority master is granted, the wheel is moving such that the master with the next lower priority level is placed as the highest priority device. Initially, priorities are assigned such that Master 1 has the highest priority followed by Master 2 and so forth. When current granted master finishes its transfer, arbiter will watch the next token to see if it wishes to request bus. If yes, arbiter grants bus to that master. Otherwise, arbiter will continue to look at the master request after next. When all masters do not request bus, arbiter will park bus to default master.

Chapter 5 Static/SDRAM Memory Controller

5.1 Design Overview

5.1.1 Overview

The Static/SDRAM memory controller is an AHB slave that provides an AHB interface to external SDRAM, ROM, SRAM and FLASH memories. It provides up to 3 AHB ports including one AHB register access port and the other two AHB data access ports. The interface pins with different memory type can be shared. The access timing of each memory type can be configured through the AHB access port.


5.1.2 Features

- AMBA 32-bit AHB compliant
- Dynamic memory interface support
- Asynchronous static memory device support including SRAM, ROM and Flash with or without asynchronous page mode
- Support 1 independent AHB slave port for control register, and up to 2 individual AHB slave port for data access
- Dual write buffers for simultaneous write posting and SDRAM access by each AHB port
- 8, 16 wide static memory support
- Dedicated read buffer with data width matching
- Zero wait state burst data transfer on both AHB interfaces and SDRAM
- Early burst termination and AHB master busy are supported
- Static memory features include:
 - Programmable wait states
 - Bus turnaround delay
 - Output enable and write enable delays
- Support 1 chip selects for synchronous memory and 2 chip selects for static memory
- Pipeline access allows continuous data transfer without wasted cycles
- Fast page access on row addressing matching
- Independent row address matching for each of the SDRAM banks
- Programmable memory size: 4, 8 and 16-bit per SDRAM
- Dynamic memory self-refresh mode supported by software
- Supports industrial standard SDRAM from 64Mbits to 512 Mbits devices
- Operates on both discrete SDRAM chips and SDRAM DIMM
- Support for AHB burst types

5.2 Architecture

This section provides a description about the functions and behavior under various conditions.

5.2.1 Block Diagram

5.2.2 Block Descriptions

The Static/SDRAM memory controller consist of one AHB control register port used for memory configuration and two AHB Data access port used for AMBA component memory data access. The SDRAM controller generate SDRAM signals for external SDRAM access and the Static Memory Controller generate static memory signals that support SRAM, ROM and Flash.

5.3 Registers

This section describes the control/status registers of the design.

Name	Offset	Size	Reset Value	Description
MCSDR_MODE	0x0100	W	0x0000030	Setting Mode Register of the SDRAM.
MCSDR_ADDMAP	0x0104	W	0x000004FF	Memory size, banks setting.
MCSDR_ADDCFG	0x0108	W	0x00002222	Row address/Col address bits setting.
MCSDR_BASIC	0x010C	W	0x0000000A	SDRAM basic setting.
MCSDR_T_REF	0x0110	W	0x0000030C	SDRAM periodic refresh

5.3.1 Registers Summary

Rock-Chips Confidential

				interval.
MCCDD T DEC	0.0114		000000000	
MCSDR_T_RFC	0x0114	W	0x0000008	SDRAM auto refresh period.
MCSDR_T_MRD	0x0118	W	0x0000001	SDRAM mode register timing.
MCSDR_T_RP	0x0120	W	0x00000001	SDRAM pre-charge command
				timing.
MCSDR_T_RCD	0x0124	W	0x00000001	SDRAM active to read or write
				delay.
MCST0_T_CEWD	0x0200	W	0x0000000F	Static memory 0 write CE
				width.
MCST0_T_CE2WE	0x0204	W	0x0000000F	Static memory 0 CE to WE
				timing.
MCST0_T_WEWD	0x0208	W	0x0000000F	Static memory 0 WE width.
MCST0_T_WE2CE	0x020C	W	0x0000000F	Static memory 0 WE to CE
				timing.
MCST0_T_CEWDR	0x0210	W	0x00000000	Static memory 0 read CE
				width.
MCST0_T_CE2RD	0x0214	W	0x0000000F	Static memory 0 CE to RD
				timing.
MCST0_T_RDWD	0x0218	W	0x0000015	Static memory 0 RD width.
MCST0_T_RD2CE	0x021C	W	0x0000000	Static memory 0 RD to CE
				timing.
MCST0_BASIC	0x0220	W	0x00000001	Static memory 0 data width
_				and protection setting.
MCST1_T_CEWD	0x0300	W	0x000000F	Static memory 1 write CE
				width.
MCST1_T_CE2WE	0x0304	W	0x0000000F	Static memory 1 CE to WE
				timing.
MCST1_T_WEWD	0x0308	W	0x0000000F	Static memory 1 WE width.
MCST1_T_WE2CE	0x030C	W	0x0000000F	Static memory 1 WE to CE
				timing.
MCST1_T_CEWDR	0x0310	W	0x0000000	Static memory 1 read CE
			Y	width.
MCST1_T_CE2RD	0x0314	W	0x0000000F	Static memory 1 CE to RD
				timing.
MCST1_T_RDWD	0x0318	W	0x0000000F	Static memory 1 RD width.
MCST1_T_RD2CE	0x031C	W	0x00000000	Static memory 1 RD to CE
		-		timing.
MCST1_BASIC	0x0320	W	0x00000000	Static memory 1 data width
				and protection setting.

Notes:

<u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

5.3.2 Detail Register Description

MCSDR_MODE

Address: Operational Base + offset(0x0100) SDRAM CAS latency and burst length

Bit	Attr	Reset Value	Description
31:7	-	-	Reserved.
6:4	RW	0x3	SDRAM CAS latency. 0x2: CAS latency = 2. 0x3: CAS latency = 3. Others: Reserved.
3	-	-	Reserved.

2:0	RW	0x0	SDRAM burst length.
			0x0: Burst length = 1.
			0x1: Burst length = 2.
			0x2: Burst length = 4.
			0x3: Burst length = 8.
			Others: Reserved.

MCSDR_ADDMAP

Address: Operational Base + offset(0x0104) Memory modules address mapping

Bit	Attr	Reset Value	Description
31:6	-	-	Reserved.
5:4	RW	0x3	The module 0 memory size. 0x0: 64M Bytes. 0x1: 128M Bytes.
			0x2: 256M Bytes. 0x3: 512M Bytes.
3:2	RW	0x3	Reserved.
1:0	RW	0x3	The number of banks in module 0. 0x0 : Reserved 0x1: 1 bank, CS0 is used. 0x2~0x3: Reserved.

MCSDR_ADDCFG

Address: Operational Base + offset(0x0108) Memory modules address config

Bit	Attr	Reset Value	Description
31:6	-	-	Reserved.
5:4	RW	0x2	Set number of bits of SDRAM module 0 row address.
			0x0: 11 bits.
			0x1: 12 bits.
			0x2: 13 bits.
			0x3: Reserved.
3	-	-	Reserved.
2:0	RW	0x2	Set number of bits of SDRAM module 0 column
			address.
			0x0: 8 bits.
			0x1: 9 bits.
			0x2: 10 bits.
			0x3: 11 bits.
			0x4: 12 bits.
			0x5~0x7: Reserved.

MCSDR_BASIC

Address: Operational Base + offset(0x010C) SDRAM Basic setting

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:5	RW	0x0	The priority bits will control the ARBITER priority strategy of different slave port for read/write operation. 3'b000: Round-robin (RR) priority. The write priority is higher than read priority. It will change priority after read/write operation. (Either S2 write > S1 write > S2 read > S1 read, or S1 write > S2 write > S1 read > S2 read)

			 3'b001: Round-robin (RR) priority. The write priority is the same as read priority. It will change priority after read/write operation. (Either S2 write > S2 read > S1 write > S1 read, or S1 write > S1 read > S2 write >S2 read) 3'b010: S1 has higher priority. The write priority is higher than read priority. (S1 write > S2 write > S1 read > S2 read) 3'b011: S1 has higher priority. The write priority is the same as read priority. (S1 write > S1 read >S2 write > S2 read) 3'b101: S1 has higher priority. The write priority is the same as read priority. (S1 write > S1 read >S2 write > S2 read) 3'b100: S2 has higher priority. The write priority is higher than read priority. (S2 write > S1 write > S2 read > S1 read) 3'b101: S2 has higher priority. The write priority is the same as read priority. (S2 write > S2 read > S1 write >S1 read) 3'b101: S2 has higher priority. The write priority is the same as read priority. (S2 write > S2 read > S1 write >S1 read) 3'b110~ 3'b111: Reserved There is no priority in the same slave port. It is first-in-first-out service.
4	-	-	Reserved.
3:2	RW	0x2	SDRAM module 1 data width size. 0x0: Reserved. 0x1: 16 bits. 0x2 ~ 0x3: Reserved.
1:0	RW	0x2	SDRAM module 0 data width size. 0x0: Reserved. 0x1: 16 bits. 0x2 ~ 0x3: Reserved.

MCSDR_T_REF

Address: Operational Base + offset(0x0110) Average periodic refresh interval

 	serreare	Ten con inter vui	
bit	Attr	Reset Value	Description
31:12	-	-	Reserved.
11:0	RW	0x30C	Average periodic AUTO REFRESH interval. If SDRAM requires AUTO REFRESH cycles at an average interval
		\mathbf{X}	of 15.625μ s, the T_REF value must be set no greater than 1560 at 100MHz.

MCSDR_T_RFC Address: Operational Base + offset(0x0114) Auto refresh period

bit	Attr	Reset Value	Description
31:4		-	Reserved.
3:0	RW	0x8	Auto refresh period. Time = $(T_RFC + 1) \times \text{ clock cycles}$

MCSDR_T_MRD

Address: Operational Base + offset(0x0118) Command to ACTIVE or REFRESH period

Commun					
bit	Attr	Reset Value	Description		
31:3	-	-	Reserved.		
2:0	RW	0x1	Command to ACTIVE or REFRESH period. Time = $(T_MRD + 1) \times \text{clock cycles}$		

MCSDR_T_RP

Address: Operational Base + offset(0x0120) Pre-charge command period

bit	Attr	Reset Value	Description
31:3	-	-	Reserved.
2:0	RW	0x1	Pre-charge command period.
			Time = $(T_RP + 1) \times \text{clock cycles}$

MCSDR_T_RCD

Address: Operational Base + offset(0x0124) Active to Read or Write delay

bit	Attr	Reset Value	Description
31:3	-	-	Reserved.
2:0	RW	0x1	Active to Read or Write delay. Time = $(T_RCD + 1) \times clock cycles$

$MCSTx_T_CEWD^{(1)}$ (x=0 ~ 1)

Address: Operational Base + offset(0x0200, 0x0300)

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	0xF	Static memory timing control register for write CE width Time = (t_cewd) \times clock cycles

$MCSTx_T_CE2WE^{(1)}$ (x=0 ~ 1)

Address: Operational Base + offset(0x0204, 0x0304)

Static memory timing control register for low of CE to low of WE

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	0xF	Static memory timing control register for low of CE to low of WE Time = (t_ce2we) × clock cycles

$MCSTx_T_WEWD^{(1)} (x=0 ~ 1)$

Address: Operational Base + offset(0x0208, 0x0308)

Static memory timing control register for WE width

otatie ini					
bit	Attr	Reset Value	Description		
31:8	- ~	_	Reserved.		
7:0	RW	0xF	Static memory timing control register for WE width		
			Time = $(t_wewd) \times clock cycles$		

MCSTx_T_WE2CE $^{(1)}$ (x=0 ~ 1)

Address: Operational Base + offset(0x020C, 0x030C)

Static memory timing control register for high of WE to high of CE

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	0xF	Static memory timing control register for high of WE to high of CE Time = (t_we2c) × clock cycles

MCSTx_T_CEWDR $^{(1)}$ (x=0 ~ 1)

Address: Operational Base + offset(0x0210, 0x0310) Static memory timing control register for read CE width

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	0x0	Static memory timing control register for read CE width Time = (t_cewdr) × clock cycles

$MCSTx_T_CE2RD^{(1)} (x=0 \sim 1)$

Address: Operational Base + offset(0x0214, 0x0314)

 Static memory timing control register for low of CE to low of RD

 bit
 Attr
 Reset Value
 Description

 31:8
 Reserved.

 7:0
 RW
 0xF
 Static memory timing control register for low of CE to low of RD

 Time = (t_ce2rd) × clock cycles
 Time = (t_ce2rd) × clock cycles

$MCSTx_T_RDWD^{(1)} (x=0 \sim 1)$

Address: Operational Base + offset(0x0218, 0x0318)

Static memory timing control register for RD width

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	X=0, 0x15 X=1~3,0xF	Static memory timing control register for RD width Time = (t_rdwd) × clock cycles

MCSTx_T_RD2CE $^{(1)}$ (x=0 ~ 1)

Address: Operational Base + offset(0x021C, 0x031C)

Static memory timing control register for high of RD to high of CE

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	0x0	Static memory timing control register for high of RD to high of CE Time = $(t_rd_{2ce}) \times clock cycles$

MCSTx_BASIC⁽¹⁾ ($x=0 \sim 1$)

Address: Operational Base + offset(0x0220, 0x0320)

Static memory basic setting

bit	Attr	Reset Value	Description
31:6	-	-	Reserved.
5	RW	0x0	Write protect bit0: Writable 1: Write protect
4	RW	0x0	Byte Enable Option
			0: For READ all the bits in BE_n are HIGH. For WRITE
			the respective active bits in BE_n are LOW.
			1: For READ all the bits in BE_n are LOW. For WRITE
			the respective active bits in BE_n are LOW.
3:2	-	-	Reserved.
1:0	RW	X=0, 0x1	Static memory data size
		X=1, 0x0	0x0 : 8 bits
			0x1 : 16 bits
			0x2~0x3: Reserved.

Notes: Attr: \mathbf{RW} – Read/writable, \mathbf{R} – read only, \mathbf{W} – write only Note 1: x indicate the control registers for static memory x

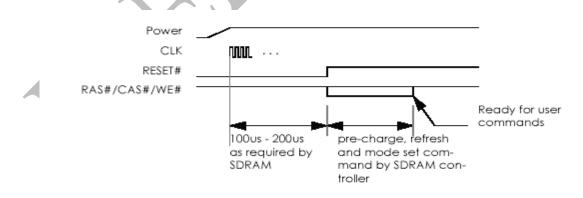
5.4 Functional Description

5.4.1 Memory Integration

The memory controller provides 1 control register programming AHB slave port (port

S0) and 2 data access AHB slave ports (Port S1 and S2). The control register port is used to CPU programming the memory configuration and setting. The data access ports are used to access the SDRAM or static memory data. There are 3 HSEL signals in each data access port. One is decoded for SDRAM address space; the other 2 HSELs are decoded in individual static memory banks. Each data access ports are able to access the same 2 external static memory banks and 1 SDRAM memory modules. For example, if you want to access the static memory bank 0, the HSEL[1] must be asserted. The FLASH_CE [1:0] are chip select signals used to select static memory devices from bank 1 to bank 0. But in SDRAM, only HSEL[0] is used for decoding SDRAM memory. There are 1 memory modules for SDRAM integrate. You can specify the number of banks and size for each module in Basic2 register. The CS_n [2:0] are chip select signals used to select SDRAM

Select	Memory Type	Device	Chip Select
Sx_HSEL[0]	SDRAM	SDRAM Module0	CS_n [0] for 1 bank
Sx_HSEL[1]	Static Memory	Static memory 0	FLASH_CE [0]
Sx_HSEL[2]		Static memory 1	FLASH_CE [1]


The following figure shows the transfer mechanism of address mapping from AHB bus to SDRAM interface.

ROW BITS[2:0] COL E	olled by \rightarrow ITS[2:0]	
	n Address	Byte

5.4.2 Initialization

The Power-on sequence of most SDRAMs requires that the system power be applied to the system with the clock running for 100us to 200us. During this time, HRESET_N must be asserted to the SDRAM controller to prevent if from accessing the SDRAMs. The user needs to control the duration of the HRESET_N input to meet SDRAM requirements.

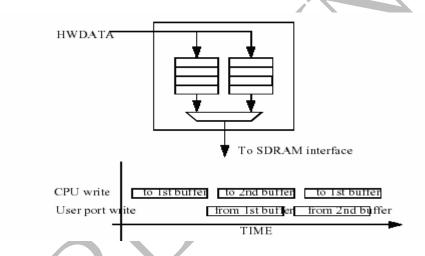
Once HRESET_N is de-asserted, the SDRAM controller first issues a pre-charge command and then issues 15 auto-refresh commands. Most SDRAMs require 2 to 8 auto-refresh commands after reset. At the completion of the refresh sequence, the SDRAM controller issues a mode set command to initialize the SDRAM mode register. The following is a timing diagram showing the initialization sequence.

When the HRESET_N signal is asserted, the SDRAM controller automatically resets all its control registers into their default values. Timing of the initial accesses including the mode set command is based on the default timing parameters. After initialization, the user can modify the timing parameters and other settings of the control registers by configuring SDRAM registers via AHB slave interface Port S0. The user must make sure the default value of the control registers are within the operation range of the SDRAMs used.

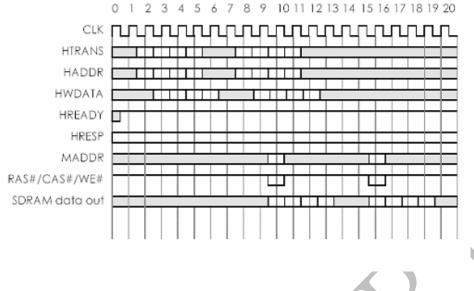
The control registers contain the timing parameters of the SDRAM. With careful

selection of the configuration value, the memory controller would provide optimum performance after system reset and the system can be operational without any run time configuration. However, a configuration port (Port S0) is also provided in case it becomes necessary for the user to change the control register settings during run time.

5.4.3 Operation


The memory controller can be read or written by data access AHB port. The AHB bus can read the data from read-buffer or write data into write-buffers. The buffers can issue request command to SDRAM controller to write or read data. In the write transfer, if the SDRAM controller is not busy, then write-buffer can get the data from AHB bus, and write data from write-buffers to SDRAM. In the read transfer, the SDRAM controller can get the data from read-buffers. Then, the AHB bus can get the data from read-buffers.

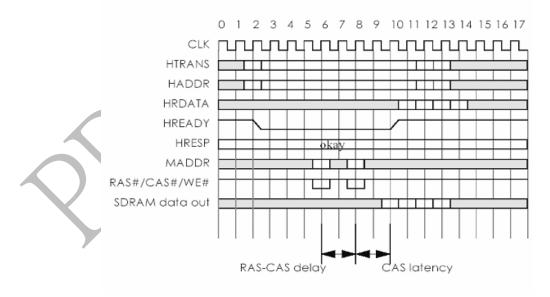
AHB write to SDRAM


The AHB write data to SDRAM. First, the data are written into write-buffers by the data access AHB port. Then, the buffers controller can issue a request to the SDRAM controller. If the SDRAM is not busy, then the SDRAM controller can write data from write-buffers into SDRAMs. Each data access AHB interface contains 2 write buffers for posting write data to the SDRAM. Each write buffer can store up to 64 bytes of data.

Data can be written from the AHB interface in 8-bit, 16-bit or 32-bit mode. The write buffer is organized in 32-bit mode so that can be transferred to the SDRAM in burst mode regardless of the AHB transfer size.

The following diagram illustrates the concept of double write buffers.

The AHB bus interface contains two write buffers for posting write data. Data can be written to one write buffer from the AHB bus while posted data is written to the SDRAM. The following example shows a back-to-back write access sequence by the AHB Bus.

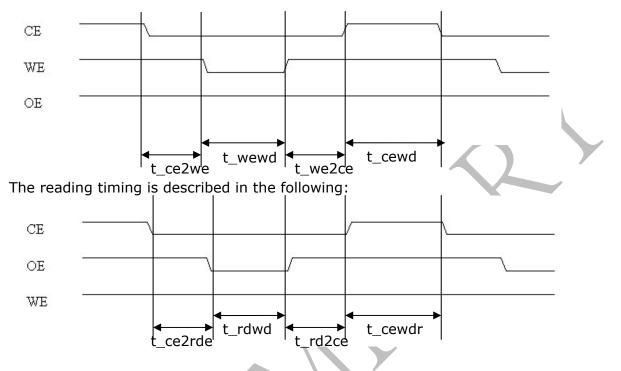

AHB read from SDRAM

The AHB bus initiates a SDRAM access by issuing a NONSEQ request on the HTRANS signal. At the same time if HSEL is asserted, the SDRAM controller accepts the request, otherwise, it assumes the request is for other devices on the bus and ignores it. If HWRITE is low, it indicates a read access is requested.

After the request is accepted and if the SDRAM is not currently servicing other request, a memory read access is initiated. The row address is first sent to the SDRAM.

Read data is available from the SDRAM after the CAS latency delay from the column address. Read data is first sampled by the SDRAM controller and then driven on to the AHB bus one cycle later.

If the controller is in pre-charge or refresh mode when the read access is requested, the row active command will be delayed until the pre-charge or refresh cycle is finished. The following timing diagram shows a SDRAM read access of 4 data. The RAS-CAS latency and CAS-data latency are programmable timing parameters.


AHB read/ write from Flash/ROM

The FLASH/ROM/SRAM memory devices are asynchronous devices that do not use the clock input. In the following timing diagram, the clock signal is provide as a reference to the internal operation of the core.

Memory access is started by the address (ADDR) and chip select signal. Once asserted, the memory will provide the read/write data after the access time. The memory manufacturer in unit of nanosecond provides access time. The memory controller can be

programmed to provide access time based on clock cycle. For example, if system controller is running at 100MHz (cycle time: 10ns) and access time of the memory is 40ns (including clock to output delay and data input setup time), the number of memory read/write access delay should be 4. User must make sure that the clock to output delay of all the address and control signals and the data input setup time to the core are include in the access time computation.

The writing timing is described in the following:

The static memory controller uses the CE, OE and WE to control the static memory (ex. Flash, Static RAM).

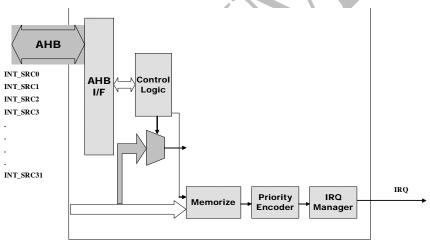
The above diagram shows four consecutive read to the memory. In this example, the memory is 16-bit wide and the user interface is 32-bit. Each 32-bit read by request by the user is executed as 2 consecutive 16-bit read to the memory. The memory controller increments the address for each read. After all four read accesses are completed; the memory controller returns one 32-bit word to the requestor.

Chapter 6 Interrupt Controller

6.1 Design Overview

6.1.1 Overview

The interrupt controller is an AHB slave, providing software interface to interrupt system. The interrupt controller can accept 32 interrupt sources from devices. The interrupt controller will determine which is the most urgent interrupt then issue an interrupt, IRQ, to CPU core. At any given time, when CPU receives an interrupt, it will follow the priority to handle the requests.


6.1.2 Features

- Source status and interrupt request status
- Separate enable set and enable clear registers to allow independent bit enable of interrupt sources
- Programmable hardware priority handling
- Programmable High/Low Level sensitive or Negative/Positive edge triggered interrupts

6.2 Architecture

This section provides a description about the functions and behavior under various conditions.

6.2.1 Block Diagram

6.2.2 Block Descriptions

Interrupt consist of an AHB slave interface for interrupt attribute setting, and the priority encoder will decided which interrupt request will be served next by detecting the priority of each interrupt.

6.3 Registers

This section describes the control/status registers of the design.

6.3.1 Registers Summary

Name	Offset	Size	Reset Value	Description
INTC_SCRx	0x0000	W	0x00000040	Source Control Register x.
	~			
	0x007C			
INTC_ISR	0x0104	W	0x00000000	Interrupt Status Register.
INTC_IPR	0x0108	W	0x00000000	Interrupt Pending Register.
INTC_IMR	0x010C	W	0x00000000	Interrupt Mask Register.
INTC_IECR*	0x0114	W	0x00000000	Interrupt Enable Command
				Register.
INTC_ICCR	0x0118	W	0x00000000	Interrupt Clear Command
				Register.
INTC_ISCR	0x011C	W	0x00000000	Interrupt Set Command
				Register.
INTC_TEST	0x0124	W	0x00000000	Test Mode Register.
Votoci				

Notes:

<u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

Interrupts (ARM)

Source #	Source Description	
		Polarity
31 (High)	SoftWare Interrupt	-
30	SoftWare Interrupt	-
29	SoftWare Interrupt	-
28	DSP	High level
27	LCDC	High level
26	NANDC	High level
25	DWDMA	High level
24 23	VIP	High level
23	GPIO1 (a/b group)	High level
22	ADC	High level
21	PWM3	High level
20	PWM2	High level
19	PWM1	High level
18	PWM0	High level
17	UHC	LOW level
16	UDC	High level
15	I2S	High level
14	I2C	High level
13	A2A bridge & DMA	High level
12	HDMA	High level
11	SPI master controller	High level
10	SD	High level
9	SCU	High level
8	RTC	High level
7	AHB0 MAILBOX	High level
6	SoftWare Interrupt	-
5	GPIO0 (a/b group)	High level
4	Timer0_2	High level
3	Timer0_1	High level
2	Timer0_0	High level

1	UART1	High level
0 (Low)	UART0	High level

Interrupts (DSP)

Source #	Source Description	Polarity
nmi	ARM7EJC	High level
13	Software Interrupt	High level
12 11	Software Interrupt	High level
11	PWM0	High level
10	GPIO0 (c/d group)	High level
9	HS_ADC	High level
8	LCDC	High level
7	VIP	High level
6	Timer1 (internal)	High level
5	Timer0 (internal)	High level
4	AHB1 MAILBOX	High level
3	DWDMA	High level
2	A2A bridge&DMA	High level
1	HDMA	High level
0	UHC or UDC (combinational)	High level

6.3.2 Detail Register Description

INTC_SCRx ($x=0 \sim 31$)

Address: Operational Base + offset(x*4)

For example, the address of source number 11 (INTC_SCR11)

= INTC_BASE + 11*4 = INTC_BASE + 0x002C

These registers are used for interrupt sources configuration. Now it supports trigger type and priority level control for each interrupt.

Source Control Registers

Attr	Reset Value	Description
-	-	Reserved.
RW	0x1	Program the input sources to be high/low sensitive or negative/positive triggered. 0x0: Low-Level sensitive. 0x1: High-Level sensitive. 0x2: Negative-Edge triggered. 0x3: Positive-Edge triggered.
	-	Reserved.
RW	0x0	The priority level can be between 0 (lowest) and 31 (highest).
	- RW	 RW 0x1

INTC_ISR

Address: Operational Base + offset(0x104)

This register records the index of current highest priority interrupt. The 5-bits index supports 32 interrupt sources.

Interrupt Status Register

bit	Attr	Reset Value	Description
31:5	-	-	Reserved.
4:0	R	0x0	Current IRQ ID. The Interrupt Status Register returns the current interrupt source number. The interrupt source number is given in the end of this section.

INTC_IPR

Address: Operational Base + offset(0x108) The register will keep the record that interrupt is pending. Each bit is referred to corresponding interrupt source. Interrupt Pending Register

	1	g Register	
bit	Attr	Reset Value	Description
31	R	0x0	Interrupt source 31 interrupt status. 0:inactive 1:Pending
30	R	0x0	Interrupt source 30 interrupt status. 0:inactive 1:Pending
29	R	0x0	Interrupt source 29 interrupt status. 0:inactive 1:Pending
28	R	0x0	Interrupt source 28 interrupt status. 0:inactive 1:Pending
27	R	0x0	Interrupt source 27 interrupt status. 0:inactive 1:Pending
26	R	0x0	Interrupt source 26 interrupt status. 0:inactive 1:Pending
25	R	0x0	Interrupt source 25 interrupt status. 0:inactive 1:Pending
24	R	0x0	Interrupt source 24 interrupt status. 0:inactive 1:Pending
23	R	0x0	Interrupt source 23 interrupt status. 0:inactive 1:Pending
22	R	0x0	Interrupt source 22 interrupt status. 0:inactive 1:Pending
21	R	0x0	Interrupt source 21 interrupt status. 0:inactive 1:Pending
20	R	0x0	Interrupt source 20 interrupt status. 0:inactive 1:Pending
19	R	0x0	Interrupt source 19 interrupt status. 0:inactive 1:Pending
18	R	0x0	Interrupt source 18 interrupt status. 0:inactive 1:Pending
17	R	0x0	Interrupt source 17 interrupt status. 0:inactive 1:Pending
16	R	0x0	Interrupt source 16 interrupt status. 0:inactive 1:Pending
15	R	0x0	Interrupt source 15 interrupt status. 0:inactive 1:Pending
14	R	0×0	Interrupt source 14 interrupt status. 0:inactive 1:Pending
13	R	0x0	Interrupt source 13 interrupt status. 0:inactive 1:Pending
12	R	0x0	Interrupt source 12 interrupt status. 0:inactive 1:Pending
11	R	0x0	Interrupt source 11 interrupt status. 0:inactive 1:Pending
10	R	0x0	Interrupt source 10 interrupt status. 0:inactive 1:Pending
9	R	0x0	Interrupt source 9 interrupt status. 0:inactive 1:Pending
8	R	0x0	Interrupt source 8 interrupt status. 0:inactive 1:Pending
7	R	0x0	Interrupt source 7 interrupt status. 0:inactive 1:Pending
6	R	0x0	Interrupt source 6 interrupt status. 0:inactive 1:Pending
5	R	0x0	Interrupt source 5 interrupt status.

			0:inactive 1:Pending
4	R	0x0	Interrupt source 4 interrupt status.
			0:inactive 1:Pending
3	R	0x0	Interrupt source 3 interrupt status.
			0:inactive 1:Pending
2	R	0x0	Interrupt source 2 interrupt status.
			0:inactive 1:Pending
1	R	0x0	Interrupt source 1 interrupt status.
			0:inactive 1:Pending
0	R	0x0	Interrupt source 0 interrupt status.
			0:inactive 1:Pending

INTC_IMR

Address: Operational Base + offset(0x10C)

The register is used to mask the pending interrupt to get into the priority encoder, and then the highest priority interrupt will be re-selected. The hardware default will mask all interrupts. Software needs to set appropriate bit to high to pass interrupt to priority encoder.

Interrupt Mask Register

Interrupt	Mask R	egistei	
bit	Attr	Reset Value	Description
31	RW	0x0	Interrupt source 31 mask register.
			0:Masked 1:Un-masked
30	RW	0x0	Interrupt source 30 mask register.
			0:Masked 1:Un-masked
29	RW	0x0	Interrupt source 29 mask register.
			0:Masked 1:Un-masked
28	RW	0x0	Interrupt source 28 mask register.
			0:Masked 1:Un-masked
27	RW	0x0	Interrupt source 27 mask register.
			0:Masked 1:Un-masked
26	RW	0x0	Interrupt source 26 mask register.
			0:Masked 1:Un-masked
25	RW	0x0	Interrupt source 25 mask register.
			0:Masked 1:Un-masked
24	RW	0x0	Interrupt source 24 mask register.
			0:Masked 1:Un-masked
23	RW	0x0	Interrupt source 23 mask register.
			0:Masked 1:Un-masked
22	RW	0x0	Interrupt source 22 mask register.
			0:Masked 1:Un-masked
21	RW	0x0	Interrupt source 21 mask register.
			0:Masked 1:Un-masked
20	RW	0x0	Interrupt source 20 mask register.
		-	0:Masked 1:Un-masked
19	RW	0x0	Interrupt source 19 mask register.
			0:Masked 1:Un-masked
18	RW	0x0	Interrupt source 18mask register.
			0:Masked 1:Un-masked
17	RW	0x0	Interrupt source 17 mask register.
			0:Masked 1:Un-masked
16	RW	0x0	Interrupt source 16 mask register.
			0:Masked 1:Un-masked
15	RW	0x0	Interrupt source 15 mask register.
			0:Masked 1:Un-masked
14	RW	0x0	Interrupt source 14 mask register.
			0:Masked 1:Un-masked
13	RW	0x0	Interrupt source 13 mask register.

12RW0x0Interrupt source 12 mask register. 0:Masked11RW0x0Interrupt source 11 mask register.	
11 RW 0x0 Interrupt source 11 mask register.	
0:Masked 1:Un-masked	
10 RW 0x0 Interrupt source 10 mask register.	
0:Masked 1:Un-masked	
9 RW 0x0 Interrupt source 9 mask register.	
0:Masked 1:Un-masked	
8 RW 0x0 Interrupt source 8 mask register.	
0:Masked 1:Un-masked	
7 RW 0x0 Interrupt source 7 mask register.	
0:Masked 1:Un-masked	
6 RW 0x0 Interrupt source 6 mask register.	
0:Masked 1:Un-masked	
5 RW 0x0 Interrupt source 5 mask register.	
0:Masked 1:Un-masked	
4 RW 0x0 Interrupt source 4 mask register.	Ŧ
0:Masked 1:Un-masked	¢
3 RW 0x0 Interrupt source 3 mask register.	
0:Masked 1:Un-masked	
2 RW 0x0 Interrupt source 2 mask register.	
0:Masked 1:Un-masked	
1 RW 0x0 Interrupt source 1 mask register.	
0:Masked 1:Un-masked	
0 RW 0x0 Interrupt source 0 mask register.	
0:Masked 1:Un-masked	

INTC_IECR

Address: Operational Base + offset(0x114)

The register is used to enable the interrupt source to get into the pending register. If the corresponding bit is disabled, and then the detector will not issue interrupt event to pending register. Software needs to set appropriate bit to high to enable interrupt sources at initial stage.

Interrupt	LIIable	Command Regist	
bit	Attr	Reset Value	Description
31	RW	0x0	Interrupt source 31 interrupt enable register. 0:Disabled 1:Enabled
30	RW	0x0	Interrupt source 30 interrupt enable register. 0:Disabled 1:Enabled
29	RW	0x0	Interrupt source 29 interrupt enable register. 0:Disabled 1:Enabled
28	RW	0x0	Interrupt source 28 interrupt enable register. 0:Disabled 1:Enabled
27	RW	0x0	Interrupt source 27 interrupt enable register. 0:Disabled 1:Enabled
26	RW	0x0	Interrupt source 26 interrupt enable register. 0:Disabled 1:Enabled
25	RW	0x0	Interrupt source 25 interrupt enable register. 0:Disabled 1:Enabled
24	RW	0x0	Interrupt source 24 interrupt enable register. 0:Disabled 1:Enabled
23	RW	0x0	Interrupt source 23 interrupt enable register. 0:Disabled 1:Enabled
22	RW	0x0	Interrupt source 22 interrupt enable register. 0:Disabled 1:Enabled
21	RW	0x0	Interrupt source 21 interrupt enable register.

Interrupt Enable Command Register

[0:Disabled 1:Enabled
20	RW	0x0	Interrupt source 20 interrupt enable register.
20	12.00	0.00	0:Disabled 1:Enabled
19	RW	0x0	Interrupt source 19 interrupt enable register.
19	L A A	0.00	0:Disabled 1:Enabled
18	RW	0x0	
10	RW	UXU	Interrupt source 18 interrupt enable register.
17		0.0	0:Disabled 1:Enabled
17	RW	0x0	Interrupt source 17 interrupt enable register.
10	D14/		0:Disabled 1:Enabled
16	RW	0x0	Interrupt source 16 interrupt enable register.
			0:Disabled 1:Enabled
15	RW	0x0	Interrupt source 15 interrupt enable register.
			0:Disabled 1:Enabled
14	RW	0x0	Interrupt source 14 interrupt enable register.
			0:Disabled 1:Enabled
13	RW	0x0	Interrupt source 13 interrupt enable register.
			0:Disabled 1:Enabled
12	RW	0x0	Interrupt source 12 interrupt enable register.
			0:Disabled 1:Enabled
11	RW	0x0	Interrupt source 11 interrupt enable register.
			0:Disabled 1:Enabled
10	RW	0x0	Interrupt source 10 interrupt enable register.
			0:Disabled 1:Enabled
9	RW	0x0	Interrupt source 9 interrupt enable register.
			0:Disabled 1:Enabled
8	RW	0x0	Interrupt source 8 interrupt enable register.
			0:Disabled 1:Enabled
7	RW	0x0	Interrupt source 7 interrupt enable register.
			0:Disabled 1:Enabled
6	RW	0x0	Interrupt source 6 interrupt enable register.
-			0:Disabled 1:Enabled
5	RW	0x0	Interrupt source 5 interrupt enable register.
Ū.			0:Disabled 1:Enabled
4	RW	0x0	Interrupt source 4 interrupt enable register.
			0:Disabled 1:Enabled
3	RW	0x0	Interrupt source 3 interrupt enable register.
Ĩ			0:Disabled 1:Enabled
2	RW	0x0	Interrupt source 2 interrupt enable register.
_			0:Disabled 1:Enabled
1	RW	0x0	Interrupt source 1 interrupt enable register.
		0.0	0:Disabled 1:Enabled
0	RW	0x0	Interrupt source 0 interrupt enable register.
0		UXU	
			0:Disabled 1:Enabled

INTC_ICCR

Address: Operational Base + offset(0x118)

The register allows software programmer to clear pending interrupts. Only at the write cycle, the clear action will be taken. The software programmer can use this register to clear interrupt source that is serviced.

The Lagrange states and the		Command	
INTORNINT	(IDar	(ommand	ROUICTOL
Include	CiCui	Communatio	NUGISIUI

bit	Attr	Reset Value	Description		
31	W	0x0	Interrupt source 31 interrupt clear register. 0:No effect 1:Cleared		
30	W	0x0	Interrupt source 30 interrupt clear register. 0:No effect 1:Cleared		
29	W	0x0	Interrupt source 29 interrupt clear register. 0:No effect 1:Cleared		

28	W	0x0	Interrupt source 28 interrupt clear register. 0:No effect 1:Cleared
27	W	0x0	Interrupt source 27 interrupt clear register. 0:No effect 1:Cleared
26	W	0x0	Interrupt source 26 interrupt clear register. 0:No effect 1:Cleared
25	W	0x0	Interrupt source 25 interrupt clear register.
24	W	0x0	0:No effect 1:Cleared Interrupt source 24 interrupt clear register.
23	W	0x0	0:No effect 1:Cleared Interrupt source 23 interrupt clear register.
22	W	0x0	0:No effect 1:Cleared Interrupt source 22 interrupt clear register.
21	W	0x0	0:No effect 1:Cleared Interrupt source 21 interrupt clear register.
20	W	0x0	0:No effect 1:Cleared Interrupt source 20 interrupt clear register.
19	W	0x0	0:No effect 1:Cleared Interrupt source 19 interrupt clear register.
18	W	0x0	0:No effect 1:Cleared Interrupt source 18 interrupt clear register.
17	W	0x0	0:No effect 1:Cleared Interrupt source 17 interrupt clear register.
16	W	0x0	0:No effect 1:Cleared Interrupt source 16 interrupt clear register.
15	W	0x0	0:No effect 1:Cleared Interrupt source 15 interrupt clear register.
14	W	0x0	0:No effect 1:Cleared Interrupt source 14 interrupt clear register.
			0:No effect 1:Cleared
13	W	0x0	Interrupt source 13 interrupt clear register. 0:No effect 1:Cleared
12	W	0x0	Interrupt source 12 interrupt clear register. 0:No effect 1:Cleared
11	W	0x0	Interrupt source 11 interrupt clear register. 0:No effect 1:Cleared
10	W	0×0	Interrupt source 10 interrupt clear register. 0:No effect 1:Cleared
9	W	0x0	Interrupt source 9 interrupt clear register. 0:No effect 1:Cleared
8	W	0x0	Interrupt source 8 interrupt clear register. 0:No effect 1:Cleared
7	W	0x0	Interrupt source 7 interrupt clear register. 0:No effect 1:Cleared
6	W	0x0	Interrupt source 6 interrupt clear register. 0:No effect 1:Cleared
5	W	0x0	Interrupt source 5 interrupt clear register. 0:No effect 1:Cleared
4	W	0x0	Interrupt source 4 interrupt clear register. 0:No effect 1:Cleared
3	W	0x0	Interrupt source 3 interrupt clear register. 0:No effect 1:Cleared
2	W	0x0	Interrupt source 2 interrupt clear register. 0:No effect 1:Cleared
1	W	0x0	Interrupt source 1 interrupt clear register. 0:No effect 1:Cleared
0	W	0x0	Interrupt source 0 interrupt clear register.

0:No effect 1:Cleared

INTC_ISCR

Address: Operational Base + offset(0x11C)

The register allows software programmer to issue interrupts during test mode. Its trigger type is high-level. The software programmer needs to clear the corresponding bit to stop issue interrupt after the exception test. Interrupt Set Command Register

Interrupt	errupt Set Command Register					
bit	Attr	Reset Value	Description			
31	W	0x0	Interrupt source 31 interrupt SW set register in test mode. 0:No effect 1:Set			
30	W	0x0	Interrupt source 30 interrupt SW set register in test mode. 0:No effect 1:Set			
29	W	0x0	Interrupt source 29 interrupt SW set register in test mode. 0:No effect 1:Set			
28	W	0x0	Interrupt source 28 interrupt SW set register in test mode. 0:No effect 1:Set			
27	W	0x0	Interrupt source 27 interrupt SW set register in test mode. 0:No effect 1:Set			
26	W	0x0	Interrupt source 26 interrupt SW set register in test mode. 0:No effect 1:Set			
25	W	0x0	Interrupt source 25 interrupt SW set register in test mode. 0:No effect 1:Set			
24	W	0x0	Interrupt source 24 interrupt SW set register in test mode. 0:No effect 1:Set			
23	W	0x0	Interrupt source 23 interrupt SW set register in test mode. 0:No effect 1:Set			
22	W	0×0	Interrupt source 22 interrupt SW set register in test mode. 0:No effect 1:Set			
21	W	0x0	Interrupt source 21 interrupt SW set register in test mode. 0:No effect 1:Set			
20	W	0×0	Interrupt source 20 interrupt SW set register in test mode. 0:No effect 1:Set			
19	W	0x0	Interrupt source 19 interrupt SW set register in test mode. 0:No effect 1:Set			
18	W	0x0	Interrupt source 18 interrupt SW set register in test mode. 0:No effect 1:Set			
17	W	0x0	Interrupt source 17 interrupt SW set register in test mode. 0:No effect 1:Set			
16	W	0x0	Interrupt source 16 interrupt SW set register in test mode. 0:No effect 1:Set			

15	W	0x0	Interrupt source 15 interrupt SW set register in test
15	vv	0.00	mode.
			0:No effect 1:Set
14	W	0x0	Interrupt source 14 interrupt SW set register in test
14	~~	0.00	mode.
			0:No effect 1:Set
13	W	0x0	Interrupt source 13 interrupt SW set register in test
13	vv	0.00	mode.
			0:No effect 1:Set
12	W	0x0	Interrupt source 12 interrupt SW set register in test
12	~~	0.00	mode.
			0:No effect 1:Set
11	W	0x0	Interrupt source 11 interrupt SW set register in test
	~~	0.00	mode.
			0:No effect 1:Set
10	W	0x0	Interrupt source 10 interrupt SW set register in test
10		0,10	mode.
			0:No effect 1:Set
9	W	0x0	Interrupt source 9 interrupt SW set register in test
-			mode.
			0:No effect 1:Set
8	W	0x0	Interrupt source 8 interrupt SW set register in test
			mode.
			0:No effect 1:Set
7	W	0x0	Interrupt source 7 interrupt SW set register in test
			mode.
			0:No effect 1:Set
6	W	0x0	Interrupt source 6 interrupt SW set register in test
			mode.
			0:No effect 1:Set
5	W	0x0	Interrupt source 5 interrupt SW set register in test
			mode.
			0:No effect 1:Set
4	W	0x0	Interrupt source 4 interrupt SW set register in test
			mode.
			0:No effect 1:Set
3	W	0x0	Interrupt source 3 interrupt SW set register in test
			mode.
L			0:No effect 1:Set
2	W	0x0	Interrupt source 2 interrupt SW set register in test
			mode.
		0.40	0:No effect 1:Set
1	W	0×0	Interrupt source 1 interrupt SW set register in test
			mode.
0	144	00	0:No effect 1:Set
0	W	0x0	Interrupt source 0 interrupt SW set register in test
1			mode.
			0:No effect 1:Set

INTC_TEST

Address: Operational Base + offset(0x124)

This register is used by software to control the operation mode of interrupt. It allows software to issue interrupts by programming INTC_ISCR register.

Test Mode Register

bit	Attr	Reset Value	Description
31:6	-	-	Reserved.
5	RW	0x0	FIQ level.

			1: Low active 0: High active
4	RW	0x0	IRQ level
			1: Low active
			0: High active
3:1	-	-	Reserved.
0	RW	0x0	Test Mode Register.
			1: Test mode enable;
			0: Test mode disable.
			When the TESTMODE is enabled, it allows software to
			issue interrupts by programming INTC_ISCR register.
			It is useful for software testing and debug.

Notes: Attr: RW - Read/writable, R - read only, W - write only

6.4 Functional Description

6.4.1 Operation

The interrupt controller provides a simple software interface to the interrupt system. Certain interrupt bits must be defined according to the system requirements.

Priority Controller

A 32-level priority encoder controls the output of IRQ. Each source has a programmable priority level of 31 to 0. Level 31 is the highest priority and level 0 the lowest. When the interrupt controller receives more than one unmasked interrupt at a time, the interrupt with the highest priority is serviced first. If both interrupts have equal priority, the interrupt with the highest interrupt source number (see the Table given below) is serviced first.

Interrupt Enabling and Masking

Each interrupt source can be enabled or disabled using the command register INTC_IECR. The interrupt mask can be masked or unmasked by configuring the register INTC_IMR. A disabled interrupt does not affect the servicing of other interrupts.

Interrupt Clearing and Setting

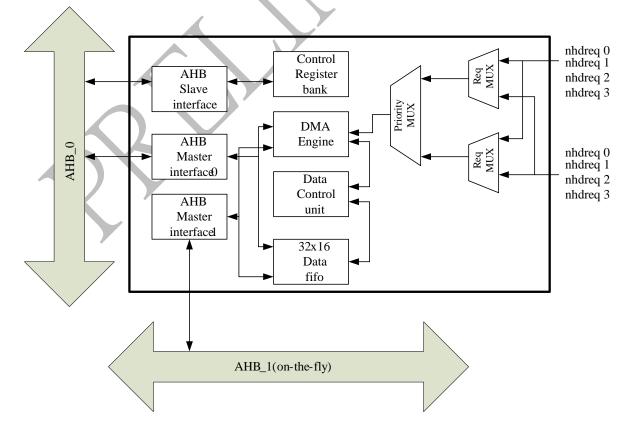
All interrupt sources that are programmed to be edge triggered can be individually set or cleared by respectively writing to the registers INTC_ISCR and INTC_ICCR. This function of the interrupt controller is available for auto-test or software debug purposes.

Chapter 7 AHB DMA (HDMA)

7.1 Design Overview

7.1.1 Overview

AHB DMA (HDMA) is interfaced to AHB bus and provides DMA function for AHB peripherals. The AHB DMA provides two channels for software usage and provides two DMA trigger mode, software and hardware mode. Register writing triggers the software DMA mode, and the hardware DMA mode is triggered from peripherals.


7.1.2 Features

- 2 x AHB master and 1 x slave interfaces
- Built-in 32x16 data FIFO
- Two DMA channels supported
- Support byte, half word and word data transfer sizes
- Support incremental and fixed addressing mode
- Support hardware and software trigger DMA transfer mode
- Fixed channel priority arbitration Support slice transfer base on peripheral FIFO depth Support turnaround start address when over address buffer size

7.2 Architecture

This section provides a description about the functions and behavior under various conditions.

7.2.1 Block Diagram

7.2.2 Block Descriptions

AHB DMA consists of one AHB slave interface and two AHB master interfaces. AHB slave interface is used for registers setting and AHB master interface 0 issues command from DMA engine to AHB_0, and AHB master interface 1 issues command from DMA engine when on-the-fly function is used, two request MUXs select the corresponding hardware request port and the priority MUX selects which channel is served by DMA engine.

7.3 Registers

This section describes the control/status registers of the design.

Name	Offset	Size	Reset Value	Description
HDMA_CON0	0x0000	W	0x0000000	HDMA channel 0 control
				register
HDMA_CON1	0x0004	W	0x0000000	HDMA channel 1 control
				register
HDMA_ISRC0	0x0008	W	0x0000000	HDMA channel 0 initial source
				address register.
HDMA_IDST0	0x000C	W	0x00000000	HDMA channel 0 initial
				destination address register.
HDMA_ICNT0	0x0010	W	0x0000000	HDMA channel 0 initial
				terminate count register.
HDMA_ISRC1	0x0014	W	0x00000000	HDMA channel 1 initial source
				address register.
HDMA_IDST1	0x0018	W	0x0000000	HDMA channel 1 initial
				destination address register.
HDMA_ICNT1	0x001C	W	0x0000000	HDMA channel 1 initial
				terminate count register.
HDMA_CSRC0	0x0020	W	0x0000000	HDMA channel 0 current
				source address register.
HDMA_CDST0	0x0024	W	0x00000000	HDMA channel 0 current
				destination address register.
HDMA_CCNT0	0x0028	W	0x00000000	HDMA channel 0 current count
				register.
HDMA_CSRC1	0x002C	W	0x00000000	HDMA channel 1 current
				source address register.
HDMA_CDST1	0X0030	W	0x00000000	HDMA channel 1 current
				destination address
	0.0024		0.0000000	register.
HDMA_CCNT1	0x0034	W	0x0000000	HDMA channel 1 current count
	0,0020	14/	0,0000000	register.
HDMA_ISR	0x0038	W	0x0000000	HDMA interrupt status register
HDMA_DSR	0x003C	W	0x0000000	HDMA DMA status register
HDMA_ISCNT0	0x0040	W	0x00000000	HDMA channel 0 initial slice
				count register
HDMA_IPNCNTD0	0x0044	W	0x00000000	HDMA channel 0 initial page
				number count down register
HDMA_IADDR_BS0	0x0048	W	0x1FFFFFFF	HDMA channel 0 initial address
				buffer size register
HDMA_ISCNT1	0x004C	W	0x00000000	HDMA channel 1 initial slice
				count register
HDMA_IPNCNTD1	0x0050	W	0x0000000	HDMA channel 1 initial page

7.3.1 Registers Summary

Rockchip Electronic

				number count down register
HDMA_IADDR_BS1	0x0054	W	0x1FFFFFFF	HDMA channel 1 initial address buffer size register
HDMA_CSCNT0	0x0058	W	0x0000000	HDMA channel 0 current slice count register
HDMA_CPNCNTD0	0x005C	W	0x0000000	HDMA channel 0 current page number count down register
HDMA_CADDR_BS0	0x0060	W	0x0000000	HDMA channel 0 current address buffer size register
HDMA_CSCNT1	0x0064	W	0x0000000	HDMA channel 1 current slice count register
HDMA_CPNCNTD1	0x0068	W	0x0000000	HDMA channel 1 current page number count down register
HDMA_CADDR_BS1	0x006C	W	0x0000000	HDMA channel 1 current address buffer size register
HDMA_PACNT0	0x0070	W	0x0000000	HDMA channel 0 page accumulation count register
HDMA_PACNT1	0x0074	W	0x0000000	HDMA channel 1 page accumulation count register

Notes:

Size: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

7.3.2 Detail Register Description

HDMA_CONx(x=0, 1)

Address: Operational Base + offset(0x00, 0x04)

HDMA control register for channel x

Bit	Attr	Reset Value	Description				
31:24	-	-	Reserved.				
23	RW	0x0	Clear CPNCNTDx register, set this bit to 1 also disable				
			page mode				
			0 : not clear				
			1 : Clear				
22	RW	0x0	Hardware HDMA slice mode transfer data				
			enable/disable				
			0: Disable				
			1: Enable				
21	RW	0x0	HDMA channel enable/disable				
			0: Disable DMA				
			1: Enable DMA				
20	-		Reserved.				
19:18	RW	0x0	Interrupt Mode Set.				
			00: Polling mode				
			01: Interrupt mode				
17:16	RW	0x0	On the fly mode.				
			0x0: Disable on the fly				
			0x1: Read on the fly(Read from OFM bus)				
			0x2: Write on the fly(Write to OFM bus)				
			0x3: Reserved				
15:13	RW	0x0	Transfer Mode.				
			0x0: Single				
			0x1: Reserved				
			0x2: Reserved				
			0x3: INCR4				
			0x4: Reserved				

			0x5: INCR8
			0x6: Reserved
			0x7: INCR16
12:9	RW	0.0	
12:9	RW	0x0	External HDREQ source selection.
			0x0: From UART0 rxd
			0x1: From UART0 txd
			0x2: From UART1 rxd
			0x3: From UART1 txd
			0x4: From SPI rxd
			0x5: From SPI txd
			0x6: From I2S txd
			0x7: From I2S rxd
8:7	RW	0x0	Direction of source address.
			0x0: Increment
			0x1: Fixed
			0x2 ~ 0x3: Reserved
6:5	RW	0x0	Direction of destination address.
			0x0: Increment
			0x1: Fixed
			ox2 ~ 0x3: Reserved
4:3	RW	0x0	Data size for transfer.
			0x0: Byte
			0x1: Halfword
			0x2: Word
			0x3: Reserved
2:1	RW	0x0	Command of Software DMA operation.
			0x0: No command
			0x1: Start software DMA operation
			0x2: Pause software DMA operation
			0x3: Cancel software DMA operation
0	RW	0x0	Disable/Enable hardware trigger DMA mode.
			0: Disable
			1: Enable

HDMA_ISRCx(x=0, 1)

Address: Operational Base + offset(0x08, 0x14)

_	HDMA initial source address register for channel x					
	bit	Attr	Reset Value	Description		
	31:0	RW	0x0	HDMA initial source address register.		

HDMA_CSRCx(x=0, 1)

Address: Operational Base + offset(0x20, 0x2C)

HDMA current source address register for channel x

bit	Attr	Reset Value	Description
31:0	R	0x0	HDMA current source address register.

HDMA_IDSTx(x=0, 1)

Address: Operational Base + offset(0x0C, 0x18)

<u>HDMA ini</u>	HDMA initial destination address register for channel x					
bit	Attr	Reset Value	Description			
31:0	RW	0x0	HDMA initial destination address register.			

HDMA_CDSTx(x=0, 1)

Address: Operational Base + offset(0x24, 0x30)

HDMA current destination address register for channel x

bit	Attr	Reset Value	Description
-----	------	-------------	-------------

31:0 R 0x0 HDMA current destination address register.

HDMA_ICNTx(x=0, 1)

Address: Operational Base + offset(0x10, 0x1C) HDMA initial terminate count register for channel x

bit	Attr	Reset Value	Description
31:0	-	-	Reserved.
15:0	RW	0x0	HDMA initial terminate count register. (Unit: data size) the transfer length is depend the Terminate count and Data size of HDMA_CONx register

HDMA_CCNTx(x=0, 1)

Address: Operational Base + offset(0x28, 0x34) HDMA current terminate count register for channel x

bit	Attr	Reset Value	Description
31:0	-	-	Reserved.
15:0	R	0x0	HDMA current terminate count register. (Unit : data size)

HDMA_ISR

Address: Operational Base + offset(0x38) Interrupt status

Interrupt	Status		
bit	Attr	Reset Value	Description
31:14	-	-	Reserved.
13	RW	0x0	Mask channel 1 Page accumulation overflow Interrupt
			0: not mask
			1: mask
12	RW	0x0	Mask channel 0 Page accumulation overflow Interrupt
			0: not mask
			1: mask
11	RW	0x0	Mask channel 1 Page count down Interrupt
			0: not mask
			1: mask
10	RW	0x0	Mask channel 0 Page count down Interrupt
			0: not mask
			1: mask
9	RW	0x0	Mask channel 1 Interrupt
			0: not mask
			1: mask
8	RW	0x0	Mask channel 0 Interrupt
			0: not mask
			1: mask
7:6	-	-	Reserved.
5	RW	0x0	Channel 1 Page accumulation counter overflow
			Interrupt active, write "0" to clear interrupt and write
	*		"1" is no affect
			0: not active
			1: active
4	RW	0x0	Channel 0 Page accumulation counter overflow
			Interrupt active, write "0" to clear interrupt and write
			"1" is no affect
			0: not active
			1: active
3	RW	0x0	Channel 1 Page count down to zero Interrupt active,
			write "0" to clear interrupt and write "1" is no affect
			0: not active

			1: active
2	RW	0x0	Channel 0 Page count down to zero Interrupt active, write "0" to clear interrupt and write "1" is no affect 0: not active 1: active
1	RW	0x0	Channel 1 Interrupt active, write "0" to clear interrupt and write "1" is no affect 0: not active 1: active
0	RW	0x0	Channel 0 Interrupt active, write "0" to clear interrupt and write "1" is no affect 0: not active 1: active

HDMA_DSR

Address: Operational Base + offset(0x3C) DMA status

bit	Attr	Reset Value	Description
31:2	-	-	Reserved.
1	R	0x0	Channel 1 status 0: Channel 1 is ready 1: Channel 1 is performing DMA
0	R	0x0	Channel 0 status 0: Channel 0 is ready 1: Channel 0 is performing DMA

HDMA_ISCNTx(x=0, 1)

Address: Operational Base + offset(0x40, 0x4C)

HDMA initial slice count register for channel x

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	0x0	HDMA initial slice count register. (Unit : data size) Slice count must be divided by terminate count.

HDMA_CSCNTx(x=0, 1)

Address: Operational Base + offset(058x, 0x64)

HDMA current slice count register for channel x

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	R	0x0	HDMA current slice count register. (Unit : data size)

HDMA_IPNCNTDx(x=0, 1)

Address: Operational Base + offset(0x44, 0x50)

HDMA initial total page number count down register for channel x

bit	Attr	Reset Value	Description
31:16	-	-	Reserved.
15:0	W	0x0	HDMA initial total page number count down register. The value will be accumulated if you write it again and again.

HDMA_CPNCNTDx(x=0, 1)

Address: Operational Base + offset(0x5C, 0x68)

HDMA current total page number count down register for channel x

bit	A	Reset	Description
	ttr	Value	
31:16	-	-	Reserved.

15:0 R 0x0 HDMA current total page number count down register.

HDMA_IADDR_BSx(x=0, 1)

Address: Operational Base + offset(0x48, 0x54) HDMA initial address buffer size register for channel x

bit	Attr	Reset Value	Description	
31:0	RW	0x1FFFFFFF	HDMA initial source address buffer size register. (Unit : byte) This value must be divided by silice count register.	

HDMA_CADDR_BSx(x=0, 1)

Address: Operational Base + offset(0x60, 0x6C)

bit	Attr	Reset Value	Description
31:0	R	0x1FFFFFFF	HDMA current source address buffer size register. (Unit : byte)

HDMA_PACNTx(x=0, 1)

Address: Operational Base + offset(0x70, 0x74)

HDMA page accumulation count register for channel x

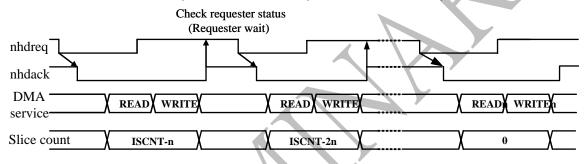
bit	Attr	Reset Value	Description			
31:16	-	-	Reserved.			
15:0	R	0x0	HDMA page accumulation count register.			
Notos: Attr: BW - Road/writable B - road only W - write only						

Notes: Attr: **RW** – Read/writable, **R** – read only, **W** – write only

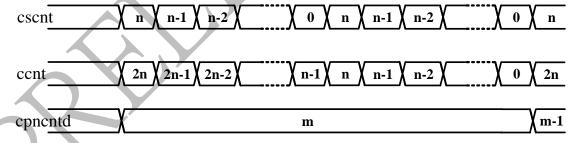
7.4 Functional Description

7.4.1 S/W Trigger DMA Mode

After AHB reset signal (hreset_n), the HDMA module enters the initial state. In the initial state, the HDMA doesn't move data between two memory blocks. When users finish programming configuration registers through AHB slave interface, the HDMA enter transfer state to begin to transfer data from source address to destination address. When the TC (Terminate Count) is asserted, the HDMA stop DMA operation.


7.4.2 H/W Trigger DMA Mode

In hardware mode, when the peripheral devices want to transfer data to memory or devices need receive data from memory, it will assert request signal to HDMA. Then, the HDMA will assert acknowledge signal to peripheral device and start DMA service. In the DMA service, the HDMA read the data from source address and write the data to destination address. After one DMA service, the HDMA desserts acknowledge signal and check requester request signal. If requester de-asserts request signal, it means requester want to wait DMA service, the HDMA will de-assert acknowledge signal and wait the request. If the request signal is still assert, HDMA will start next DMA service. The following timing diagram shows the relationship between the requester and the responder.


	Check requester status (Requester wait)	Check requester status (Requester no wait)
nhdreq		
nhdack		
DMA service		READ WRITE READN WRITEN
count	ICCNT-n	ICCNT-2n

In this hardware mode, when the peripheral devices want to transfer data to memory or devices need receive data from memory, it will assert request signal to HDMA. Then, the HDMA will assert acknowledge signal to peripheral device and start DMA service. In the DMA service, the HDMA read the data from source address and write the data to destination address. After one DMA service and slice count down to zero, the HDMA desserts acknowledge signal and the HDMA will wait the request. The following timing diagram shows the relationship between the requester and the responder.

The slice will be update when it count to zero and terminate counter doesn't equal to zero. The page number counter will minus one when terminate counter equals to zero. The following timing diagram shows the relationship between slice, terminate, and page number counters. The transfer will auto reload if source address buffer size is reach and page count number is no zero.

7.4.3 On-the-Fly DMA Mode

To enhance AHB bus performance, the HDMA supports On-the-Fly data transfer of DMA operation at both SW and HW mode. When On-the-Fly read bit is set in DMA channel control register, HDMA will read data from On-the-Fly AHB bus and write data to AHB bus. When On-the-Fly write bit is set in DMA channel control register, HDMA will read data from AHB bus and write data to On-the-Fly AHB bus.

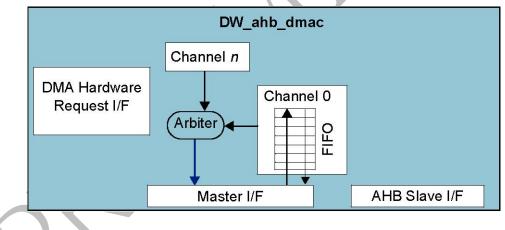
7.5 Application Notes

- The A2A DMA only support the same size for source and destination peripheral.
- In RK27xx, on-the-fly function of HDMA is disabled.
- The following is example step by step for software :

```
*(unsigned long volatile *)(HDMA_ARM_BASE + HDMA_ISRC0_REG) = sar;
                                                                           //source address
*(unsigned long volatile *)(HDMA_ARM_BASE + HDMA_IDST0_REG) = dst; //destination address
*(unsigned long volatile *)(HDMA_ARM_BASE + HDMA_ICNT0_REG) = 0xf; //transfer length
*(unsigned long volatile *)(HDMA_ARM_BASE + HDMA_ISR_REG) = (((unsigned long )0xf3)<<8);
      //两个通道的中断不mask
*(unsigned long volatile *)(HDMA_ARM_BASE + HDMA_IPNCNTD0_REG) = 0x1;
*(unsigned long volatile *)(HDMA_ARM_BASE + HDMA_CON0_REG) =
((0x2)|((0x2)<<3)|(0x3<<13)|(0x1<<18)|(0x3<<21));
                                                                          // enable dma
Wait generation of interrupt.....
Read interrupt source to decide which channel is interrupt from as follows
temp = *(unsigned long volatile *)(HDMA ARM BASE + HDMA ISR REG);
if(temp&0x4){
      channel 1 ....
    }
```

Chapter 8 DW DMA

8.1 Design Overview


8.1.1 Overview

The DW DMA controller provides an interface to translate data between SDR/ST and DSP subsystem. It can support all kinds of burst type and data size, which define in AHB protocol. It can support on-the-fly DMA transfer on DSP AHB bus devices and SDRAM controller or DSP AHB bus data transfer.

8.1.2 Features

- Provide AHB-to-AHB bus protocol translation
- Support AHB-to-AHB DMA or Single AHB DMA
- Four DMA channels supported
- Support byte, half word and word data transfer sizes
- Support incremental and fixed addressing mode
- Support block and software DMA transfer mode
- Support all burst type transfer for bridge
- Support SINGLE and all incremental burst type transfer for DMA
- Support fixed channel priority arbitration
- Scatter/Gather transfer support
- LLP transfer support

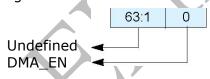
8.2 Architecture

8.3 Registers

8.3.1 Registers Summary

Name	Address Offset	Width	R/W	Description			
	Channel Registers, x = channels number, (0 ~ 3)						
SARx	0x000	64	R/W	Channel x Source Address Register Reset Value: 0x0			
DARx	0x008	64	R/W	Channel x Destination Address Register Reset Value: 0x0			
LLPx	0x010	64	R/W	Channel x Linked List Pointer Register Reset Value: 0x0			
CTLx	0x018	64	R/W	Channel x Control Register Reset Value: Configuration dependent			

SSTATx	0x020	64	R/W	Channel x Source Status Register Reset Value: 0x0
DSTATx	0x028	64	R/W	Channel x Destination Status Register Reset Value: 0x0
SSTATARx	0x030	64	R/W	Channel x Source Status Address Register Reset Value: 0x0
DSTATARx	0x038	64	R/W	Channel x Destination Status Address Register Reset Value: 0x0
CFGx	0x040	64	R/W	Channel x Configuration Register Reset Value: 0x0000000400000c00
SGRx	0x048	64	R/W	Channel x Source Gather Register Reset Value: 0x0
DSRx	0x050	64	R/W	Channel x Destination Scatter Register Reset Value: 0x0
		1	Interr	upt Registers
RawTfr	0x2c0	64	R	Raw Status for IntTfr Interrupt Reset Value: 0x0
RawBlock	0x2c8	64	R	Raw Status for IntBlock Interrupt Reset Value: 0x0
RawSrcTran	0x2d0	64	R	Raw Status for IntSrcTran Interrupt Reset Value: 0x0
RawDstTran	0x2d8	64	R	Raw Status for IntDstTran Interrupt Reset Value: 0x0
RawErr	0x2e0	64	R	Raw Status for IntErr Interrupt Reset Value: 0x0
Sta	atusBlock,	StatusD	stTran,	StatusErr, StatusSrcTran, StatusTfr
StatusTfr	0x2e8	64	R	Status for IntTfr Interrupt Reset Value: 0x0
StatusBlock	0x2f0	64	R	Status for IntBlock Interrupt Reset Value: 0x0
StatusSrcTran	0x2f8	64	R	Status for IntSrcTran Interrupt Reset Value: 0x
StatusDstTran	0x300	64	R	Status for IntDstTran Interrupt Reset Value: 0x0
StatusErr	0x308	64	R	Status for IntErr Interrupt Reset Value: 0x0
	MaskBlock	k, MaskE		, MaskErr, MaskSrcTran, MaskTfr
MaskTfr	0x310	64	R/W	Mask for IntTfr Interrupt Reset Value: 0x0
MaskBlock	0x318	64	R/W	Mask for IntBlock Interrupt Reset Value: 0x0
MaskSrcTran	0x320	64	R/W	Mask for IntSrcTran Interrupt Reset Value: 0x0
MaskDstTran	0x328	64	R/W	Mask for IntDstTran Interrupt Reset Value: 0x0
MaskErr	0x330	64	R/W	Mask for IntErr Interrupt Reset Value: 0x0
	ClearBlock	k, ClearD	OstTran	, ClearErr, ClearSrcTran, ClearTfr
ClearTfr	0x338	64	W	Clear for IntTfr Interrupt Reset Value: 0x0
ClearBlock	0x340	64	W	Clear for IntBlock Interrupt Reset Value: 0x0
ClearSrcTran	0x348	64	W	Clear for IntSrcTran Interrupt Reset Value: 0x0
ClearDstTran	0x350	64	W	Clear for IntDstTran Interrupt Reset Value: 0x0
ClearErr	0x358	64	W	Clear for IntErr Interrupt Reset Value: 0x0
	•		•	

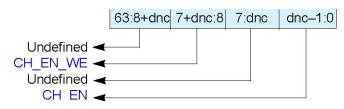

StatusInt	0x360	64	W	Status for each interrupt type Reset Value: 0x0			
	Software Handshaking Registers						
ReqSrcReg	0x368	64	R/W	Source Software Transaction Request Register Reset Value: 0x0			
ReqDstReg	0x370	64	R/W	Destination Software Transaction Request Register Reset Value: 0x0			
SglReqSrcReg	0x378	64	R/W	Single Source Transaction Request Register Reset Value: 0x0			
SglReqDstReg	0x380	64	R/W	Single Destination Transaction Request Register Reset Value: 0x0			
LstSrcReg	0x388	64	R/W	Last Source Transaction Request Register Reset Value: 0x0			
LstDstReg	0x390	64	R/W	Last Destination Transaction Request Register Reset Value: 0x0			
Miscellaneous Registers							
DmaCfgReg	0x398	64	R/W	DMA Configuration Register Reset Value: 0x0			
ChEnReg	0x3a0	64	R/W	DMA Channel Enable Register Reset Value: 0x0			

8.3.2 Configuration and Channel Enable Registers

DmaCfgReg

- Name: DW_ahb_dmac Configuration Register
- Size: 64 bits
- Address Offset: 0x398
- Read/Write Access: Read/Write

This register is used to enable the DW_ahb_dmac, which must be done before any channel activity can begin.


Bits	Name	R/W	Reset	Description	
63:1	Undefined	N/A	0x0	Reserved	
0	DMA_EN	R/W	0x0	DW_ahb_dmac Enable bit. 0 = DW_ahb_dmac Disabled 1 = DW_ahb_dmac Enabled.	

If the global channel enable bit is cleared while any channel is still active, then DmaCfgReg.DMA_EN still returns 1 to indicate that there are channels still active until hardware has terminated all activity on all channels, at which point the DmaCfgReg.DMA_EN bit returns 0.

ChEnReg

- Name: DW_ahb_dmac Channel Enable Register
- Size: 64 bits
- Address Offset: 0x3a0
- **Read/Write Access:** Read/Write

This is the DW_ahb_dmac Channel Enable Register. If software needs to set up a new channel, then it can read this register in order to find out which channels are currently inactive; it can then enable an inactive channel with the required priority.

Bits	Name	R/W	Reset	Description
63:12	Undefined	N/A	0x0	Reserved
11:8	CH_EN_WE	W	0x0	Channel enable write enable.
7:4	Undefined	N/A	0x0	Reserved
3:0	CH_EN	R/W	0x0	Enables/Disables the channel. 0 = Disable the Channel 1 = Enable the Channel The ChEnReg.CH_EN bit is automatically cleared by hardware to disable the channel after the last AMBA transfer of the DMA transfer to the destination has completed. Software can therefore poll this bit to determine when this channel is free for a new DMA transfer.

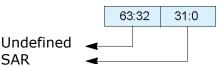
All bits of this register are cleared to 0 when the global DW_ahb_dmac channel enable bit, DmaCfgReg[0], is 0. When the global channel enable bit is 0, then a write to the ChEnReg register is ignored and a read will always read back 0.

The channel enable bit, ChEnReg.CH_EN, is written only if the corresponding channel write enable bit, ChEnReg.CH_EN_WE, is asserted on the same AHB write transfer. For example, writing hex 01x1 writes a 1 into ChEnReg[0], while ChEnReg[7:1] remains unchanged. Writing hex 00xx leaves ChEnReg[7:0] unchanged. Note that a read-modified write is not required.

8.3.3 Channel Registers

The channel registers consist of the following, where x = 0 to 3:

- **CFGx** Configuration register for channel x
- **CTLx** Control register for channel x
- DARx Destination address register for channel x
- DSRx Destination scatter register for channel x
- DSTATx Destination status register for channel x
- DSTATARx Destination status address register for channel x
- LLPx Linked list pointer register for channel x
- SARx Source address register for channel x
- **SGRx** Source gather register for channel x
- SSTATx Source status register for channel x
- SSTATARx Source status address register for channel x


The SARx, DARx, LLPx, CTLx, and CFGx channel registers should be programmed prior to enabling the channel. However, if an LLI update occurs before commencing data transfer, SARx and DARx may not need to be programmed prior to enabling the channel; refer to rows 6 to 10 in Table 5. It is an Illegal Register Access when a write to the SARx, DARx, LLPx, CTLx, SSTATx, DSTATx, SSTATARx, DSTATARx, SGRx, or DSRx registers occurs when the channel is enabled.

- Name: Source Address Register for Channel x
- Size: 64 bits (upper 32 bits are reserved)
- Address Offset: for x = 0 to 3:
 - SAR0 0x000 SAR1 - 0x058 SAR2 - 0x0b0
 - SAR3 0x108
- Read/Write Access: Read/Write

The starting source address is programmed by software before the DMA channel is enabled, or by an LLI update before the start of the DMA transfer. While the DMA transfer is in progress, this register is updated to reflect the source address of the current AHB transfer.

1 Note

You must program the SAR address to be aligned to CTLx.SRC_TR_WIDTH.

Bits	Name	R/W	Reset	Description
63:32	Undefined	N/A	0x0	Reserved
31:0	SAR	R/W	0x0	Current Source Address of DMA transfer . Updated after each source transfer. The SINC field in the CTLx register determines whether the address increments, decrements, or is left unchanged on every source transfer throughout the block transfer.

DARx

- Name: Destination Address Register for Channel x
- Size: 64 bits (upper 32 bits are reserved)
- Address Offset: for x = 0 to 7:
 - DAR0 0x008
 - DAR1 0x060
 - DAR2 0x0b8
 - DAR3 0x110
- Read/Write Access: Read/Write

The starting destination address is programmed by software before the DMA channel is enabled, or by an LLI update before the start of the DMA transfer. While the DMA transfer is in progress, this register is updated to reflect the destination address of the current AHB transfer.

5 Note

You must program the DAR to be aligned to CTLx.DST_TR_WIDTH.

		63:32	31:0	
Undefined	4			

Bits	Name	R/W	Reset	Description
63:32	Undefined	N/A	0x0	Reserved

31:0	DAR	R/W	0x0	Current Destination address of DMA transfer . Updated after each destination transfer. The DINC field in the CTLx register determines whether the address increments, decrements, or is left unchanged on every destination transfer throughout the block transfer.
------	-----	-----	-----	--

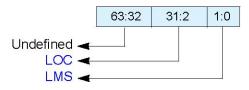
Hardware Realignment of SAR/DAR Registers

In a particular cicumstance, during contiguous multi-block DMA transfers, the destination address can become misaligned between the end of one block and the start of the next block. When this situation occurs, DW_ahb_dmac re-aligns the destination address before the start of the next block.

Consider the following example. If the block length is 9, the source transfer width is 16 (halfword), and the destination transfer width is 32 (word)—the destination is programmed for contiguous block transfers—then the destination performs four word transfers followed by a halfword transfer to complete the block transfer to the destination. At the end of the destination block transfer, the address is aligned to a 16-bit transfer as the last AMBA transfer is halfword. This is misaligned to the programmed transfer size of 32 bits for the destination. However, for contiguous destination multi-block transfers, DW_ahb_dmac re-aligns the DAR address to the nearest 32-bit address (next 32-bit address upwards if address control is incrementing or next address downwards if address control is decrementing).

This only occurs when the following is the DMA transfer setup:

- When on the DAR address, OR
- Contiguous multi-block transfers on destination side, OR
- DST_TR_WIDTH > SRC_TR_WIDTH, OR
- (BLOCK_TS * SRC_TR_WIDTH)/DST_TR_WIDTH != integer (where SRC_TR_WIDTH, DST_TR_WIDTH is byte width of transfer)


LLPx

- Name: Linked List Pointer Register for Channel x
- Size: 64 bits (upper 32 bits are reserved)
- Address Offset: for x = 0 to 3:
 - LLP0 0x010
 - LLP1 0x068
 - LLP2 0x0c0
 - LLP3 0x118

• Read/Write Access: Read/Write

5- Note

You need to program this register to point to the first Linked List Item (LLI) in memory prior to enabling the channel if block chaining is enabled.

Bits	Name	R/W	Reset	Description
63:32	Undefined	N/A	0x0	Reserved
31:2	LOC	R/W	0x0	Starting Address In Memory of next LLI if block chaining is enabled. Note that the two LSBs of the starting address are not stored because the address is assumed to be aligned to a 32-bit boundary.

1:0	LMS	R/W	0x0	List Master Select. Identifies the AHB layer/interface where the memory device that stores the next linked list item resides.
				00 = AHB master 1
				01 = AHB master 2

The LLP register has two functions:

- The logical result of the equation LLP.LOC != 0 is used to set up the type of DMA transfer—single or multi-block. If LLP.LOC is set to 0x0, then transfers using linked lists are not enabled. This register must be programmed prior to enabling the channel in order to set up the transfer type.
- LLP.LOC != 0 contains the pointer to the next LLI for block chaining using linked lists; The LLPx register can also point to the address where write-back of the control and source/destination status information occur after block completion.

CTLx

- Name: Control Register for Channel x
- Size: 64 bits
- Address Offset: for x = 0 to 7:
 - CTL0 0x018
 - CTL1 0x070
 - CTL2 0x0c8
 - CTL3 0x120
- Read/Write Access: Read/Write

This register contains fields that control the DMA transfer.

The CTLx register is part of the block descriptor (linked list item – LLI) when block chaining is enabled. It can be varied on a block-by-block basis within a DMA transfer when block chaining is enabled. If status write-back is enabled, the upper word of the control register, CTLx[63:32], is written to the control register location of the LLI in system memory at the end of the block transfer.

1. Note

You need to program this register prior to enabling the channel.

63:45 44 43:32 31:29 28 27 26:25 24:23 22:20 19 18 17 16:14 13:11 10:9 8:7 6:4 3:1 0

Undefined DONE BLOCK_TS Undefined LLP_SRC_EN LLP_DST_EN SMS DMS
BLOCK_TS Undefined LLP_SRC_EN LLP_DST_EN SMS
Undefined LLP_SRC_EN LLP_DST_EN SMS
Undefined LLP_SRC_EN LLP_DST_EN SMS
LLP_DST_EN
LLP_DST_EN
SRC_TR_WIDTH
INT EN

Bits	Name	R/W	Description
63:45	Undefined	N/A	Reserved

44	DONE	R/W	Done bit If status write-back is enabled, the upper word of the control register, CTLx[63:32], is written to the control register location of the Linked List Item (LLI) in system memory at the end of the block transfer with the done bit set. Software can poll the LLI CTLx.DONE bit to see when a block transfer is complete. The LLI CTLx.DONE bit should be cleared when the linked lists are set up in memory prior to enabling the channel.
b:32	BLOCK_TS	R/W	Block Transfer Size. When the DW_ahb_dmac is the flow controller, the user writes this field before the channel is enabled in order to indicate the block size. The number programmed into BLOCK_TS indicates the total number of single transactions to perform for every block transfer; a single transaction is mapped to a single AMBA beat. Width: The width of the single transaction is determined by CTLx.SRC_TR_WIDTH. Once the transfer starts, the read-back value is the total number of data items already read from the source peripheral, regardless of what is the flow controller. When the source or destination peripheral is assigned as the flow controller, then the maximum block size that can be read back saturates at DMAH_CHx_MAX_BLK_SIZE, but the actual block size can be greater. b = log2(DMAH_CHx_MAX_BLK_SIZE + 1) + 31 Bits 43:b+1 do not exist and return 0 on a read. Reset Value: 0x2
31:29	Undefined	N/A	Reserved
28	LLP_SRC_EN	R/W	Block chaining is enabled on the source side only if the LLP_SRC_EN field is high and LLPx.LOC is non-zero; Reset Value: 0x0
27	LLP_DST_EN	R/W	Block chaining is enabled on the destination side only if the LLP_DST_EN field is high and LLPx.LOC is non-zero. Reset Value: 0x0
26:25	SMS	R/W	Source Master Select. Identifies the Master Interface layer from which the source device (peripheral or memory) is accessed. 00 = AHB master 1 01 = AHB master 2 Reset Value : DMAH_CHx_SMS[1:0]
24:23	DMS	R/W	Destination Master Select. Identifies the Master Interface layer where the destination device (peripheral or memory) resides. 00 = AHB master 1 01 = AHB master 2 Reset Value: DMAH_CHx_DMS[1:0]
22:20	TT_FC	R/W	Transfer Type and Flow Control. The following transfer types are supported. • Memory to Memory • Memory to Peripheral • Peripheral to Memory • Peripheral to Peripheral Flow Control can be assigned to the DW_ahb_dmac, the source peripheral, or the destination peripheral. Table 3 lists the decoding for this field. Reset Value : Configuration dependent: TT_FC[0] = 1'b1 TT_FC[1] = DMAH_CHx_FC[1] (!DMAH_CHx_FC[0]) TT_FC[2] = DMAH_CHx_FC[1] ^ DMAH_CHx_FC[0] Dependencies : If the configuration parameter DMAH_CHx_FC is set to DMA_FC_ONLY, then TT_FC[2] does not exist and TT_FC[2] always reads back 0. If DMAH_CHx_FC is set to SRC_FC_ONLY, then TT_FC[2:1] does not exist and TT_FC[2:1] always reads back 2'b10. If DMAH_CHx_FC is set to DST_FC_ONLY, then TT_FC[2:1] does not exist and TT_FC[2:1] always reads back 2'b11.

19	Undefined	N/A	Reserved
18	DST_SCATTER_EN	R/W	Destination scatter enable bit: 0 = Scatter disabled 1 = Scatter enabled Scatter on the destination side is applicable only when the CTLx.DINC bit indicates an incrementing or decrementing address control. Reset Value: 0x0
17	SRC_GATHER_EN	R/W	Source gather enable bit: 0 = Gather disabled 1 = Gather enabled Gather on the source side is applicable only when the CTLx.SINC bit indicates an incrementing or decrementing address control. Reset Value: 0x0
16:14	SRC_MSIZE	R/W	Source Burst Transaction Length. Number of data items, each of width CTLx.SRC_TR_WIDTH, to be read from the source every time a source burst transaction request is made from either the corresponding hardware or software handshaking interface. Table 1 lists the decoding for this field; NOTE: This value is not related to the AHB bus master HBURST bus. Reset Value: 0x1
13:11	DEST_MSIZE	R/W	Destination Burst Transaction Length. Number of data items, each of width CTLx.DST_TR_WIDTH, to be written to the destination every time a destination burst transaction request is made from either the corresponding hardware or software handshaking interface. NOTE: This value is not related to the AHB bus master HBURST bus. Reset Value: 0x1
10:9	SINC	R/W	Source Address Increment. Indicates whether to increment or decrement the source address on every source transfer. If the device is fetching data from a source peripheral FIFO with a fixed address, then set this field to "No change." 00 = Increment 01 = Decrement 1x = No change NOTE : Incrementing or decrementing is done for alignment to the next CTLx.SRC_TR_WIDTH boundary. Reset Value : 0x0
8:7	DINC	R/W	Destination Address Increment. Indicates whether to increment or decrement the destination address on every destination transfer. If your device is writing data to a destination peripheral FIFO with a fixed address, then set this field to "No change." 00 = Increment 01 = Decrement 1x = No change NOTE: Incrementing or decrementing is done for alignment to the next CTLx.DST_TR_WIDTH boundary. Reset Value: 0x0
6:4	SRC_TR_WIDTH	R/W	Source Transfer Width. Table 2 lists the decoding for this field. Mapped to AHB bus "hsize." For a non-memory peripheral, typically the peripheral (source) FIFO width. This value must be less than or equal to DMAH_Mx_HDATA_WIDTH, where x is the AHB layer 1 to 2 where the source resides. Reset Value : Encoded value; refer to Table 2.

3:1	DST_TR_WIDTH	R/W	Destination Transfer Width. Table 2 lists the decoding for this field. Mapped to AHB bus "hsize." For a non-memory peripheral, typically rgw peripheral (destination) FIFO width. This value must be less than or equal to DMAH_Mk_HDATA_WIDTH, where k is the AHB layer 1 to 2 where the destination resides. Reset Value: Encoded value; refer to Table 2.
0	INT_EN	R/W	Interrupt Enable Bit. If set, then all interrupt-generating sources are enabled. Reset Value: 0x1

Table 1: CTLx.SRC_MSIZE and DEST_MSIZE Decoding

CTLx.SRC_MSIZE /	Number of data items to be transferred (of width	
CTLx.DEST_MSIZE	CTLx.SRC_TR_WIDTH or CTLx.DST_TR_WIDTH)	
000	1	-
001	4	
010	8	
011	16	
100	32	

Table 2: CTLx.SRC_TR_WIDTH and CTLx.DST_TR_WIDTH Decoding

CTLx.SRC_TR_WIDTH / CTLx.DST_TR_WIDTH	Size (bits)
000	8
001	16
010	32

Table 3: CTLX.TT_FC Field Decoding										
CTLx.TT_FC Field	Transfer Type	Flow Controller								
000	Memory to Memory	DW_ahb_dmac								
001	Memory to Peripheral	DW_ahb_dmac								
010	Peripheral to Memory	DW_ahb_dmac								
011	Peripheral to Peripheral	DW_ahb_dmac								
100	Peripheral to Memory	Peripheral								
101	Peripheral to Peripheral	Source Peripheral								
110	Memory to Peripheral	Peripheral								
111	Peripheral to Peripheral	Destination Peripheral								

Table 3: CTLx.TT_FC Field Decoding

SSTATx

- Name: Source Status Register for Channel x
- Size: 64 bits (upper 32 bits are reserved)
- Address Offset: for x = 0 to 3:
 - SSTAT0 0x020
 - SSTAT1 0x078
 - SSTAT2 0x0d0
 - SSTAT3 0x128
- Read/Write Access: Read/Write

After each block transfer completes, hardware can retrieve the source status information from the address pointed to by the contents of the SSTATARx register. This status information is then stored in the SSTATx register and written out to the SSTATx register location of the LLI before the start of the next block. For conditions under which the source status information is fetched.

5-3P Note

This register is a temporary placeholder for the source status information on

its way to the SSTATx register location of the LLI. The source status information should be retrieved by software from the SSTATx register location of the LLI, and not by a read of this register over the DW_ahb_dmac slave interface.

		63:32	31:0
Undefined SSTAT	+ +		

Bits	Name	R/W	Reset	Description
63:32	Undefined	N/A	0x0	Reserved
31:0	SSTAT	R/W	0x0	Source status information retrieved by hardware from the address pointed to by the contents of the SSTATARx register.

DSTATx

- Name: Destination Status Register for Channel x
- Size: 64 bits (upper 32 bits are reserved)
- Address Offset: for x = 0 to 3: DSTAT0 - 0x028 DSTAT1 - 0x080 DSTAT2 - 0x0d8 DSTAT3 - 0x130
- • Read/Write Access: Read/Write

After the completion of each block transfer, hardware can retrieve the destination status information from the address pointed to by the contents of the DSTATARx register. This status information is then stored in the DSTATx register and written out to the DSTATx register location of the LLI before the start of the next block. if the parameter DMAH_CHx_STAT_DST is set to False; in this case, the read-back value is always 0.

5. PNote

This register is a temporary placeholder for the destination status information on its way to the DSTATx register location of the LLI. The destination status information should be retrieved by software from the DSTATx register location of the LLI and not by a read of this register over the DW_ahb_dmac slave interface.

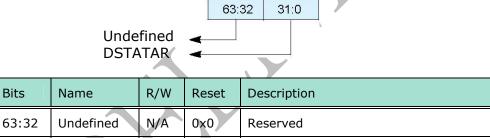
Bits	Name	R/W	Reset	Description
63:32	Undefined	N/A	0x0	Reserved
31:0	DSTAT	R/W	0x0	Destination status information retrieved by hardware from the address pointed to by the contents of the DSTATARx register.

SSTATARx

- Name: Source Status Address Register for Channel x
- Size: 64 bits (upper 32 bits are reserved)
- Address Offset: for x = 0 to 3:
 - SSTATAR0 0x030 SSTATAR1 – 0x088 SSTATAR2 – 0x0e0
 - SSTATAR3 0x138
- Read/Write Access: Read/Write

After the completion of each block transfer, hardware can retrieve the source status information from the address pointed to by the contents of the SSTATARx register.

This register does not exist if the configuration parameter DMAH_CHx_STAT_SRC is set to False; in this case, the read-back value is always 0.


		63:3	2	31	:0
Undefined SSTATAR	4				

Bits	Name	R/W	Reset	Description
63:32	Undefined	N/A	0x0	Reserved
31-1:0	SSTATAR	R/W	0x0	Pointer from where hardware can fetch the source status information, which is registered in the SSTATx register and written out to the SSTATx register location of the LLI before the start of the next block.

DSTATARx

- Name: Destination Status Address Register for Channel x
- Size: 64 bits (upper 32 bits are reserved)
- Address Offset: for x = 0 to 3:
- DSTATAR0 0x038 DSTATAR1 – 0x090 DSTATAR2 – 0x0e8 DSTATAR3
- Read/Write Access: Read/Write

After the completion of each block transfer, hardware can retrieve the destination status information from the address pointed to by the contents of the DSTATARx register. This register does not exist if the configuration parameter DMAH_CHx_STAT_DST is set to False; in this case, the read-back value is always 0.

	endemed			
31-1:0	DSTATAR	R/W	0x0	Pointer from where hardware can fetch the destination status information, which is registered in the DSTATx register and written out to the DSTATx register location of the LLI before the start of the next block.

CFGx

- Name: Configuration Register for Channel x
- Size: 64 bits (upper 32 bits are reserved)
- Address Offset: for x = 0 to 3:
 - CFG0 0x040
 - CFG1 0x098
 - CFG2 0x0f0
 - CFG3 0x148
- Read/Write Access: Read/Write

This register contains fields that configure the DMA transfer. The channel configuration register remains fixed for all blocks of a multi-block transfer.

Note

You need to program this register prior to enabling the channel.

63:47 46:43 42:39	38	37	36	34	33	32	31	30	29	:20	19	18	17	1	6 1	5:14	13	12 11	1	0 8	Э	8 7	:5	4	3 2	2 1	0
Undefined															Ċ.												
DEST_PER																											
SRC PER																											
SS_UPD_EN																											
DS_UPD_EN																											
PROTCTL																											
FIFO_MODE																											
FCMODE																											
RELOAD_DST -																											
RELOAD_SRC								12																			
MAX_ABRST									_																		
SRC_HS_POL																											
DST_HS_POL																											
LOCK_B-																											
LOCK_CH																											
																		1									
HS_SEL_SRC																											
HS_SEL_DST																				1							
FIFO_EMPTY																				3	1						
																						1					
CH_PRIOR																											
Undefined Undefined																								1			
																									-		
Undefined																										98	
Undefined -																					_						
Undenned -																											

Bits	Name	R/W	Reset	Description
63:47	Undefined	N/A	0x0	Reserved
46:43	DEST_PER	R/W	0x0	Assigns a hardware handshaking interface (0 -DMAH_NUM_HS_INT-1) to the destination of channel x if the CFGx.HS_SEL_DST field is 0; otherwise, this field is ignored. The channel can then communicate with the destination peripheral connected to that interface through the assigned hardware handshaking interface. NOTE : For correct DMA operation, only one peripheral (source or destination) should be assigned to the same handshaking interface.
42:39	SRC_PER	R/W	0x0	Assigns a hardware handshaking interface (0 -DMAH_NUM_HS_INT-1) to the source of channel x if the CFGx.HS_SEL_SRC field is 0; otherwise, this field is ignored. The channel can then communicate with the source peripheral connected to that interface through the assigned hardware handshaking interface. NOTE : For correct DW_ahb_dmac operation, only one peripheral (source or destination) should be assigned to the same handshaking interface.
38	SS_UPD_EN	R/W	0x0	Source Status Update Enable. Source status information is fetched only from the location pointed to by the SSTATARx register, stored in the SSTATx register and written out to the SSTATx location of the LLI if SS_UPD_EN is high. NOTE: This enable is applicable only if DMAH_CHx_STAT_SRC is set to True.

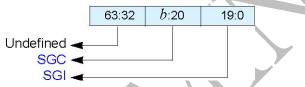
37	DS_UPD_EN	R/W	0x0	Destination Status Update Enable . Destination status information is fetched only from the location pointed to by the DSTATARx register, stored in the DSTATx register and written out to the DSTATx location of the LLI if DS_UPD_EN is high.
36:34	PROTCTL	R/W	0x1	Protection Control bits used to drive the AHB HPROT[3:1] bus. The AMBA Specification recommends that the default value of HPROT indicates a non-cached, non-buffered, privileged data access. The reset value is used to indicate such an access. HPROT[0] is tied high because all transfers are data accesses, as there are no opcode fetches. There is a one-to-one mapping of these register bits to the HPROT[3:1] master interface signals. Table 4 shows the mapping of bits in this field to the AHB HPROT[3:1] bus.
33	FIFO_MODE	R/W	0×0	 FIFO Mode Select. Determines how much space or data needs to be available in the FIFO before a burst transaction request is serviced. 0 = Space/data available for single AHB transfer of the specified transfer width. 1 = Space/data available is greater than or equal to half the FIFO depth for destination transfers and less than half the FIFO depth for source transfers. The exceptions are at the end of a burst transaction request or at the end of a block transfer.
32	FCMODE	R/W	0x0	 Flow Control Mode. Determines when source transaction requests are serviced when the Destination Peripheral is the flow controller. 0 = Source transaction requests are serviced when they occur. Data pre-fetching is enabled. 1 = Source transaction requests are not serviced until a destination transaction request occurs. In this mode, the amount of data transferred from the source is limited so that it is guaranteed to be transferred to the destination prior to block termination by the destination. Data pre-fetching is disabled.
31	RELOAD_DST	R/W	0x0	Automatic Destination Reload. The DARx register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A new block transfer is then initiated. For conditions under which this occurs, refer to Table 5.
30	RELOAD_SRC	R/W	0x0	Automatic Source Reload. The SARx register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A new block transfer is then initiated. For conditions under which this occurs.
29:20	MAX_ABRST	R/W	0x0	Maximum AMBA Burst Length. Maximum AMBA burst length that is used for DMA transfers on this channel. A value of 0 indicates that software is not limiting the maximum AMBA burst length for DMA transfers on this channel.
19	SRC_HS_POL	R/W	0x0	Source Handshaking Interface Polarity. 0 = Active high 1 = Active low
18	DST_HS_POL	R/W	0x0	Destination Handshaking Interface Polarity. 0 = Active high 1 = Active low
17	LOCK_B	R/W	0×0	Bus Lock Bit. When active, the AHB bus master signal hlock is asserted for the duration specified in CFGx.LOCK_B_L.

16	LOCK_CH	R/W	0x0	Channel Lock Bit. When the channel is granted control of the master bus interface and if the CFGx.LOCK_CH bit is asserted, then no other channels are granted control of the master bus interface for the duration specified in CFGx.LOCK_CH_L. Indicates to the master bus interface arbiter that this channel wants exclusive access to the master bus interface for the duration specified in CFGx.LOCK_CH_L.
15:14	LOCK_B_L	R/W	0x0	Bus Lock Level. Indicates the duration over which CFGx.LOCK_B bit applies. 00 = Over complete DMA transfer 01 = Over complete DMA block transfer 1x = Over complete DMA transaction
13:12	LOCK_CH_L	R/W	0x0	Channel Lock Level. Indicates the duration over which CFGx.LOCK_CH bit applies. 00 = Over complete DMA transfer 01 = Over complete DMA block transfer 1x = Over complete DMA transaction
11	HS_SEL_SRC	R/W	0×1	Source Software or Hardware Handshaking Select. This register selects which of the handshaking interfaces – hardware or software – is active for source requests on this channel. 0 = Hardware handshaking interface. Software-initiated transaction requests are ignored. 1 = Software handshaking interface. Hardware-initiated transaction requests are ignored. If the source peripheral is memory, then this bit is ignored.
10	HS_SEL_DST	R/W	0x1	Destination Software or Hardware Handshaking Select. This register selects which of the handshaking interfaces – hardware or software – is active for destination requests on this channel. 0 = Hardware handshaking interface. Software-initiated transaction requests are ignored. 1 = Software handshaking interface. Hardware- initiated transaction requests are ignored. If the destination peripheral is memory, then this bit is ignored.
9	FIFO_EMPTY	R	0x0	Indicates if there is data left in the channel FIFO. Can be used in conjunction with CFGx.CH_SUSP to cleanly disable a channel. 1 = Channel FIFO empty 0 = Channel FIFO not empty
8	CH_SUSP	R/W	0x0	Channel Suspend. Suspends all DMA data transfers from the source until this bit is cleared. There is no guarantee that the current transaction will complete. Can also be used in conjunction with CFGx.FIFO_EMPTY to cleanly disable a channel without losing any data. 0 = Not suspended. 1 = Suspend DMA transfer from the source.
7:5	CH_PRIOR	R/W	Channel Number example: Chan0=0 Chan1=1	Channel priority. A priority of 7 is the highest priority, and 0 is the lowest. This field must be programmed within the following range: 0: (DMAH_NUM_CHANNELS – 1) A programmed value outside this range will cause erroneous behavior.
4:0	Undefined	N/A	0x0	Reserved

Table 4: PROTCTL field to HPROT Mapping

1`b1	HPROT[0]
CFGx.PROTCTL[1]	HPROT[1]

CFGx.PROTCTL[2] ->	HPROT[2]
CFGx.PROTCTL[3] ->	HPROT[3]


SGRx

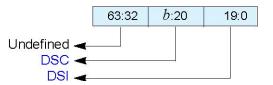
- Name: Source Gather Register for Channel x
- Size: 64 bits (upper 32 bits are reserved)
- Address Offset: for x = 0 to 3:
 - SGR0 0x048
 - SGR1 0x0a0
 - SGR2 0x0f8
 - SGR3 0x150
- Read/Write Access: Read/Write

The Source Gather register contains two fields:

- Source gather count field (SGRx.SGC) Specifies the number of contiguous source transfers of CTLx.SRC_TR_WIDTH between successive gather intervals. This is defined as a gather boundary.
- Source gather interval field (SGRx.SGI) Specifies the source address increment/decrement in multiples of CTLx.SRC_TR_WIDTH on a gather boundary when gather mode is enabled for the source transfer.

The CTLx.SINC field controls whether the address increments or decrements. When the CTLx.SINC field indicates a fixed-address control, then the address remains constant throughout the transfer and the SGRx register is ignored. This register does not exist if the configuration parameter DMAH_CHx_SRC_GAT_EN is set to False.

Bits	Name	R/W	Reset	Description
63:32	Undefined	N/A	0x0	Reserved.
b:20 See description	SGC	R/W	0x0	Source gather count. Source contiguous transfer count between successive gather boundaries. b = log2 (DMAH_CHx_MAX_BLK_SIZE + 1) + 19 Bits 31:b+1 do not exist and read back as 0.
19:0	SGI	R/W	0x0	Source gather interval.


DSRx

- Name: Destination Scatter Register for Channel x
- Size: 64 bits (upper 32 bits are reserved)
- Address Offset: for x = 0 to 3: DSR0 - 0x050 DSR1 - 0x0a8 DSR2 - 0x100 DSR3 - 0x158
- Read/Write Access: Read/Write

The Destination Scatter register contains two fields:

- Destination scatter count field (DSRx.DSC) Specifies the number of contiguous destination transfers of CTLx.DST_TR_WIDTH between successive scatter boundaries.
- Destination scatter interval field (DSRx.DSI) Specifies the destination address increment/ decrement in multiples of CTLx.DST_TR_WIDTH on a scatter boundary when scatter mode is enabled for the destination transfer.

The CTLx.DINC field controls whether the address increments or decrements. When the CTLx.DINC field indicates a fixed address control, then the address remains constant throughout the transfer and the DSRx register is ignored. This register does not exist if the configuration parameter DMAH_CHx_DST_SCA_EN is set to False.

Figure 1: Destination Scatter Register Bit Fields for Channel x

Bits	Name	R/W	Reset	Description	
63:32	Undefined	N/A	0x0	Reserved.	
b:20 See description	DSC	R/W	0x0	Destination scatter count. Destination contiguous transfer count between successive scatter boundaries. b = log2 (DMAH_CHx_MAX_BLK_SIZE + 1) + 19 Bits 31:b+1 do not exist and read 0.	
19:0	DSI	R/W	0x0	Destination scatter interval.	

Table 6: Description	of Destin	nation Scatter Register for Channel x

8.3.4 Interrupt Registers

The following sections describe the registers pertaining to interrupts, their status, and how to clear them. For each channel, there are five types of interrupt sources:

- IntBlock Block Transfer Complete Interrupt This interrupt is generated on DMA block transfer completion to the destination peripheral.
- IntDstTran Destination Transaction Complete Interrupt

This interrupt is generated after completion of the last AHB transfer of the requested single/burst transaction from the handshaking interface (either the hardware or software handshaking interface) on the destination side.

5. Note

If the destination for a channel is memory, then that channel will never generate the IntDstTran interrupt. Because of this, the corresponding bit in this field will not be set.

- IntErr Error Interrupt
 - This interrupt is generated when an ERROR response is received from an AHB slave on the HRESP bus during a DMA transfer. In addition, the DMA transfer is cancelled and the channel is disabled.
- IntSrcTran Source Transaction Complete Interrupt

This interrupt is generated after completion of the last AHB transfer of the requested single/burst transaction from the handshaking interface (either the hardware or software handshaking interface) on the source side.

1 Note

If the source for a channel is memory, then that channel will never generate a IntSrcTran interrupt. Because of this, the corresponding bit in this field will not be set.

• IntTfr – DMA Transfer Complete Interrupt

This interrupt is generated on DMA transfer completion to the destination peripheral. There are several groups of interrupt-related registers:

- RawBlock, RawDstTran, RawErr, RawSrcTran, RawTfr
- StatusBlock, StatusDstTran, StatusErr, StatusSrcTran, StatusTfr

- MaskBlock, MaskDstTran, MaskErr, MaskSrcTran, MaskTfr
- ClearBlock, ClearDstTran, ClearErr, ClearSrcTran, ClearTfr
- StatusInt

When a channel has been enabled to generate interrupts, the following is true:

- Interrupt events are stored in the Raw Status registers.
- The contents of the Raw Status registers are masked with the contents of the Mask registers.
- The masked interrupts are stored in the Status registers.
- The contents of the Status registers are used to drive the int_* port signals.
- Writing to the appropriate bit in the Clear registers clears an interrupt in the Raw Status registers and the Status registers on the same clock cycle.

The contents of each of the five Status registers is ORed to produce a single bit for each interrupt type in the Combined Status register; that is, StatusInt.

🕼 Note

The CTLx.INT_EN bit must be set for an enabled channel to generate any interrupts.

RawBlock, RawDstTran, RawErr, RawSrcTran, RawTfr

- Name: Interrupt Raw Status Registers
- Size: 64 bits
- Address Offset: RawTfr - 0x2c0 RawBlock - 0x2c8 RawSrcTran - 0x2d0 RawDstTran - 0x2d8 RawErr - 0x2e0
- Read/Write Access: Read

Interrupt events are stored in these Raw Interrupt Status registers before masking: RawBlock, RawDstTran, RawErr, RawSrcTran, and RawTfr. Each Raw Interrupt Status register has a bit allocated per channel; for example, RawTfr[2] is the Channel 2 raw transfer complete interrupt.

Each bit in these registers is cleared by writing a 1 to the corresponding location in the ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr registers.

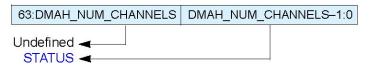
R

0x0

Raw interrupt status.

63:DMAH_NUM_CHANNELS DMAH_NUM_CHANNELS-1:0 Undefined								
Bits Name R/W Reset Description	63:DMAH_NUM_CH	ANNELS DM	AH_NUM	LCHANNI	ELS-1:0			
63:4 Undefined N/A 0x0 Reserved	Bits	Name	R/W	Reset	Description			
	63:4	Undefined	N/A	0x0	Reserved			

StatusBlock, StatusDstTran, StatusErr, StatusSrcTran, StatusTfr


RAW

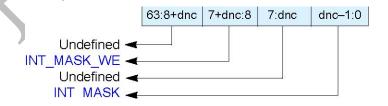
- Name: Interrupt Status Registers
- Size: 64 bits

3:0

- Address Offset: StatusTfr – 0x2e8 StatusBlock – 0x2f0 StatusSrcTran – 0x2f8 StatusDstTran – 0x300 StatusErr – 0x308
- Read/Write Access: Read

All interrupt events from all channels are stored in these Interrupt Status registers after masking: StatusBlock, StatusDstTran, StatusErr, StatusSrcTran, and StatusTfr. Each Interrupt Status register has a bit allocated per channel; for example, StatusTfr[2] is the Channel 2 status transfer complete interrupt. The contents of these registers are used to generate the interrupt signals (int or int_n bus, depending on interrupt polarity) leaving the DW_ahb_dmac.

Bits	Name	R/W	Reset	Description
63:4	Undefined	N/A	0x0	Reserved
3:0	STATUS	R	0x0	Interrupt status.


MaskBlock, MaskDstTran, MaskErr, MaskSrcTran, MaskTfr

- Name: Interrupt Mask Registers
- Size: 64 bits
- Address Offset: MaskTfr - 0x310 MaskBlock - 0x318 MaskSrcTran - 0x320 MaskDstTran - 0x328 MaskErr - 0x330
- Read/Write Access: Read/Write

The contents of the Raw Status registers are masked with the contents of the Mask registers: MaskBlock, MaskDstTran, MaskErr, MaskSrcTran, and MaskTfr. Each Interrupt Mask register has a bit allocated per channel; for example, MaskTfr[2] is the mask bit for the Channel 2transfer complete interrupt.

When the source peripheral of DMA channel i is memory, then the source transaction complete interrupt, MaskSrcTran[i], must be masked to prevent an erroneous triggering of an interrupt on the int_combined signal. Similarly, when the destination peripheral of DMA channel i is memory, then the destination transaction complete interrupt, MaskDstTran[i], must be masked to prevent an erroneous triggering of an interrupt on the int_combined.

A channel INT_MASK bit will be written only if the corresponding mask write enable bit in the INT_MASK_WE field is asserted on the same AHB write transfer. This allows software to set a mask bit without performing a read-modified write operation. For example, writing hex 01x1 to the MaskTfr register writes a 1 into MaskTfr[0], while MaskTfr[7:1] remains unchanged. Writing hex 00xx leaves MaskTfr[7:0] unchanged. Writing a 1 to any bit in these registers unmasks the corresponding interrupt, thus allowing the DW_ahb_dmac to set the appropriate bit in the Status registers and int_* port signals.

Bits	Name	R/W	Description
63:12	Undefined	N/A	Reset Value: 0x0
11:8	INT_MASK_WE	W	Interrupt Mask Write Enable 0 = write disabled 1 = write enabled Reset Value: 0x0
7:4	Undefined	N/A	Reset Value: 0x0

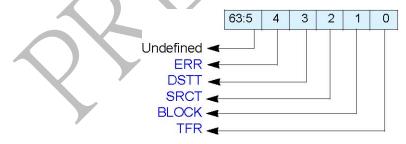
3:0	INT_MASK	R/W	Interrupt Mask
			0 = masked
			1 = unmasked
			Reset Value: 0x0

ClearBlock, ClearDstTran, ClearErr, ClearSrcTran, ClearTfr

- Name: Interrupt Clear Registers
- Size: 64 bits
- Address Offset: ClearTfr - 0x338
 ClearBlock - 0x340
 ClearSrcTran - 0x348
 ClearDstTran - 0x350
 ClearErr - 0x358
- Read/Write Access: Write

Each bit in the Raw Status and Status registers is cleared on the same cycle by writing a 1 to the corresponding location in the Clear registers: ClearBlock, ClearDstTran, ClearErr, ClearSrcTran, and ClearTfr. Each Interrupt Clear register has a bit allocated per channel; for example, ClearTfr[2] is the clear bit for the Channel 2 transfer complete interrupt. Writing a 0 has no effect. These registers are not readable.

63:DMAH_NUM_CHANNELS DMAH_NUM_CHANNELS-1:0


Undefined	
ondenned	-
CLEAR	-

Bits	Name	R/W	Reset	Description
63:4	Undefined	N/A	0x0	Reserved
3:0	CLEAR	W	N/A	Interrupt clear.
				0 = no effect
				1 = clear interrupt
				1 = clear interrupt

StatusInt

- Name: Combined Interrupt Status Register
- Size: 64 bits
- Address Offset: 0x360
- Read/Write Access: Read

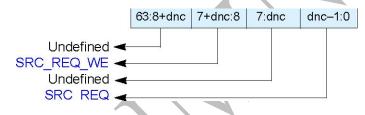
The contents of each of the five Status registers – StatusTfr, StatusBlock, StatusSrcTran, StatusDstTran, StatusErr – is ORed to produce a single bit for each interrupt type in the Combined Status register(StatusInt). This register is read-only.

Bit	Name	R/W	Reset	Description
63:5	Undefined	N/A	0x0	Reserved
4	ERR	R	0x0	OR of the contents of StatusErr register.
3	DSTT	R	0x0	OR of the contents of StatusDst register.
2	SRCT	R	0x0	OR of the contents of StatusSrcTran register.
1	BLOCK	R	0x0	OR of the contents of StatusBlock register.
0	TFR	R	0x0	OR of the contents of StatusTfr register.

8.3.5 Software Handshaking Registers

The registers that comprise the software handshaking registers allow software to initiate single or burst transaction requests in the same way that handshaking interface signals do in hardware.

The software handshaking registers are:

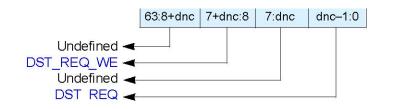

- LstDstReg Last Destination Transaction Request Register
- LstSrcReg Last Source Transaction Request Register
- ReqDstReg Destination Software Transaction Request Register
- ReqSrcReg Source Software Transaction Request Register
- SglReqDstReg Single Destination Transaction Request Register
- SglReqSrcReg Single Source Transaction Request Register

Setting CFGx.HS_SEL_SRC to 1 enables software handshaking on the source of channel x. Setting CFGx.HS_SEL_DST to 1 enables software handshaking on the destination of channel x.

ReqSrcReg

- Name: Source Software Transaction Request Register
- Size: 64 bits
- Address Offset: 0x368
- Read/Write Access: Read/Write

A bit is assigned for each channel in this register. ReqSrcReg[n] is ignored when software handshaking is not enabled for the source of channel n.


Bits	Name	R/W	Reset	Description
63:12	Undefined	N/A	0x0	Reserved
11:8	SRC_REQ_WE	≶	0x0	Source request write enable 0 = write disabled 1 = write enabled
7:4	Undefined	N/A	0x0	Reserved
3:0	SRC_REQ	R/W	0x0	Source request

A channel SRC_REQ bit is written only if the corresponding channel write enable bit in the SRC_REQ_WE field is asserted on the same AHB write transfer. For example, writing hex 0101 writes a 1 into ReqSrcReg[0], while ReqSrcReg[7:1] remains unchanged. Writing hex 00xx leaves ReqSrcReg[7:0] unchanged. This allows software to set a bit in the ReqSrcReg register without performing a read-modified write operation.

ReqDstReg

- Name: Destination Software Transaction Request Register
- Size: 64 bits
- Address Offset: 0x370
- Read/Write Access: Read/Write

A bit is assigned for each channel in this register. ReqDstReg[n] is ignored when software handshaking is not enabled for the source of channel n.

Bits	Name	R/W	Reset	Description
63:12	Undefined	N/A	0x0	Reserved
11:8	DST_REQ_WE	W	0x0	Destination request write enable 0 = write disabled 1 = write enabled
7:4	Undefined	N/A	0x0	Reserved
3:0	DST_REQ	R/W	0x0	Destination request

A channel DST_REQ bit is written only if the corresponding channel write enable bit in the DST_REQ_WE field is asserted on the same AHB write transfer.

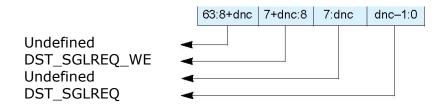
The functionality of this register depends on whether the destination is a flow control peripheral or not. For a description of when the destination is not a flow controller.

SglReqSrcReg

- Name: Single Source Transaction Request Register
- Size: 64 bits
- Address Offset: 0x378
- Read/Write Access: Read/Write

A bit is assigned for each channel in this register. SglReqSrcReg[n] is ignored when softwarehandshaking is not enabled for the source of channel n.

	63:8+dnc	7+dnc:8	7:dnc	dnc-1:0
Undefined SRC_SGLREQ_WE Undefined SRC_SGLREQ				


Bits	Name	R/W	Reset	Description
63:12	Undefined	N/A	0x0	Reserved
11:8	SRC_SGLREQ_WE	W	0x0	Single write enable 0 = write disabled 1 = write enabled
7:4	Undefined	N/A	0x0	Reserved
3:0	SRC_SGLREQ	R/W	0x0	Source single request

A channel SRC_SGLREQ bit is written only if the corresponding channel write enable bit in the SRC_SGLREQ_WE field is asserted on the same AHB write transfer. The functionality of this register depends on whether the source is a flow control peripheral or not.

SglReqDstReg

- Name: Single Destination Transaction Request Register
- Size: 64 bits
- Address Offset: 0x380
- Read/Write Access: Read/Write

A bit is assigned for each channel in this register. SglReqDstReg[n] is ignored when softwarehandshaking is not enabled for the destination of channel n.

Bits	Name	R/W	Reset	Description
63:12	Undefined	N/A	0x0	Reserved
11:8	DST_SGLREQ_WE	W	0x0	Destination write enable 0 = write disabled 1 = write enabled
7:4	Undefined	N/A	0x0	Reserved
3:0	DST_SGLREQ	R/W	0x0	Destination single or burst request

A channel DST_SGLREQ bit is written only if the corresponding channel write enable bit in the DST_SGLREQ_WE field is asserted on the same AHB write transfer. The functionality of this register depends on whether the destination is a flow control peripheral or not.

LstSrcReg

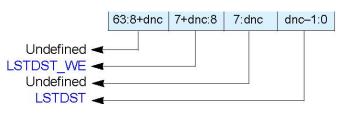
- Name: Last Source Transaction Request Register
- Size: 64 bits
- Address Offset: 0x388
- Read/Write Access: Read/Write

A bit is assigned for each channel in this register. LstSrcReg[n] is ignored when software handshaking is not enabled for the source of channel n, or when the source of channel n is not a flow controller.

A channel LSTSRC bit is written only if the corresponding channel write enable bit in the LSTSRC_WE field is asserted on the same AHB write transfer.

	63:8+dnc	7+dnc:8	7:dnc	dnc–1:0	
Undefined LSTSRC_WE Undefined LSTSRC					

Bits	Name	R/W	Reset	Description
63:12	Undefined	N/A	0x0	Reserved
11:8	LSTSRC_WE	W	0x0	Source last transaction request write enable 0 = write disabled 1 = write enabled
7:4	Undefined	N/A	0x0	Reserved
3:0	LSTSRC	R/W	0x0	Source last transaction request 0 = Not last transaction in current block 1 = Last transaction in current block


LstDstReg

- Name: Last Destination Transaction Request Register
- Size: 64 bits
- Address Offset: 0x390

• Read/Write Access: Read/Write

A bit is assigned for each channel in this register. LstDstReg[n] is ignored when software handshaking is not enabled for the destination of channel n or when the destination of channel n is not a flow controller.

A channel LSTDST bit is written only if the corresponding channel write enable bit in the LSTDST_WE field is asserted on the same AHB write transfer.

Bits	Name	R/W	Reset	Description
63:12	Undefined	N/A	0x0	Reserved
11:8	LSTDST_WE	W	0x0	Destination last transaction request write enable 0 = write disabled 1 = write enabled
7:4	Undefined	N/A	0x0	Reserved
3:0	LSTDST	R/W	0x0	Destination last transaction request 0 = Not last transaction in current block 1 = Last transaction in current block

8.4 Register Access

All registers are aligned to a 64-bit bdoundary and are 64 bits wide. In general, the upper 32 bits of a register are reserved. A write to reserved bits within the register is ignored. A read from reserved bits in the register reads back 0. To avoid address aliasing, do one of the following:

The DW_ahb_dmac should not be allocated more than 1 KB of address space in the system memory map. If it is, then addresses selected above 1 KB from the base address are aliased to an address within the 1 KB space, and a transfer takes place involving this register.

Software should not attempt to access non-register locations when hsel is asserted.

Note

The hsel signal is asserted by the system decoder when the address on the bus is within the system address assigned for DW_ahb_dmac.

8.5 Illegal Register Access

An illegal access can be any of the following:

- 1. A AHB transfer of hsize greater than 64 is attempted.
- 2. The hsel signal is asserted, but the address does not decode to a valid address.
- 3. A write to the SARx, DARx, LLPx, CTLx, SSTATx, DSTATx, SSTATARx, DSTATARx, SGRx, or DSRx registers occurs when the channel is enabled.
- 4. A read from the ClearBlock, ClearDstTran, ClearErr, ClearSrcTran, ClearTfr is attempted.
- 5. A write to the StatusBlock, StatusDstTran, StatusErr, StatusSrcTran, StatusTfr is attempted.
- 6. A write to the StatusInt register is attempted.
- 7. A write to either the DmaIdReg or DMA Component ID Register register is attempted.

The response to an illegal access is configured using the configuration parameter DMAH_RETURN_ERR_RESP. When DMAH_RETURN_ERR_RESP is set to True, an illegal

access (read/write) returns an error response.

If DMAH RETURN ERR RESP is set to False, an OKAY response is returned, a read reads back 0x0, and a write is ignored.

8.6 DW_ahb_dmac Transfer Types

A DMA transfer may consist of single or multi-block transfers. On successive blocks of a multi-block transfer, the SARx/DARx register in the DW_ahb_dmac is reprogrammed using either of the following methods:

- Block chaining using linked lists
- Auto-reloading
- Contiguous address between blocks

On successive blocks of a multi-block transfer, the CTLx register in the DW ahb dmac is reprogrammed using either of the following methods:

- Block chaining using linked lists
- Auto-reloading

When block chaining, using Linked Lists is the multi-block method of choice. On successive blocks, the LLPx register in the DW ahb dmac is reprogrammed using block chaining with linked lists.

A block descriptor consists of six registers: SARx, DARx, LLPx, CTLx, SSTATx, and DSTATx. The first four registers, along with the CFGx register, are used by the DW ahb dmac to set up and describe the block transfer.

Note

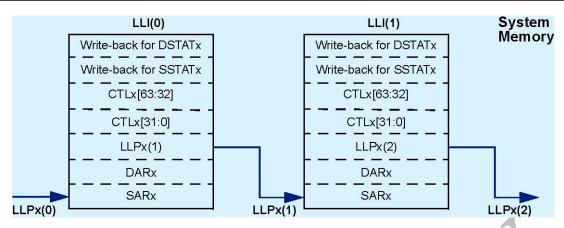
The term Link List Item (LLI) and block descriptor are synonymous.

Multi-Block Transfers

Multi-block transfers are enabled by setting the DMAH_CHX_MULTI_BLK_EN configuration parameter to True.

Block Chaining Using Linked Lists

To enable multi-block transfers using block chaining, you must set the configuration parameter DMAH_CHx_MULTI_BLK_EN to True and the DMAH_CHx_HC_LLP parameter to False.


In this case, the DW_ahb_dmac reprograms the channel registers prior to the start of each block by fetching the block descriptor for that block from system memory. This is known as an LLI update.

DW ahb dmac block chaining uses a Linked List Pointer register (LLPx) that stores the address in memory of the next linked list item. Each LLI contains the corresponding block descriptors:

- 1. SARx
- DARx
 LLPx
- 3.
- 4. CTLx
- 5. SSTATx
- 6. DSTATx

To set up block chaining, you program a sequence of Linked Lists in memory.

The SARx, DARx, LLPx, and CTLx registers are fetched from system memory on an LLI update. If configuration parameter DMAH_CHx_CTL_WB_EN = True, then the updated contents of the CTLx, SSTATx, and DSTATx registers are written back to memory on block completion. Figure 2 and Figure 3 show how you use chained linked lists in memory to define multi-block transfers using block chaining.

Figure 2: Multi-Block Transfer Using Linked Lists When DMAH_CHx_STAT_SRC Set to True

It is assumed that no allocation is made in system memory for the source status when the configuration parameter DMAH_CHx_STAT_SRC is set to False. If this parameter is False, then the order of a Linked List item is as follows:

- 1. SARx
- 2. DARx
- 3. LLPx
- 4. CTLx
- 5. DSTATx

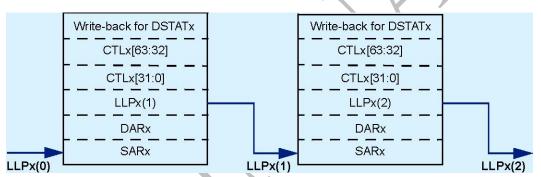


Figure 3: Multi-Block Transfer Using Linked Lists When DMAH_CHx_STAT_SRC Set to False

5 Note

In order to not confuse the SARx, DARx, LLPx, CTLx, STATx, and DSTATx register locations of the LLI with the corresponding DW_ahb_dmac memory mapped register locations, the LLI register locations are prefixed with LLI; that is, LLI.SARx, LLI.DARx, LLI.LLPx, LLI.CTLx, LLI.SSTATx, and LLI.DSTATx.

15 Note

For rows 6 through 10 of Table 5, the LLI.CTLx, LLI.LLPx, LLI.SARx, and LLI.DARx register locations of the LLI are always affected at the start of every block transfer. The LLI.LLPx and LLI.CTLx locations are always used to reprogram the DW_ahb_dmac LLPx and CTLx registers. However, depending on the Table 5 row number, the LLI.SARx/LLI.DARx address may or may not be used to reprogram the DW_ahb_dmac SARx/DARx registers.

	LLP.	LLP_	RELOAD	LLP_	RELOAD	CTLx, LLPx	SARx	DARx	
	LOC	SRC_EN	_SRC	DST_EN	_DST	Update	Update	Update	Write
Transfer Type	=0	(CTLx)	(CFGx)	(CTLx)	(CFGx)	Method	Method	Method	Backa
1. Single-block or	Yes	0	0	0	0	None, user	None	None	No
last transfer of						reprograms	(single)	(single)	
multi-block.									
2. Auto-reload	Yes	0	0	0	1	CTLx, LLPx	Con-	Auto-	No

Table 5: Programming of Transfer Types and Channel Register Update Method

RK27XX Databook

Rock-Chips Confidential

multi-block						are reloaded	tiguous	Reload	
transfer with						from initial			
contiguous SAR						values.			
3. Auto-reload	Yes	0	1	0	0	CTLx, LLPx	Auto-	Con-	No
multi-block						are reloaded	Reload	tiguous	
transfer with						from initial			
contiguous DAR.						values			
4. Auto-reload	Yes	0	1	0	1	CTLx, LLPx	Auto-	Auto-	No
multi-block						are reloaded	reload	Reload	
transfer						from initial			
						values			
5. Single-block or	No	0	0	0	0	None, user	None	None	Yes
last transfer of						reprograms	(single)	(single)	
multi-block.									
6. Linked list	No	0	0	1	0	CTLx, LLPx	Con-	Linked	Yes
multi-block						loaded from	tiguous	List	
transfer with						next Linked			
contiguous SAR						List item.			
7. Linked list	No	0	1	1	0	CTLx, LLPx	Auto-	Linked	Yes
multi-block						loaded from	Reload	List	
transfer with						next Linked			
auto-reload SAR						List item.			
8. Linked list	No	1	0	0	0	CTLx, LLPx	Linked	Con-	Yes
multi-block						loaded from	List	tiguous	
transfer with						next Linked			
contiguous DAR						List item.			
9. Linked list	No	1	0	0	1	CTLx, LLPx	Linked	Auto-	Yes
multi-block					*	loaded from	List	Reload	
transfer with		<u>^</u>				next Linked			
auto-reload DAR						List item.			
10. Linked list	No	1	0	1	0	CTLx, LLPx	Linked	Linked	Yes
multi-block						loaded from	List	List	
transfer						next Linked			
		K				List item.			

a. This column assumes that the configuration parameter DMAH_CHx_CTL_WB_EN = True. If DMAH_CHx_CTL_WB_EN = False, then there is never writeback of the control and status registers regardless of transfer type, and all rows of this column are "No". hsize = 32

LLI.DSTATx	{LLPx[31:2], 2'b00} + 0x18 ⁻	
LLI.SSTATx	{LLPx[31:2], 2'b00} + 0x14	
LLI.CTLx[63:32]	{LLPx[31:2], 2'b00} + 0x10	
LLI.CTLx[31:0]	{LLPx[31:2], 2'b00} + 0xc	Fixed Offsets
	{LLPx[31:2], 2'b00} + 0x8	
	{LLPx[31:2], 2'b00} + 0x4	
LLI.SARx	{LLPx[31:2], 2'b00}	- base address of LLI
32		(LLPx.LOC)

Figure 4: Mapping of Block Descriptor (LLI) in Memory to Channel Registers

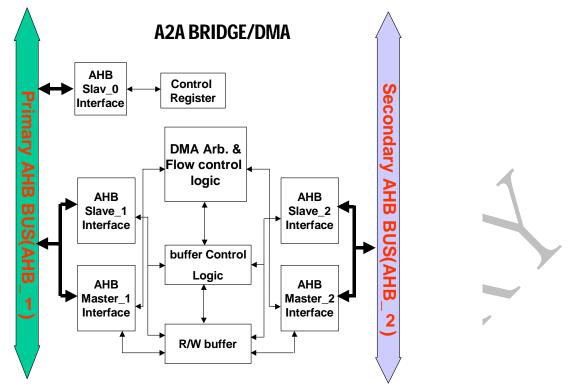
Chapter 9 AHB-to-AHB Bridge

9.1 Design Overview

9.1.1 Overview

The AHB-to-AHB Bridge controller provides an interface to translate data between two AHB bus domains. It can support all kinds of burst type and data size, which define in AHB protocol. Besides bridge function, it supports DMA function also. It can support DMA transfer on one AHB bus devices or two AHB bus devices.

9.1.2 Features


- Provide AHB-to-AHB bus protocol translation
- Support AHB-to-AHB DMA or Single AHB DMA
- Two AHB master and two slave interfaces for bridge/DMA function
- Dedicate one AHB slave interface at primary bus domain for configuration
- Two DMA channels supported
- Support byte, half word and word data transfer sizes
- Support incremental and fixed addressing mode
- Support block and software DMA transfer mode
- Support all burst type transfer for bridge
- Support SINGLE and all incremental burst type transfer for DMA
- Support fixed channel priority arbitration
- Lock transfers are NOT permitted in bridge function
- Bus Error Recording

9.2 Architecture

This section provides a description about the functions and behavior under various conditions.

Rockchip Electronic

9.2.1 Block Diagram

9.2.2 Block Descriptions

AHB-to-AHB consist of one AHB slave interface(slave_0) for DMA function's register configuration and a pair of AHB master and slave interface(mastrer_1 and slave_1) for AHB_1 and a pair of AHB master and slave interface(mastrer_2 and slave_2) for AHB_2, witch can support AMBA protocol transfer from AHB_1 to AHB_2 or from AHB_2 to AHB_1.

9.3 Registers

This section describes the control/status registers of the design.

9.3.1 Registers Summary

Name	Offset	Size	Reset Value	Description
A2A_CON0	0x0000	W	0x00000600	A2A channel 0 control register.
A2A_ISRC0	0x0004	W	0x20040421	A2A channel 0 initial source address register.
A2A_IDST0	0x0008	W	0x00000000	A2A channel 0 initial destination address register.
A2A_ICNT0	0x000C	W	0x00000000	A2A channel 0 initial terminates count register.
A2A_CSRC0	0x0010	W	0x20040421	A2A channel 0 current source address register.
A2A_CDST0	0x0014	W	0x00000000	A2A channel 0 current destination address register.
A2A_CCNT0	0x0018	W	0x0000000	A2A channel 0 current terminates count register.
A2A_CON1	0x001C	W	0x00000600	A2A channel 1 control register.
A2A_ISRC1	0x0020	W	0x00000000	A2A channel 1 initial source address register.

A2A_IDST1	0x0024	W	0x00000000	A2A channel 1 initial destination address register.
A2A_ICNT1	0x0028	W	0x0000000	A2A channel 1 initial terminates count register.
A2A_CSRC1	0x002C	W	0x00000000	A2A channel 1 current source address register.
A2A_CDST1	0x0030	W	0x00000000	A2A channel 1 current destination address register.
A2A_CCNT1	0x0034	W	0x0000000	A2A channel 1 current terminates count register.
A2A_INT_STS	0x0038	W	0x00000000	A2A Interrupt status register.
A2A_DMA_STS	0x003C	W	0x00000000	A2A channels status register.
A2A_ERR_ADR1	0x0040	W	0x00000000	Address of primary bus error.
A2A_ERR_OP1	0x0044	W	0x00000000	Operation of primary bus error.
A2A_ERR_ADR2	0x0048	W	0x00000000	Address of secondary bus error.
A2A_ERR_OP2	0x004C	W	0x00000000	Operation of secondary bus error.
A2A_LCNT0	0x0050	W	0x0000000	A2A channel 0 on the fly mode AHB bus Lock Count register.
A2A_LCNT1	0x0054	W	0x0000000	A2A channel 1 on the fly mode AHB bus Lock Count register.
A2A_DOMAIN	0x0058	W	0x0000000	A2A DMA Source and destination domain selection

Notes:

Size: B – Byte (8 bits) access, HW – Half WORD (16 bits) access, W –WORD (32 bits) access

9.3.2 Detail Register Description

A2A_CONx(x=0, 1)

External HDREQ source selection Address: Operational Base + offset(0x0000, 0x001C) DMA control register for channel x

		ster for channel x	
Bit	Attr	Reset Value	Description
31:15	-	-	Reserved.
14	RW	0x0	Auto-Reload
			0: Disable
			1: Enable
13	RW	0x0	DMA HW enable/disable.
			This bit will be cleared to 0 when A2A finished DMA
			transfer in H/W mode. This bit has no affection in S/W
			mode (channel always enable in SW mode)
			0: Disable HW DMA
			1: Enable HW DMA
12	RW	0x0	Interrupt Mask.
			0: Mask
			1: Non-Mask
11	RW	0x0	On the fly mode.
			On the fly transfer can be applied on DMA which source
			and destination addresses are at the different bus
			domain.
			0: Disable on the fly
ļ			1: Enable on the fly
10:9	RW	0x3	Transfer Mode.

			(INCR burst type will be used when remain data length
			less than 4,8,16 correspond to $TM = 0x1, 0x2, 0x3$)
			0x0: Single
			0x1: INCR4
			0x2: INCR8
			0x3: INCR16
8:7	RW	0x0	External HDREQ source selection.
			0x0: From SD/MMC
			0x1~0x3: Reserved.
6	RW	0x0	Direction of source address.
			0: Increment
			1: Fixed
5	RW	0x0	Direction of destination address.
			0: Increment
			1: Fixed
4:3	RW	0x0	Command of Software DMA operation.
			0x0: No command
			0x1: Start software DMA operation
			0x2: Pause software DMA operation
			0x3: Cancel software DMA operation
2:1	RW	0x0	Data size for transfer.
			0x0: Byte
			0x1: Halfword
			0x2: Word
			0x3: Reserved
0	RW	0x0	DMA mode.
			0: Hardware block mode
1			1: Software mode

$A2A_ISRCx(x=0, 1)$

The DMA initial source address and initial destination address must have the same address alignment. It means that A2A_ISRCx[1:0] must equal to A2A_IDSTx[1:0].

Address: Operational Base + offset(0x0004, 0x0020)

DMA IIIIU	DMA Initial source address register for channel x				
bit	Attr	Reset Value	Description		
31:0	RW	0x0	A2A DMA initial source address register.		

$A2A_CSRCx(x=0, 1)$

Address: Operational Base + offset(0x0010, 0x002C)

	DMA current source address register for channel x			
bit	Attr	Reset Value	Description	
31:0	R	0x0	A2A DMA current source address register.	

$A2A_IDSTx(x=0, 1)$

Address: Operational Base + offset(0x0008, 0x0024) DMA initial destination address register for channel x

bit	Attr	Reset Value	Description	
31:0	RW	0x0	A2A DMA initial destination address register.	

A2A_CDSTx(x=0, 1)

Address: Operational Base + offset(0x0014, 0x0030)

DMA current destination address register for channel x

bit	Attr	Reset Value	Description
31:0	R	0x0	A2A DMA current destination address register.

$A2A_ICNTx(x=0, 1)$

Address: Operational Base + offset(0x000C, 0x0028) DMA initial terminate count register for channel x

bit	Attr	Reset Value	Description	
31:0	-	-	Reserved.	
15:0	RW	0x0	A2A DMA initial terminate count register.	
			It means data size (byte count) to be moved.	

$A2A_CCNTx(x=0, 1)$

Address: Operational Base + offset(0x0018, 0x0034)

DMA current terminate count register for channel x

bit	Attr	Reset Value	Description
31:0	-	-	Reserved.
15:0	R	0x0	A2A DMA current terminate count register. It means the last data size (byte count) not yet is moved.

A2A_INT_STS

Address: Operational Base + offset(0x0038) Interrupt status

bit	Attr	Reset Value	Description
31:4	-	-	Reserved.
3	RW	0x0	Secondary Bus (AHB_2) Error Interrupt active, clear after write. 0: NO bus error 1: Bus error interrupt active
2	RW	0x0	Primary Bus (AHB_1) Error Interrupt active, clear after write. 0: NO bus error 1: Bus error interrupt active
1	RW	0x0	Channel 1 Interrupt active, clear interrupt after write. 0: not active 1: active
0	RW	0x0	Channel 0 Interrupt active, clear interrupt after write. 0: not active 1: active

A2A_DMA_STS

Address: Operational Base + offset(0x003C) DMA status

bit	Attr	Reset Value	Description
31:2		-	Reserved.
1	R	0x0	Channel 1 DMA status
			0: Channel 0 is free
			1: Channel 0 is busy on DMA service
0	R	0x0	Channel 0 DMA status
			0: Channel 0 is free
			1: Channel 0 is busy on DMA service

A2A_ERR_ADRx(x=1,2)

Address: Operational Base + offset(0x0040, 0x0048)

Address when primary/secondary bus error

	an primar // secondar /	
bit At	tr Reset Value	Description
31:0 R	0x0	Address of primary/secondary bus error.

A2A_ERR_OPx(x=1,2)

Address: Operational Base + offset(0x0044, 0x004C)

Operation when primary/secondary bus error

operation	1 Willeri	Shinary/Secondar		
bit	Attr	Reset Value	Description	
31:1	-	-	Reserved.	
0	R	0x0	Operation of primary/secondary bus error:	
			0: Bus error when read operation	
			1: Bus error when write operation	

$A2A_LCNTx(x=1,2)$

Address: Operational Base + offset(0x0050, 0x0054) Bus lock counts

Bit	Attr	Reset Value	Description	
31:3	-	-	Reserved.	
2:0	RW	0x0	Bus lock counts at on-the-fly mode.	
			0x0: Never release bus until DMA process end	
			0x1: Release bus every 16-beats data transfer	
			0x2: Release bus every 32-beats data transfer	
			0x3: Release bus every 64-beats data transfer	
			0x4: Release bus every 128-beats data transfer	
			0x5: Release bus every 256-beats data transfer	
			0x6: Release bus every 512-beats data transfer	
			0x7: Release bus every 1024-beats data transfer	

A2A_DOMAIN

Address: Operational Base + offset(0x0058) A2A DMA Source/destination domain selection

Bit	Attr	Reset Value	Description		
31:4	-	-	Reserved.		
3	RW	0x0	DMA destination Domain selection for channel 1		
			0: Destination address is on AHB0		
			1: Destination address is on AHB1		
2	RW	0x0	DMA Source Domain selection for channel 1		
			0: Source address is on AHB0 1: Source address is on AHB1		
1	RW	0x0	DMA destination Domain selection for channel 0		
			0: Destination address is on AHB0		
			1: Destination address is on AHB1		
0	RW	0x0	DMA Source Domain selection for channel 0		
			0: Source address is on AHB0		
			1: Source address is on AHB1		

Notes: Attr: RW - Read/writable, R - read only, W - write only

9.4 Functional Description

9.4.1 AHB Bridge Mode Operation

A2A provides transparent mode that is to transfer data between two AHB buses. When masters in AHB_1 (As in A2A block diagram) want to write data to slaves in AHB_2, A2A activated as an AHB slave in AHB_1 bus (slave_1). Slave_1 will capture the data and control signals from AHB_1 masters into write buffers in A2A module, and then transfer the write data from write buffer to AHB_2 slaves by master port (Master_2). When AHB_1 masters wants to read data from AHB_2 slaves, the A2A Slave_1 is designed to use retry response to AHB_1 masters until the read operation in AHB_2 is finished by Master_2 and read data is ready in read buffer, and then AHB_1 masters can complete the read transfer by Salve_1 normally. The Read/Write transfer from AHB_2 to AHB_1 is just like from

AHB_1 to AHB_2 we described above. The use of buffer and retry response in A2A module can avoid insetting wait state to drop off AHB bus utilization. The AHB transfer control signals such as HSIZE, HBURST or HPROT will be kept in across-domain transfers, but locked transfers are not permitted in bridge function to avoid deadlock condition.

9.4.2 AHB DMA Mode Operation

The DMA operation is to transfer data from slave devices to slave devices without interrupt CPU normal operation. There are block and software transfer modes in A2A module. Before A2A DMA start to operate in two different operation modes, we must program some information to A2A configuration register, for example, source address, destination address, terminate count (in A2A, terminate count means the data size) and other control signals... etc. The A2A will ready to receive request signal from other slave devices to start DMA operation after we provide some information to A2A registers. When DMA operate in block mode, it will be activated by H/W request, or by S/W request in software mode. There are two DMA channels in A2A DMA module and the channel priority arbitration is fixed, channel 0 always has the higher priority than channel 1. A2A DMA not only provides AHB_1-to-AHB_2 or AHB_2-to-AHB_1 but also AHB_1-to-AHB_1 and AHB_2-to-AHB_2 DMA transfers.

SW DMA Operation

After AHB reset signal (hreset_n), the A2A DMA module enters the initial state. In the initial state, the A2A DMA doesn't move data form slave devices to slave devices. When users finish programming configuration registers through AHB slave interface, the A2A enter transfer state to begin to transfer data from source address to destination address. When the TC (Terminate Count) is asserted, the A2A stops DMA operation and trigger an interrupt signal to interrupt controller.

HW DMA Operation

In HW block mode, A2A will assert acknowledge signal (DMA_ACK) when it receive request signal (DMA_REQ) from device. Device will dessert request signal if A2A assert acknowledge signal. When terminate count (TC) is zero, the A2A will de-assert acknowledge. The process of block mode DMA is just like software DMA we describe above. The only difference between block and software mode is that in software mode, DMA starts with software start bit in control registers, but in block mode DMA will start with hardware request signals. Figure below shows A2A's block mode operation from AHB_1 slave device to AHB_2 slave device. The flowing figure describes the HW DMA interface signals.

HCLK _	
DMA_REQ	
DMA_ACK	
Transmission Count(TC)	

On-the-Fly DMA Mode

The A2A DMA supports On-the-Fly mode at both SW and HW mode. When On-the-Fly bit is set in DMA channel control register, A2A will request both primary and secondary AHB bus with lock signal. Once both buses are granted to A2A master ports, the A2A will start to read data from source address by one of the master ports and write data to

destination address by the other master port directly without using buffers. And due to buses are locked by A2A, A2A can transfer data without interrupt by other masters on buses until terminate count or specified data count are reached corresponds to A2ALCNTn register. Note that On-the-Fly transfer can only be applied at DMA process which source and destination addresses are at different bus segments, On-the-Fly bit will be ignored if source and destination addresses are at the same AHB bus domain.

9.5 Application Notes

- The A2A DMA only support the same size for source and destination peripheral.
- Not support byte and 16bits transfer in the condition of fixed address.
- The following is example step by step for software :

*(unsigned long volatile *)(A2AC_ARM_BASE + A2A_ISRC1_REG) = sar; //source address *(unsigned long volatile *)(A2AC_ARM_BASE + A2A_IDST1_REG) = dst; //destination address *(unsigned long volatile *)(A2AC_ARM_BASE + A2A_ICNT1_REG) = 256; //transfer size *(unsigned long volatile *)(A2AC_ARM_BASE + A2A_LCNT1_REG) = 0x01; *(unsigned long volatile *)(A2AC_ARM_BASE + A2A_DOMAIN_REG) = 2<<2; *(unsigned long volatile *)(A2AC_ARM_BASE + A2A_CON1_REG) = ((0x5)|((0x1)<<3)|(0x3<<9)|(0x1<<12));</pre>

Chapter 10 USB 2.0 Host Controller

10.1 Design Overview

10.1.1 Overview

The USB 2.0 Host Controller (UHC) includes both the Enhanced Host Controller Interface (EHCI) and Open Host Controller Interface (OHCI), and is compliant with the specifications of the EHCI and the OHCI. The UHC acts as a link between the system software and the USB 2.0/1.1 devices. The data transfer between the system software and the USB device is helped by the EHCI_OHCI function. It handles high-speed devices by direct transactions through the EHCI and non high-speed transactions through the OHCI. Transactions to a low/full speed device connected under a hub are done through split transactions. The EHCI or OHCI performs data transfer by reading the information queued by the software in the system memory in the form of data structures.

10.1.2 Features

- Compliant with USB 2.0 specification
- Compliant with Intel[™] EHCI specification
- Compliant with OHCI specification
- Compliant with AMBA v2.0 AHB interface
- Supports UTMI+ specification level 3
- Supports High speed, full speed and low speed devices on root port and split transactions for full speed and low speed devices connected under a hub
- Supports Control, Bulk, Isochronous and Interrupt transfers
- Integrate Root Hub with Single port
- Fully static, synchronous, and synthesizable RTL design available in Verilog formats

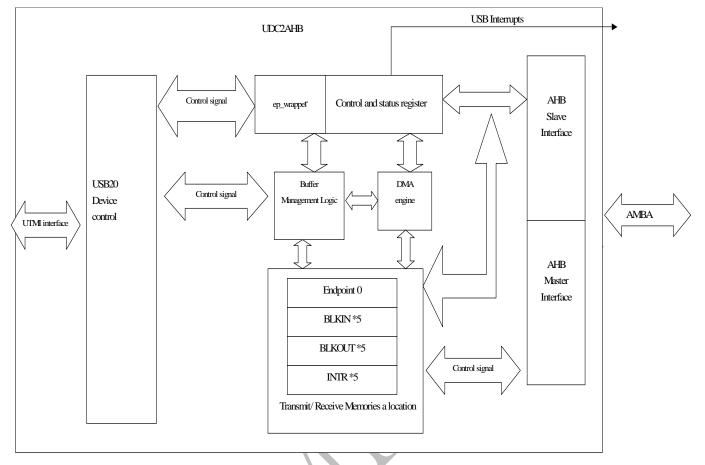
For detail information about USB2.0 host controller, pleaser refer **RK27xx USB 2.0 Host Controller.pdf**

Chapter 11 USB 2.0 Device Controller

11.1 Design Overview

11.1.1 Overview

The USB 2.0 Device Controller (UDC 2.0) supports high-speed data transfer rates (up to 480Mbps), suspend / resume mode, control / bulk/ interrupt transfer and is fully compliant with the USB specification version 2.0. The AHB Bridge incorporates an AHB bus master interface, an AHB bus slave interface, buffer management logic and a DMA engine for all transfers.


11.1.2 Features

- Complies with the Universal Serial Bus specification Rev. 2.0, Supports USB Full Speed (12Mb/sec) and High Speed (480 Mb/sec), is Backward compatible with USB1.1
- Support AHB M/S I/F operation
- Double buffering scheme for main endpoint increases throughput and eases real-time data transfer Dual-Port SDRAM: 2640 x 32-bit space
- Support Control, BULK and Interrupt transfer type
- 16 Endpoint; control ep x1, bulk-in ep x5, bulk-out ep x5, interrupt ep x5
- Automatic retry of failed packets, and PING Flow control
- Separate data buffers for the SETUP portion of a CONTROL transfer
- Support DMA Engine: to move the large block data between local memory and USB without intervene of CPU
- On-chip USB2.0 PHY and Parallel Bus Interface Engine (PIE)
- Suspend / Resume operation Supports USB remote wake-up
- Automatic transmit/receive memory or buffer management
- One AHB bus master interface with a DMA engine for all transfers. The interface supports AHB RETRY and SPLIT operations
- One AHB bus slave interface for access of configuration registers, transmit and receive memories
- The DMA engine supports
 - Increment addressing mode
 - 32-bit wide transactions
 - DMA channels and fixed channel priority arbitration for all endpoints
 - 16-word burst transfer in DMA operation

11.2 Architecture

This chapter provides a description about the functions and behavior under various conditions.

11.2.1 Block Diagram

11.2.2 Block Descriptions

The architecture of UDC 2.0 includes AMBA interface, some masters and slaves of AMBA-interface device, and UDC 2.0 with AMBA interface and UTMI interface. The UDC 2.0 device can communicate with other master and slave device on AMBA through AMBA interface. All the devices on AMBA have an address, and UDC 2.0 can communication with any device on AMBA through an address.

In UDC 2.0 device, there are 16-endpoint, 5-BLKIN endpoint, 5-BLKOUT endpoint, 5-INTR endpoint and 1 endpoint 0. Every endpoint has its own DMA, interrupt, endpoint status register and so on. For choosing those functions (DMA, interrupt, and so on), it would be work through AMBA communicating with the AHB slave interface of UDC 2.0. The CSR (Control and Status Register) would receive the address from AHB slave interface and decodes the address. After decoding those address, the data would sent to related functions. Those devices on AMBA would know the UDC 2.0 has an event by USB interrupts and AHB master interface and they would be know whom be chosen and what to do by a address from AHB master interface.

The UDC 2.0 used UTMI to communicate with PHY and PHY used DP and DM to communicate with USB host.

11.3 Registers

This chapter describes the control/status registers of the design.

11.3.1 Registers Summary

			D	-
Name	Offset	Size	Reset Value	Description
DEV_CTL	0x0008	W	0x00000048	Device Control Register.
DEV_INFO	0x0010	W	0x00600000	Device Address Register.
EN_INT	0x0014	W	0x00000000	Interrupt Enable Register.
INT2FLAG	0x0018	W	0x0000080	Interrupt Flag Register.
INTCON	0x001C	W	0x00000005	Interrupt Control Register.
SETUP1	0x0020	W	0x00000000	Setup bmRequestType,
				RequestType, wValue
				Register.
SETUP2	0x0024	W	0x00000000	Setup wIndex, wLength
				Register.
AHBCON	0x0028	W	0x00000000	AHB Control Register
RX0STAT	0x0030	Ŵ	0x00000000	Endpoint 0 receive Status
IOOSIAI	0,00000	**	0,00000000	Register
RX0CON	0x0034	W	0x00000010	Endpoint 0 receive Control
10,0001	0,000	vv	0,00000010	Register
DMA0CTLO	0x0038	W	0x00000001	DMA0 Control OUT Endpoint
DMAUCTEO	0x0038	vv	000000001	Register
	0,00,00	W	0x00000000	DMA0 Control OUT Endpoint
DMA0LM_OADDR	0x003C	vv	0x0000000	
ТУОСТАТ	0.0040	14/	0.00000000	local memory address Register
TX0STAT	0x0040	W	0x00000000	Endpoint 0 transmit Status
TYOCON	0.0044		0.0000000	Register
TX0CON	0x0044	W	0x0000008	Endpoint 0 transmit Control
				Register
TX0BUF	0x0048	W	0x00000000	Endpoint 0 Buffer Status
				Register
DMA0CTLI	0x004C	W	0x0000000	DMA0 Control IN Endpoint
				Register
DMA0LM_IADDR	0x0050	W	0x00000000	DMA0 Control IN Endpoint
				local memory address Register
RX1STAT	0x0054	W	0x00000000	Endpoint 1 receive Status
	K)			Register
RX1CON	0x0058	W	0x00000010	Endpoint 1 receive Control
				Register
DMA1CTLO	0x005C	W	0x0000001	DMA1 Bulk OUT Endpoint local
				memory address Register
DMA1LM_OADDR	0x0060	W	0x00000000	DMA1 Bulk OUT Endpoint local
· · ·				memory address Register
TX2STAT	0x0064	W	0x00000000	Endpoint 2 transmit Status
				Register
TX2CON	0x0068	W	0x0000008	Endpoint 2 transmit Control
				Register
TX2BUF	0x006C	W	0x00000000	Endpoint 2 Buffer Status
				Register
DMA2CTLI	0x0070	W	0x00000000	DMA2 Bulk IN Endpoint
				Register
DMA2LM_IADDR	0x0074	W	0x00000000	DMA2 Bulk IN Endpoint local
				memory address Register
TX3STAT	0x0078	W	0x00000000	Endpoint 3 transmit Status
		~~		Register
	1			Register

TX3CON	0x007C	W	0×00000008	Endpoint 3 transmit Control Register
TX3BUF	0x0080	W	0x00000000	Endpoint 3 Buffer Status Register
DMA3CTLI	0x0084	W	0x00000000	DMA3 Interrupt IN Endpoint Register
DMA3LM_IADDR	0x0088	W	0x00000000	DMA3 Interrupt IN Endpoint local memory address Register
RX4STAT	0x008C	W	0x00000000	Endpoint 4 receive Status Register
RX4CON	0x0090	W	0x00000010	Endpoint 4 receive Control Register
DMA4CTLO	0x0094	W	0x0000001	DMA4 Bulk OUT Endpoint Register
DMA4LM_OADDR	0x0098	W	0x00000000	DMA4 Bulk OUT Endpoint local memory address Register
TX5STAT	0x009C	W	0x00000000	Endpoint 5 transmit Status Register
TX5CON	0x00A0	W	0x0000008	Endpoint 5 transmit Control Register
TX5BUF	0x00A4	W	0x0000000	Endpoint 5 Buffer Status Register
DMA5CTLI	0x00A8	W	0x0000000	DMA5 Bulk IN Endpoint Register
DMA5LM_IADDR	0x00AC	W	0x00000000	DMA5 Bulk IN Endpoint local memory address Register
TX6STAT	0x00B0	W	0x00000000	Endpoint 6 transmit Status Register
TX6CON	0x00B4	W	0×00000008	Endpoint 6 transmit Control Register
TX6BUF	0x00B8	W	0x00000000	Endpoint 6 Buffer Status Register
DMA6CTLI	0x00BC	W	0x00000000	DMA6 Interrupt IN Endpoint Register
DMA6LM_IADDR	0x00C0	W	0×00000000	DMA6 Interrupt IN Endpoint local memory address Register
RX7STAT	0x00C4	W	0x00000000	Endpoint 7 receive Status Register
RX7CON	0×00C8	W	0x00000010	Endpoint 7 receive Control Register
DMA7CTLO	0x00CC	W	0x00000001	DMA7 Bulk OUT Endpoint Register
DMA7LM_OADDR	0x00D0	W	0x00000000	DMA7 Bulk OUT Endpoint local memory address Register
TX8STAT	0x00D4	W	0x00000000	Endpoint 8 transmit Status Register
TX8CON	0x00D8	W	0x0000008	Endpoint 8 transmit Control Register
TX8BUF	0x00DC	W	0x00000000	Endpoint 8 Buffer Status Register
DMA8CTLI	0x00E0	W	0x00000000	DMA8 Bulk IN Endpoint Register
DMA8LM_IADDR	0x00E4	W	0x00000000	DMA8 Bulk IN Endpoint local memory address Register
TX9STAT	0x00E8	W	0x00000000	Endpoint 9 transmit Status Register

TX9CON	0x00EC	W	0x0000008	Endpoint 9 transmit Control Register
TX9BUF	0x00F0	W	0x00000000	Endpoint 9 Buffer Status Register
DMA9CTLI	0x00F4	W	0×00000000	DMA9 Interrupt IN Endpoint Register
DMA9LM_IADDR	0x00F8	W	0x00000000	DMA9 Interrupt IN Endpoint local memory address Register
RX10STAT	0x00FC	W	0x00000000	Endpoint 10 receive Status Register
RX10CON	0x0100	W	0x00000010	Endpoint 10 receive Control Register
DMA10CTLO	0x0104	W	0x0000001	DMA10 Bulk OUT Endpoint Register
DMA10LM_OADDR	0x0108	W	0x00000000	DMA10 Bulk OUT Endpoint local memory address Register
TX11STAT	0x010C	W	0x00000000	Endpoint 11 transmit Status Register
TX11CON	0x0110	W	0x0000008	Endpoint 11 transmit Control Register
TX11BUF	0x0114	W	0x0000000	Endpoint 11 Buffer Status Register
DMA11CTLI	0x0118	W	0x0000000	DMA11 Bulk IN Endpoint Register
DMA11LM_IADDR	0x011C	W	0x00000000	DMA11 Bulk IN Endpoint local memory address Register
TX12STAT	0x0120	W	0x0000000	Endpoint 12 transmit Status Register
TX12CON	0x0124	W	0x0000008	Endpoint 12 transmit Control Register
TX12BUF	0x0128	W	0x00000000	Endpoint 12 Buffer Status Register
DMA12CTLI	0x012C	W	0x00000000	DMA12 Interrupt IN Endpoint Register
DMA12LM_IADDR	0x0130	W	0x00000000	DMA12 Interrupt IN Endpoint local memory address Register
RX13STAT	0x0134	W	0x00000000	Endpoint 13 receive Status Register
RX13CON	0x0138	W	0x00000010	Endpoint 13 receive Control Register
DMA13CTLO	0x013C	W	0x00000001	DMA13 Bulk OUT Endpoint Register
DMA13LM_OADDR	0x0140	W	0x00000000	DMA13 Bulk OUT Endpoint local memory address Register
TX14STAT	0x0144	W	0x00000000	Endpoint 14 transmit Status Register
TX14CON	0x0148	W	0x0000008	Endpoint 14 transmit Control Register
TX14BUF	0x014C	W	0x00000000	Endpoint 14 Buffer Status Register
DMA14CTLI	0x0150	W	0×00000000	DMA14 Bulk IN Endpoint Register
TX15STAT	0x0158	W	0×00000000	Endpoint 15 transmit Status Register
TX15CON	0x015C	W	0x0000008	Endpoint 15 transmit Control Register

TX15BUF	0x0160	W	0x0000000	Endpoint 15 Buffer Status Register
DMA15CTLI	0x0164	W	0x00000000	DMA15 Interrupt IN Endpoint Register
DMA15LM_IADDR	0x0168	W	0x00000000	DMA15 Interrupt IN Endpoint local memory address Register

Notes:

<u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

11.3.2 Detail Register Description

PHY_TEST_EN

Address: Operational Base + offset (0x00) PHY Test mode enable Register

rin rest	. moue e	nable Register	
Bit	Attr	Reset Value	Description
31:2	-	-	Reserved.
1	RW	0x0	PHY_VATEST_EN:
			This test signal enables the input/output of analog test
			signals on the analog_test pin.
0	RW	0x0	PHY_TEST_CLK_EN:
			For sampling test data.

PHY_TEST

Address: Operational Base + offset (0x04)

PHY Test mode address and data input Register

bit	Attr	Reset Value	Description
31:12	-	-	Reserved.
11:4	RW	0x0	PHY_TEST_DATA_IN[7:0]:
			For different test mode. It relies on PHY.
3:0	RW	0x0	PHY_TEST_ADDR[3:0]:
			For different test mode. It relies on PHY.

DEV_CTL

Address: Operational Base + offset (0x08) Device Control Register

bit	Attr	Reset Value	Description
31:10	-	-	Reserved.
9	RW	0x0	TEST_MODE:
\langle			 TEST_MODE. This bit could reduce pattern effort during High-speed Chirp sequence. Hi-active. 0: Normal operation for High-speed Chirp sequence and vbus de-bounce time. 1: Test mode for High-speed Chirp sequence and vbus de-bounce time.
8	RW	0x0	CSR_DONE: Configure CSR done.
7	RW	0x0	SOFT_POR: Send power on reset to PHY.
6	RW	0x1	DEV_PHYBUS16_8: Enable Device data bus 8-bit mode. 0: 8-bit data path enabled. validh is undefined. udc_clk = 60MHz. 1: 16-bit data path enabled. udc_clk = 30MHz.
5	RW	0x0	DEV_RESUME: Enable Device Resume.

4	RW	0x0	DEV_SOFT_CN: Device soft disconnect.
3	RW	0x1	DEV_SELF_PWR: Device self power.
2	RW	0x0	DEV_RMTWKP: Device Remote Wakeup. Support device remote wakeup.
1:0	RW	0x0	DEV_SPEED: Device speed. 00:HS 11, 01,10 Reserved

DEV_INFO

Address: Operational Base + offset (0x10) Device Address Register

Device A	uuress R	kegister	
bit	Attr	Reset Value	Description
31:23	-	-	Reserved.
22:21	R	0x3	dev_speed: Enumeration speed.
			00:HS
			11:FS
			01,10 Reserved
20	R	0x0	vbus_sync:
			VBUS status. VBUS high means connection, VBUS low
			means disconnection.
19:16	R	0x0	dev_altintf:
			Alternate setting number.
15:12	R	0x0	intf_number:
			Interface number.
11:8	R	0x0	cfg_number:
			Configuration number.
7	R	0x0	DEV_EN:
			Device Enable. (set configuration ok).
6:0	R	0x0	dev_addr:
			Device Address.

EN_INT

Address: Operational Base + offset (0x14) Enable INT Status Register

	T Statu	s Register	
bit	Attr	Reset Value	Description
31:27		-	Reserved
26	RW	0x0	TEST_PKT:
			Enable TEST_PKT interrupt
25	RW	0x0	TEST_K:
			Enable TEST_K interrupt
24	RW	0x0	TEST_J:
			Enable TEST_J interrupt
23	RW	0x0	TEST_SE0_NAK:
			Enable TEST_SE0_NAK interrupt
22	RW	0x0	EN_IIN15_INTR:
			Enable INTR IN Token transmit Interrupt.
21	RW	0x0	EN_BIN14_INTR:
			Enable BULK IN Token transmit Interrupt.
20	RW	0x0	EN_BOUT13_INTR:
			Enable BULK OUT Token Receive Interrupt.
19	RW	0x0	EN_IIN12_INTR:

18 RW 0x0 EN_BIN1_INTR: 17 RW 0x0 EN_BOUT10_INTR: 17 RW 0x0 EN_BOUT10_INTR: 18 RW 0x0 EN_BOUT10_INTR: 16 RW 0x0 EN_IN9_INTR: 16 RW 0x0 EN_IN9_INTR: 17 RW 0x0 EN_BIN8_INTR: 18 RW 0x0 EN_BIN8_INTR: 19 RW 0x0 EN_BOUT7_INTR: 14 RW 0x0 EN_BOUT7_INTR: 13 RW 0x0 EN_BIN5_INTR: 14 RW 0x0 EN_BIN5_INTR: 15 RW 0x0 EN_BIN5_INTR: 16 RW 0x0 EN_BIN5_INTR: 11 RW 0x0 EN_BIN5_INTR: 12 RW 0x0 EN_BIN5_INTR: 14 RW 0x0 EN_BIN5_INTR: 15 RW 0x0 EN_IN3_INTR: 16 RW 0x0 EN_SUSP_INTR: 17 - - R				Enable INTR IN Token transmit Interrupt.
Image: Second	10		0.0	
17 RW 0x0 EN_BOUT10_INTR: Enable BULK OUT Token Receive Interrupt. 16 RW 0x0 EN_IIN9_INTR: Enable BULK OUT Token transmit Interrupt. 15 RW 0x0 EN_BIN8_INTR: Enable BULK IN Token transmit Interrupt. 14 RW 0x0 EN_BIN7R: Enable BULK OUT Token Receive Interrupt. 13 RW 0x0 EN_INFR: Enable BULK OUT Token Receive Interrupt. 13 RW 0x0 EN_INFR: Enable BULK OUT Token transmit Interrupt. 12 RW 0x0 EN_BIN5_INTR: Enable BULK OUT Token transmit Interrupt. 11 RW 0x0 EN_BOUT4_INTR: Enable BULK OUT Token transmit Interrupt. 10 RW 0x0 EN_BIN5_INTR: Enable BULK OUT Token Receive Interrupt. 9 RW 0x0 EN_BOUT4_INTR: Enable BULK OUT Token Receive Interrupt. 9 RW 0x0 EN_BIN5_INTR: Enable BULK OUT Token Receive Interrupt. 8 RW 0x0 EN_SUSP_INTR: Enable BULK OUT Token Receive Interrupt. 7 - - Reserved 6 RW 0x0 EN_SUSP_INTR: Enable Suspend Interrupt. 5 RW 0x0 EN_SUSRST_INTR: Enab	18	RW	UXU	
Image: Second		DW		
16 RW 0x0 EN_IIN9_INTR: Enable INTR IN Token transmit Interrupt. 15 RW 0x0 EN_BIN8_INTR: Enable BULK IN Token transmit Interrupt. 14 RW 0x0 EN_BOUT7_INTR: Enable BULK OUT Token Receive Interrupt. 13 RW 0x0 EN_BOUT7_INTR: Enable BULK OUT Token Receive Interrupt. 13 RW 0x0 EN_IIN6_INTR: Enable BULK OUT Token receive Interrupt. 12 RW 0x0 EN_BIN5_INTR: Enable BULK IN Token transmit Interrupt. 11 RW 0x0 EN_BIN5_INTR: Enable BULK OUT Token Receive Interrupt. 10 RW 0x0 EN_BOUT4_INTR: Enable BULK OUT Token Receive Interrupt. 9 RW 0x0 EN_BIN2_INTR: Enable BULK OUT Token transmit Interrupt. 9 RW 0x0 EN_BIN2_INTR: Enable BULK OUT Token Receive Interrupt. 7 - - Reserved 6 RW 0x0 EN_SUSP_INTR: Enable Suspend Interrupt. 5 RW 0x0 EN_SUSP_INTR: Enable Resume Interrupt. 4 RW 0x0 EN_USBRST_INTR: Enable QUT Token Receive Interrupt. Endp0 2 RW 0x0 EN_IN0_INTR: Enable OUT	17	RW	UXU	— —
Enable INTR IN Token transmit Interrupt.15RW0x0EN_BIN8_INTR: Enable BULK IN Token transmit Interrupt.14RW0x0EN_BOUT7_INTR: Enable BULK OUT Token Receive Interrupt.13RW0x0EN_IIN6_INTR: Enable BULK IN Token transmit Interrupt.12RW0x0EN_BIN5_INTR: Enable BULK IN Token transmit Interrupt.11RW0x0EN_BIN5_INTR: Enable BULK IN Token transmit Interrupt.11RW0x0EN_BOUT4_INTR: Enable BULK OUT Token Receive Interrupt.10RW0x0EN_BIN2_INTR: Enable BULK OUT Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK OUT Token Receive Interrupt.7Reserved6RW0x0EN_SUSP_INTR: Enable BULK OUT Token Receive Interrupt.5RW0x0EN_SUSP_INTR: Enable Resume Interrupt.4RW0x0EN_SUSP_INTR: Enable Resume Interrupt.3RW0x0EN_USBRST_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_IN0_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_IN0_INTR: Enable OUT Token Receive Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable DIT Token Receive Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt.0RW0x0EN_SOF_INTR: Enable SETUP Packet Receive Int				
15RW0x0EN_BIN8_INTR: Enable BULK IN Token transmit Interrupt.14RW0x0EN_BOUT7_INTR: Enable BULK OUT Token Receive Interrupt.13RW0x0EN_IIN6_INTR: Enable INTR IN Token transmit Interrupt.12RW0x0EN_BIN5_INTR: Enable BULK IN Token transmit Interrupt.11RW0x0EN_BIN5_INTR: Enable BULK OUT Token Receive Interrupt.10RW0x0EN_IIN3_INTR: Enable BULK OUT Token transmit Interrupt.10RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.9RW0x0EN_BOUT1_INTR: Enable BULK IN Token transmit Interrupt.8RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.7Reserved6RW0x0EN_SUSP_INTR: Enable BULK OUT Token Receive Interrupt.5RW0x0EN_SUSP_INTR: Enable BULK OUT Token Receive Interrupt.5RW0x0EN_SUSP_INTR: Enable Resume Interrupt.3RW0x0EN_SUSP_INTR: Enable QUS Reset Interrupt.3RW0x0EN_USBRST_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_IN0_INTR: Enable OUT Token Receive Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable IN Token transmits Interrupt.0RW0x0EN_SOF_INTR: Enable OUT Token Receive Interrupt.	16	RW	0x0	
Image: Constraint of the second sec				
14RW0x0EN_BOUT7_INTR: Enable BULK OUT Token Receive Interrupt.13RW0x0EN_IIN6_INTR: Enable INTR IN Token transmit Interrupt.12RW0x0EN_BIN5_INTR: Enable BULK IN Token transmit Interrupt.11RW0x0EN_BOUT4_INTR: Enable BULK OUT Token Receive Interrupt.10RW0x0EN_IIN3_INTR: Enable BULK IN Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.9RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.7Reserved6RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.5RW0x0EN_SUSP_INTR: Enable Resume Interrupt.4RW0x0EN_USBRST_INTR: Enable Resume Interrupt.3RW0x0EN_USBR Reset Interrupt.2RW0x0EN_USBR Reset Interrupt.1RW0x0EN_IN0_INTR: Enable OUT Token Receive Interrupt. Endp01RW0x0EN_IN0_INTR: Enable OUT Token Receive Interrupt. Endp01RW0x0EN_IN0_INTR: Enable IN Token transmits Interrupt. Endp01RW0x0EN_SETUP Packet Receive Interrupt.0RW0x0EN_SOF_INTR: Enable SETUP Packet Receive Interrupt.	15	RW	0x0	
Enable BULK OUT Token Receive Interrupt.13RW0x0EN_IIN6_INTR: Enable INTR IN Token transmit Interrupt.12RW0x0EN_BIN5_INTR: Enable BULK IN Token transmit Interrupt.11RW0x0EN_BOUT4_INTR: Enable BULK OUT Token Receive Interrupt.10RW0x0EN_IIN3_INTR: Enable BULK OUT Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.8RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.7Reserved6RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.5RW0x0EN_SUSP_INTR: Enable USB Reset Interrupt.4RW0x0EN_USBRST_INTR: Enable USB Reset Interrupt.3RW0x0EN_UT0_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_SUT0_INTR: Enable OUT Token Receive Interrupt. Endp01RW0x0EN_IN0_INTR: Enable IN Token transmits Interrupt. Endp01RW0x0EN_IN0_INTR: Enable IN Token transmits Interrupt. Endp01RW0x0EN_SETUP_Packet Receive Interrupt.0RW0x0EN_SOF_INTR: Enable SETUP Packet Receive Interrupt.				
13RW0x0EN_IIN6_INTR: Enable INTR IN Token transmit Interrupt.12RW0x0EN_BIN5_INTR: Enable BULK IN Token transmit Interrupt.11RW0x0EN_BOUT4_INTR: Enable BULK OUT Token Receive Interrupt.10RW0x0EN_IIN3_INTR: Enable INTR IN Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.8RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.7Reserved6RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.5RW0x0EN_SUSP_INTR: Enable Resume Interrupt.4RW0x0EN_USBRST_INTR: Enable USB Reset Interrupt.3RW0x0EN_OUT0_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt.0RW0x0EN_SOF_INTR: Enable SETUP Packet Receive Interrupt.	14	RW	0x0	— — —
Enable INTR IN Token transmit Interrupt.12RW0x0EN_BIN5_INTR: Enable BULK IN Token transmit Interrupt.11RW0x0EN_BOUT4_INTR: Enable BULK OUT Token Receive Interrupt.10RW0x0EN_IIN3_INTR: Enable INTR IN Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.8RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.7Reserved6RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.5RW0x0EN_SUME_INTR: Enable Resume Interrupt.4RW0x0EN_USBRST_INTR: Enable OUT Token Receive Interrupt.3RW0x0EN_USBRST_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_IN0_INTR: Enable OUT Token Receive Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt.0RW0x0EN_SOF_INTR: Enable SETUP Packet Receive Interrupt.				
12RW0x0EN_BIN5_INTR: Enable BULK IN Token transmit Interrupt.11RW0x0EN_BOUT4_INTR: Enable BULK OUT Token Receive Interrupt.10RW0x0EN_IIN3_INTR: Enable INTR IN Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.8RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.76RW0x0EN_SUSP_INTR: Enable BULK OUT Token Receive Interrupt.5RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.4RW0x0EN_RSUME_INTR: Enable Resume Interrupt.3RW0x0EN_USBRST_INTR: Enable USB Reset Interrupt.3RW0x0EN_UTO INTR: Enable IN Token Receive Interrupt. Endp02RW0x0EN_SETUP_INTR: Enable IN Token transmits Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable IN Token transmits Interrupt.0RW0x0EN_SETUP Packet Receive Interrupt.	13	RW	0x0	
Enable BULK IN Token transmit Interrupt.11RW0x0EN_BOUT4_INTR: Enable BULK OUT Token Receive Interrupt.10RW0x0EN_IIN3_INTR: Enable INTR IN Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.8RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.76RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.5RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.4RW0x0EN_SUSPTINTR: Enable Resume Interrupt.3RW0x0EN_USBRST_INTR: Enable USB Reset Interrupt.3RW0x0EN_OUT0_INTR: Enable USB Reset Interrupt.2RW0x0EN_IN0_INTR: Enable IN Token transmits Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable IN Token transmits Interrupt.0RW0x0EN_SOF_INTR: Enable SETUP Packet Receive Interrupt.				
11RW0x0EN_BOUT4_INTR: Enable BULK OUT Token Receive Interrupt.10RW0x0EN_IIN3_INTR: Enable INTR IN Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.8RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.7Reserved6RW0x0EN_SUSP_INTR: Enable Resume Interrupt.5RW0x0EN_SUSP_INTR: Enable Resume Interrupt.4RW0x0EN_USBRST_INTR: Enable USB Reset Interrupt.3RW0x0EN_OUT0_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_IND_INTR: Enable OUT Token Receive Interrupt. Endp01RW0x0EN_IND_INTR: Enable IN Token transmits Interrupt. Endp00RW0x0EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt.	12	RW	0x0	
Enable BULK OUT Token Receive Interrupt.10RW0x0EN_IIN3_INTR: Enable INTR IN Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.8RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.7Reserved6RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.5RW0x0EN_RSUME_INTR: Enable Resume Interrupt.4RW0x0EN_USBRST_INTR: Enable USB Reset Interrupt.3RW0x0EN_OUT0_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_IN0_INTR: Enable IN Token transmits Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable IN Token transmits Interrupt.0RW0x0EN_SETUP Packet Receive Interrupt.				
10RW0x0EN_IIN3_INTR: Enable INTR IN Token transmit Interrupt.9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.8RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.7Reserved6RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.5RW0x0EN_RSUME_INTR: Enable Resume Interrupt.4RW0x0EN_USBRST_INTR: Enable USB Reset Interrupt.3RW0x0EN_OUT0_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_IN0_INTR: Enable IN Token transmits Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt.0RW0x0EN_SOF_INTR: Enable SETUP Packet Receive Interrupt.	11	RW	0x0	EN_BOUT4_INTR:
PRW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.8RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.7Reserved6RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.5RW0x0EN_RSUME_INTR: Enable Resume Interrupt.4RW0x0EN_USBRST_INTR: Enable USB Reset Interrupt.3RW0x0EN_OUT0_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_IN0_INTR: Enable IN Token transmits Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable IN Token transmits Interrupt.0RW0x0EN_SOF_INTR: Enable SETUP Packet Receive Interrupt.				Enable BULK OUT Token Receive Interrupt.
9RW0x0EN_BIN2_INTR: Enable BULK IN Token transmit Interrupt.8RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.7Reserved6RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.5RW0x0EN_SUME_INTR: Enable Resume Interrupt.4RW0x0EN_USBRST_INTR: Enable USB Reset Interrupt.3RW0x0EN_OUT0_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_IN0_INTR: Enable OUT Token transmits Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable IN Token transmits Interrupt.0RW0x0EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt.	10	RW	0x0	
Enable BULK IN Token transmit Interrupt.8RW0x0EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt.7Reserved6RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.5RW0x0EN_RSUME_INTR: Enable Resume Interrupt.4RW0x0EN_USBRST_INTR: Enable USB Reset Interrupt.3RW0x0EN_OUT0_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_INO_INTR: Enable IN Token transmits Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt.0RW0x0EN_SOF_INTR: Enable SETUP Packet Receive Interrupt.				Enable INTR IN Token transmit Interrupt.
8 RW 0x0 EN_BOUT1_INTR: Enable BULK OUT Token Receive Interrupt. 7 - - Reserved 6 RW 0x0 EN_SUSP_INTR: Enable Suspend Interrupt. 5 RW 0x0 EN_RSUME_INTR: Enable Resume Interrupt. 4 RW 0x0 EN_USBRST_INTR: Enable USB Reset Interrupt. 3 RW 0x0 EN_OUT0_INTR: Enable OUT Token Receive Interrupt. Endp0 2 RW 0x0 EN_INO_INTR: Enable IN Token transmits Interrupt. Endp0 1 RW 0x0 EN_SETUP_INTR: Enable SETUP_Packet Receive Interrupt. 0 RW 0x0 EN_SOF_INTR:	9	RW	0x0	EN_BIN2_INTR:
7Reserved6RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.5RW0x0EN_RSUME_INTR: Enable Resume Interrupt.4RW0x0EN_USBRST_INTR: Enable USB Reset Interrupt.3RW0x0EN_USBRST_INTR: Enable OUT O INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_INO_INTR: Enable IN Token transmits Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt.0RW0x0EN_SOF_INTR:				
7 - - Reserved 6 RW 0x0 EN_SUSP_INTR: Enable Suspend Interrupt. 5 RW 0x0 EN_RSUME_INTR: Enable Resume Interrupt. 4 RW 0x0 EN_USBRST_INTR: Enable USB Reset Interrupt. 3 RW 0x0 EN_OUTO_INTR: Enable OUT Token Receive Interrupt. Endp0 2 RW 0x0 EN_INO_INTR: Enable IN Token transmits Interrupt. Endp0 1 RW 0x0 EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt. 0 RW 0x0 EN_SOF_INTR:	8	RW	0x0	EN_BOUT1_INTR:
6RW0x0EN_SUSP_INTR: Enable Suspend Interrupt.5RW0x0EN_RSUME_INTR: Enable Resume Interrupt.4RW0x0EN_USBRST_INTR: Enable USB Reset Interrupt.3RW0x0EN_OUTO_INTR: Enable OUT Token Receive Interrupt. Endp02RW0x0EN_INO_INTR: Enable IN Token transmits Interrupt. Endp01RW0x0EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt.0RW0x0EN_SOF_INTR:				Enable BULK OUT Token Receive Interrupt.
Image: Second	7	-	-	
5 RW 0x0 EN_RSUME_INTR: Enable Resume Interrupt. 4 RW 0x0 EN_USBRST_INTR: Enable USB Reset Interrupt. 3 RW 0x0 EN_OUTO_INTR: Enable OUT Token Receive Interrupt. Endp0 2 RW 0x0 EN_INO_INTR: Enable IN Token transmits Interrupt. Endp0 1 RW 0x0 EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt. 0 RW 0x0 EN_SOF_INTR:	6	RW	0x0	EN_SUSP_INTR:
4 RW 0x0 EN_USBRST_INTR: Enable USB Reset Interrupt. 3 RW 0x0 EN_OUTO_INTR: Enable OUT Token Receive Interrupt. Endp0 2 RW 0x0 EN_INO_INTR: Enable IN Token transmits Interrupt. Endp0 1 RW 0x0 EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt. 0 RW 0x0 EN_SOF_INTR:				
4 RW 0x0 EN_USBRST_INTR: Enable USB Reset Interrupt. 3 RW 0x0 EN_OUTO_INTR: Enable OUT Token Receive Interrupt. Endp0 2 RW 0x0 EN_INO_INTR: Enable IN Token transmits Interrupt. Endp0 1 RW 0x0 EN_SETUP_INTR: Enable SETUP_Packet Receive Interrupt. 0 RW 0x0 EN_SOF_INTR:	5	RW	0x0	EN_RSUME_INTR:
3 RW 0x0 EN_OUT0_INTR: Enable OUT Token Receive Interrupt. Endp0 2 RW 0x0 EN_IN0_INTR: Enable IN Token transmits Interrupt. Endp0 1 RW 0x0 EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt. 0 RW 0x0 EN_SOF_INTR:				
3 RW 0x0 EN_OUT0_INTR: Enable OUT Token Receive Interrupt. Endp0 2 RW 0x0 EN_IN0_INTR: Enable IN Token transmits Interrupt. Endp0 1 RW 0x0 EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt. 0 RW 0x0 EN_SOF_INTR:	4	RW	0x0	EN_USBRST_INTR:
2 RW 0x0 Enable OUT Token Receive Interrupt. Endp0 2 RW 0x0 EN_IN0_INTR: Enable IN Token transmits Interrupt. Endp0 1 RW 0x0 EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt. 0 RW 0x0 EN_SOF_INTR:				
2 RW 0x0 EN_IN0_INTR: Enable IN Token transmits Interrupt. Endp0 1 RW 0x0 EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt. 0 RW 0x0 EN_SOF_INTR:	3	RW	0x0	EN_OUTO_INTR:
Image: 1 Enable IN Token transmits Interrupt. Endp0 1 RW 0x0 EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt. 0 RW 0x0 EN_SOF_INTR:				Enable OUT Token Receive Interrupt. Endp0
1 RW 0x0 EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt. 0 RW 0x0 EN_SOF_INTR:	2	RW	0x0	
1 RW 0x0 EN_SETUP_INTR: Enable SETUP Packet Receive Interrupt. 0 RW 0x0 EN_SOF_INTR:				Enable IN Token transmits Interrupt. Endp0
0 RW 0x0 EN_SOF_INTR:	1	RW	0x0	
0 RW 0x0 EN_SOF_INTR:				Enable SETUP Packet Receive Interrupt.
	0	RW	0x0	EN_SOF_INTR:
				— —

INT2FLAG

Address: Operational Base + offset (0x18) AP_INT2FLAG Status Register

		atus Registei	
bit	Attr	Reset Value	Description
31:27	L	-	Reserved.
26	R	0x0	TEST_PKT:
			Device went to TEST_PKT
25	R	0x0	TEST_K:
			Device went to TEST_K
24	R	0x0	TEST_J:
			Device went to TEST_J
23	R	0x0	TEST_SE0_NAK:
			Device went to TEST_SE0_NAK
22	R	0x0	IIN15_INTR:
			INTRIN, IN Token Endpoint Transmit Interrupt. When
			set, this bit enables a local interrupt to be set when an
			interrupt is active on this endpoint.

			Read clear
21	R	0x0	BIN14_INTR:
~ 1	IX .	0.0	BLKIN, IN Token Endpoint transmit Interrupt. When
			set, this bit enables a local interrupt to be set when an
			interrupt is active on this endpoint.
	_		Read clear
20	R	0x0	BOUT13_INTR:
			BLKOUT, OUT Token Endpoint Receive Interrupt.
			When set, this bit enables a local interrupt to be set
			when an interrupt is active on this endpoint.
			Read clear
19	R	0x0	IIN12_INTR:
			INTRIN, IN Token Endpoint Transmit Interrupt. When
			set, this bit enables a local interrupt to be set when an
			interrupt is active on this endpoint.
			Read clear
18	R	0x0	BIN11_INTR:
			BLKIN, IN Token Endpoint transmit Interrupt. When
			set, this bit enables a local interrupt to be set when an
			interrupt is active on this endpoint.
			Read clear
17	R	0x0	BOUT10 INTR:
±/		0.00	BLKOUT, OUT Token Endpoint Receive Interrupt.
			When set, this bit enables a local interrupt to be set
			when an interrupt is active on this endpoint.
10	D	00	Read clear
16	R	0x0	IIN9_INTR:
			INTRIN, IN Token Endpoint Transmit Interrupt. When
			set, this bit enables a local interrupt to be set when an
			interrupt is active on this endpoint.
	_		Read clear
15	R	0x0	BIN8_INTR:
			BLKIN, IN Token Endpoint transmits Interrupt. When
			set, this bit enables a local interrupt to be set when an
			interrupt is active on this endpoint.
			Read clear
14	R	0x0	BOUT7_INTR:
			BLKOUT, OUT Token Endpoint Receive Interrupt.
			When set, this bit enables a local interrupt to be set
	K		when an interrupt is active on this endpoint.
			Read clear
13	R	0x0	IIN6_INTR:
			INTRIN, IN Token Endpoint Transmit Interrupt. When
			set, this bit enables a local interrupt to be set when an
			interrupt is active on this endpoint.
			Read clear
12	R	0x0	BIN5 INTR:
			BLKIN, IN Token Endpoint transmit Interrupt. When
			set, this bit enables a local interrupt to be set when an
			interrupt is active on this endpoint.
			Read clear
11	R	0x0	BOUT4_INTR:
**		0.00	BLKOUT, OUT Token Endpoint 4 Receive Interrupt.
			When set, this bit enables a local interrupt to be set
			when an interrupt is active on this endpoint.
10		0.00	Read clear
10	R	0x0	IIN3_INTR:

	1		
			INTRIN, IN Token Endpoint Transmit Interrupt. When set, this bit enables a local interrupt to be set when an interrupt is active on this endpoint. Read clear
9	R	0x0	BIN2_INTR: BLKIN, IN Token Endpoint transmits Interrupt. When set, this bit enables a local interrupt to be set when an interrupt is active on this endpoint. Read clear
8	R	0x0	BOUT1_INTR: BLKOUT, OUT Token Endpoint Receive Interrupt. When set, this bit enables a local interrupt to be set when an interrupt is active on this endpoint. Read clear
7	R	0x1	VBUS_INTR: USB VBUS Interrupt. This bit indicates a connection in usb port. Read clear
6	R	0x0	SUSP_INTR: Suspend Interrupt. This bit is set when the UDC 2.0 detects a USB Suspend request from the host. The Suspend Request state cannot be set or cleared by writing this bit.
5	R	0x0	RSUME_INTR: Resume Interrupt. When set, this bit indicates that a device resume has occurred. Read clear
4	R	0x0	USBRST_INTR: USB Reset Interrupt. This bit indicates a change in state of the root port reset detector. Read clear
3	R	0x0	OUT0_INTR: OUT Token Endpoint 0 Receive Interrupt. When set, this bit enables a local interrupt to be set when an interrupt is active on this endpoint. So, we got to read AP_RX0STAT register to decode what's next step. Read clear
2	R	0x0	INO_INTR: IN Token Endpoint 0 transmit Interrupt. When set, this bit enables a local interrupt to be set when an interrupt is active on this endpoint. So, we got to read TX0STAT register to decode what's next step. Read clear
1	R	0x0	SETUP_INTR: SETUP Packet Interrupt. When set, this bit enables a local interrupt to be generated when a setup packet has been received from the host. Read clear
0	R	0x0	SOF_INTR: SOF Interrupt. When set, this bit enables a local interrupt to be generated when the start-of-frame packet is received.

INTCON

Address: Operational Base + offset (0x1C))
Interrupt control Degister	

bit	Attr	Reset Value	Description		
		•	· · · ·		

31:3	-	-	Reserved.
2	RW	0x1	INT0MODE:
			0: Low active, 1: High active.
1	RW	0x0	INTOTYPE:
			0: Level Trigger, 1: Edge Trigger.
0	RW	0x1	INTOEN:
			Writing one to this bit to enable USB Interrupt0.

SETUP1

Address: Operational Base +offset (0x20) Standard Setup bmRequestType, bRequest, wValue Register

bit	Attr	Reset Value	Description
31:16	R	0x0	WValue:
			Standard WValue setup packet received.
15:8	R	0x0	BRequest:
			Standard request code
			Value Request
			0: Get status
			1: Clear feature
			2: Reserved
			3: Set feature
			4: Reserved
			5: Set Address
			6: Get Descriptor
			7: Set Descriptor
			8: Get configuration
			9: Set configuration
			a: Get interface
			b: Set interface
_			c: Sync frame
7	R	0x0	BmRequestType:
			Direction
			0: host to device.
6:5	R	0.40	1: device to host.
0:5	ĸ	0x0	BmRequestType: Type
			0: Standard
			1: Class
			2: Vendor
	K		3: Reserved.
4:0	R	0x0	BmRequestType:
			Recipient
			0: Device
			1: Interface
			2: Endpoint
			3: Other
			4 – 31: Reserved.

SETUP2

Address: Operational Base +offset (0x24) Standard Setup wIndex, wLength Register

Standard				
bit	Attr	Reset Value	Description	
31:16	R	0x0	WLength:	
			Standard wLength setup packet received.	
15:0	R	0x0	WIndex:	
			Standard wIndex setup packet received.	

AHBCON

Address: Operational Base + offset (0x28) AHB Control Register

bit	Attr	Reset Value	Description
31:4	-	-	Reserved
3:0	RW	0x0	MID: AHB Master ID.

RXOSTAT

Address: Operational Base + offset (0x30) Endpoint 0 Receive status Register

bit	Attr	Reset Value	Description
31:26	-	-	Reserved.
25	R	0x0	RX00VF:
			Set to one when endpoint 0 of the receive memory
			were over-flow.
24	R	0x0	RX0FULL:
			[31:24] RX0 BUFFER STATUS
			Set by UDC 2.0 to indicate at least one packet
			available in the endpoint1 When receive ACK from
			ep_wrapper, can be cleared by setting the RX0FFRC bit
			of RX0CON register or automatically cleared by DMA
			controller when the DMA operation has been done
22.10			When receive DMA0_ODONE (DMA transfer done)
23:19	-		Reserved.
18	R	0x0	RX0ACK: Set to 1 to indicate the receive transaction was
			successful. DMA transfer done.
			Read clear
17	R	0x0	RX0ERR:
1/	R.	0.00	Receive Error when set to indicate: Due to an error
			such as over-flow (RX0OVF) or UDC 2.0 Fetal error in
			the endpoint 0
			Read clear
16	R	0x0	RX0VOID:
			[23:16] RX0 ENDP STATUS
			Set to 1 when no valid data received due to RX0STALL
			and RX0NAK set to 1 in RX0CON Register.
			Read clear
15:11		-	Reserved.
10:0	R	0x0	RX0LEN:
			[15:0] RX0 LENGTH
			Byte length of data in the data buffer to be received.

RXOCON

Address: Operational Base + offset (0x34) Endpoint 0 Receive Control Register

Linupoint				
bit	Attr	Reset Value	Description	
31:8	-	-	Reserved.	
7	RW	0x0	RX0ACKINTEN:	
			Set as one to enable the INTERRUPT OUTPUT	
			generation initiated by the assertion of RX0ACK.	
6	RW	0x0	RX0ERRINTEN:	
			Set as one to enable the INTERRUPT OUTPUT	
			generation initiated by the assertion of RX0ERR.	
5	RW	0x0	RX0VOIDINTEN:	

			Set as one to enable the INTERRUPT OUTPUT
			generation initiated by the assertion of RX0VOID.
4	RW	0x1	EPOEN:
			Endpoint 0 Enable. When cleared the endpoint does
			not respond to an SETUP or OUT token.
3	RW	0x0	RX0NAK:
			Set as one to response NAK handshake about this
			endpoint. Set by CPU
2	RW	0x0	RX0STALL:
			Set as one to response STALL handshake about this
			endpoint. Set by CPU, Auto Clear by UDC 2.0.
1	RW	0x0	RX0CLR:
			Set the bit to flush the RX0 FIFO. Set by CPU.
0	RW	0x0	RX0FFRC:
			In non-DMA mode, user needs to set this bit to relieve
			the RX0 receive memory and clear RX0FULL of
			RX0BUFFLG. (In DMA mode, the RX0FULL flag is
			automatically cleared by DMA controller when the DMA
			operation has been done)

DMAOCTLO

Address: Operational Base + offset (0x38) DMA0 Control OUT Register

DINAU CO				
bit	Attr	Reset Value	Description	
31:1	-	-	Reserved	
0	RW	0x1	DMA0OUTSTA: Set as ONE to start the DMA operation. For the data movement from the endpoint 0 receive buffer to local memory, and cleared by the DMA controller whenever	
			operation is done.	

DMAOOUTLMADDR

Address: Operational Base + offset (0x3C)

DMAU CO	DMAU Control OUT Local memory Register				
bit	Attr	Reset Value	Description		
31:2	RW	0x0	LM0OUTADDR:		
			Set to indicate the starting address of the local		
			memory block.		
1:0		-	Reserved		

TXOSTAT

Address: Operational Base + offset (0x40) Endpoint 0 Transmit Status Register

Linupoint					
bit	Attr	Reset Value	Description		
31:19	-	-	Reserved.		
18	R	0x0	TX0ACK:		
			Transmit Successful. Receive ACK handshake from		
			host.		
			Read clear		
17	R	0x0	TX0ERR:		
			Transmit Error when set to indicate: Due to an error		
			such as under-run (TX0URF) or UDC 2.0 Fetal error in		
			the endpoint 0.		
			Read clear		
16	R	0x0	TX0VOID:		
			[23:16] TX0 Status		

			The Transmit Void Condition which is associated with NAK/STALL (TX0CON Register) handshake returned by the function after a valid IN token, due to the conditions that cause the data register to be un-enabled or not ready to transmit. Read clear
15:11	-	-	Reserved.
10:0	RW	0x0	TX0LEN: [15:0] TX0 Length Byte length of data in the data buffer to be transmitted.

TXOCON

Address: Operational Base + offset (0x44) Endpoint 0 Transmit Control Register

Enapoint	Endpoint 0 Transmit Control Register			
bit	Attr	Reset Value	Description	
31:7	-	-	Reserved.	
6	RW	0x0	TX0ACKINTEN:	
			Set as one to enable the INTERRUPT OUTPUT	
			generation initiated by the assertion of TX0ACK.	
5	RW	0x0	TX0ERRINTEN:	
			Set as one to enable the INTERRUPT OUTPUT	
			generation initiated by the assertion of TX0ERR.	
4	RW	0x0	TX0VOIDINTEN:	
			Set as one to enable the INTERRUPT OUTPUT	
			generation initiated by the assertion of TX0VOID.	
3	-	-	Reserved.	
2	RW	0x0	TXONAK:	
			Set as one to response NAK handshake about this	
			endpoint. Set by CPU	
1	RW	0x0	TX0STALL:	
			Set as one to response STALL handshake about this	
			endpoint. Set by CPU, Auto Clear by UDC 2.0.	
0	RW	0x0	TX0CLR:	
			Set this bit to flush the endpoint 0 transmit memory.	
			Set by CPU (RW).	

TXOBUF

Address: Operational Base + offset (0x48) Endpoint 0 Buffer Status Register

		Status Register	
bit	Attr	Reset Value	Description
31:2		-	Reserved.
1	R	0x0	TXOURF:
			Set to one when the transmit memory were under-run.
0	R	0x0	TX0FULL:
			Transmit Buffer status
			Indicate one packet has been written and available to
			be transmitted in the data registers, will be cleared by
			the UDC 2.0 for a successful IN transaction when
			receive ACK from UDC 2.0.

DMAOINCTL

Address: Operational Base + offset (0x4C) DMA0 Control IN Register

bit	Attr	Reset Value	Description
31:1	-	-	Reserved

0	RW	0x0	DMA0INSTA:
			Set as ONE to start the DMA operation. For the data
			movement from the local memory to the endpoint 0
			transmit buffer, and cleared by the DMA controller
			whenever operation is done.

DMAOLM_IADDR

Address: Operational Base + offset (0x50) DMA0 Control IN Local memory Register

bit	Attr	Reset Value	Description
31:2	RW	0x0	LM0INADDR: Set to indicate the starting address of the local memory block.
1:0	-	-	Reserved

(RXSTAT) For RX1, 4, 7, 10, 13

Address: Operational Base + offset (0x54, 0x8C, 0xC4, 0xfc, 0x134) Receiver status Register

bit	Attr	Reset Value	Description
31:26	-	-	Reserved.
25	R	0x0	RXOVF: Set to one when endpoint of the receive memory were over-flow.
24	R	0x0	RXFULL: Set by UDC 2.0 to indicate at least one packet available in the endpoint When receive ACK from ep_wrapper, can be cleared by setting the RXFFRC bit of RXCON register or automatically cleared by DMA controller when the DMA operation has been done When receive DMA DONE (DMA transfer done)
23:20	-	-	Reserved.
19	R	0x0	RX_CF_INT: Set to 1 to indicate clear feature sent by UHC.
			Read clear
18	R	0x0	RXACK: Set to 1 to indicate the receive transaction was successful. DMA transfer done. Read clear
17	R	0x0	RXERR: Receive Error when set to indicate: Due to an error such as over-flow (RXOVF) or UDC 2.0 Fetal error in the endpoint. Read clear
16	R	0x0	RXVOID: Set to 1 when no valid data received due to RXSTALL and RXNAK set to 1 in RXCON Register. Read clear
15:11	-	-	Reserved.
10:0	R	0x0	RXCNT: Byte length of data for the endpoint 1. For receive memory from USB Host side.

(RXCON) for RX1, 4, 7, 10, 13

Address: Operational Base + offset (0x58, 0x90, 0xC8, 0x100, 0x138)

Receiver control Register

bit	Attr	Reset Value	Description
31:14	-	-	Reserved.

r	-		
13	RW	0x0	RXSTALL_AUTOCLR: Here are the first priority compare with function stall.
			Set as one to response STALL handshake for current
			endpoint. Set by CPU, Auto Clear by UDC 2.0.
12	RW	0x0	RX CF INTE:
		0/10	Set as one to enable the INTERRUPT OUTPUT for
			RX_CF_INT (Clear Feature).
11:8	RW	0x0	RXENDP NUM:
			Endpoint number setting.
7	RW	0x0	RXACKINTEN:
			Set as one to enable the INTERRUPT OUTPUT
			generation initiated by the assertion of RXACK.
6	RW	0x0	RXERRINTEN:
			Set as one to enable the INTERRUPT OUTPUT
			generation initiated by the assertion of RXERR.
5	RW	0x0	RXVOIDINTEN:
			Set as one to enable the INTERRUPT OUTPUT
			generation initiated by the assertion of RXVOID.
4	RW	0x1	EPEN:
			default enable. Endpoint Enable. When cleared the
			endpoint does not respond to an SETUP or OUT token.
_	514		(USBrst, PowerOnrst)
3	RW	0x0	RXNAK:
			Set as one to response NAK handshake about this
2		00	endpoint. Set by CPU. RXSTALL:
2	RW	0x0	
			Set as one to response STALL handshake about this endpoint. Set by CPU.
1	RW	0x0	RXCLR:
1	L A A	0.00	Set the bit to flush the Receive FIFO. Set by CPU (RW).
0	RW	0x0	RXFFRC:
Ĭ			In non-DMA mode, CPU needs to set this bit to relieve
			the RX receive memory and clear RXFULL of
			RXBUFFLG. (In DMA mode, the RXFULL flag is
			automatically cleared by DMA controller when the DMA
			operation has been done)

(DMACTLO) For RX1, 4, 7, 10, 13

Address: Operational Base + offset (0x5C, 0x94, 0xCC, 0x104, 0x13C)

DMA Control Register

bit	Attr	Reset Value	Description
31:1	RW	0x1	DMAOUTSTA: Set as ONE to start the DMA operation. For the data movement from the endpoint receive buffer to local memory, and cleared by the DMA controller whenever operation is done.
0	-	_	Reserved

(DMAOUTLMADDR) For RX1, 4, 7, 10, 13

Address: Operational Base + offset (0x60, 0x98, 0xD0, 0x108, 0x140)

DMA Local memory setting Register

bit	Attr	Reset Value	Description
31:2	RW	0x0	LMOUTADDR: Set to indicate the starting address of the local memory block.

1:0	-	-	Reserved

(TXSTAT) For TX2, 5, 8, 11, 14

Address: Operational Base + offset (0x64, 0x9C, 0xD4, 0x010C, 0x0144) Transmitter status Register

bit	Attr	Reset Value	Description
31:21	-	-	Reserved.
20	R	0x0	TX_CF_INT:
			Set to 1 to indicate clear feature sent by UHC.
			Read clear
19	R	0x0	TXDMA_DN:
			Transmit Successful. Receive DMA DONE handshake
			from host.
			Read clear
18	R	0x0	TXACK:
			Transmit Successful. Receive ACK handshake from
			host.
	_		Read clear
17	R	0x0	TXERR:
			Transmit Error when set to indicate: Due to an error
			such as under-run (TXURF) or UDC 2.0 Fetal error in
			the endpoint.
10	D	00	Read clear
16	R	0x0	TXVOID: The Transmit Void Condition which is associated with
			NAK/STALL (TXCON Register) handshake returned by
			the function after a valid IN token, due to the conditions that cause the data register to be
			un-enabled or not ready to transmit.
			Read clear
15:11	_	-	Reserved.
10:0	RW	0x0	TXLEN:
			Byte length of data in the data buffer to be
			transmitted.

(TXCON) For TX2, 5, 8, 11, 14

Address: Operational Base + offset (0x68, 0xA0, 0xD8, 0x110, 0x148) Transmitter control Register

bit	Attr	Reset Value	Description
31:14		-	Reserved.
13	RW	0x0	TXSTALL_AUTOCLR:
			Here are the first priority compare with function stall.
			Set as one to response STALL handshake for current
			endpoint. Set by CPU, Auto Clear by UDC.
12	RW	0x0	TX_CF_INTE:
			Set as one to enable the INTERRUPT OUTPUT for
			TX_CF_INT (Clear Feature).
11:8	RW	0x0	TXENDP_NUM:
			Endpoint number setting.
7	RW	0x0	TXDMADN_EN:
			Set as one to enable the INTERRUPT OUTPUT
			generation initiated by the assertion of DMA DONE.
6	RW	0x0	TXACKINTEN:
			Set as one to enable the INTERRUPT OUTPUT
			generation initiated by the assertion of TXACK.
5	RW	0x0	TXERRINTEN:
			Set as one to enable the INTERRUPT OUTPUT

1			
			generation initiated by the assertion of TXERR.
4	RW	0x0	TXVOIDINTEN:
			Set as one to enable the INTERRUPT OUTPUT
			generation initiated by the assertion of TXVOID.
3	RW	0x1	TXEPEN:
			Transmit Endpoint Enable. The endpoint does not
			respond when cleared.
2	RW	0x0	TXNAK:
			Set as one to response NAK handshake about this
			endpoint. Set by CPU
1	RW	0x0	TXSTALL:
			Set as one to response STALL handshake about this
			endpoint. Set by CPU.
0	RW	0x0	TXCLR:
			Set this bit to flush the endpoint transmit memory.

(TXBUF) For TX2, 5, 8, 11, 14

Address: Operational Base + offset (0x6C, 0xA4, 0xDC, 0x114, 0x14C) Transmitter buffer Status Register

Transmitter burier Status Register			
bit	Attr	Reset Value	Description
31:4	-	-	Reserved.
3	R	0x0	TXDS1:
			Indicate Data set1 is full, high active.
2	R	0x0	TXDS0:
			Indicate Data set0 is full, high active.
1	R	0x0	TXURF:
			Set to one when the transmit memory were under-run.
0	R	0x0	TXFULL:
			Transmit Buffer status
			Indicate one packet has been written and available to
			be transmitted in the transmit data registers, will be
			cleared by the UDC for a successful IN transaction
			when receive ACK from UDC.

(DMAINCTL) For TX2, 5, 8, 11, 14

Address: Operational Base + offset (0x70, 0xA4, 0xDC, 0x118, 0x150) DMA Control Register

bit	Attr	Reset Value	Description
31:1		-	Reserved
0	RW	0x0	DMAINSTA:
	\mathbf{N}		Set as ONE to start the DMA operation. For the data movement from the local memory to the endpoint
			transmit buffer, and cleared by the DMA controller
			whenever operation is done.

(DMALM_IADDR) For TX2, 5, 8, 11, 14

Address: Operational Base + offset (0x74, 0xAC, 0xE4, 0x11C, 0x154) DMA Local memory setting Register

bit	Attr	Reset Value	Description
31:2	RW	0x0	LMINADDR: Set to indicate the starting address of the local memory block.
1:0	-	-	Reserved

(TXSTAT) For TX3, 6, 9, 12, 15

Address: Operational Base + offset (0x78, 0xB0, 0xE8, 0x120, 0x158)

Transmitter Status Register

bit	Attr	Reset Value	Description
31:20	-	-	Reserved.
19	R	0x0	TX_CF_INT:
			Set to 1 to indicate clear feature sent by UHC.
			Read clear
18	R	0x0	TXACK:
			Transmit Successful. Receive ACK handshake from
			host.
			Read clear
17	R	0x0	TXERR:
			Transmit Error when set to indicate: Due to an error
			such as under-run (TXURF) or UDC Fetal error in the
			endpoint.
	_		Read clear
16	R	0x0	TXVOID:
			The Transmit Void Condition which is associated with
			NAK/STALL (TXCON Register) handshake returned by
			the function after a valid IN token, due to the
			conditions that cause the data register to be
			un-enabled or not ready to transmit.
45.44			Read clear
15:11	-	-	Reserved.
10:0	RW	0x0	TXLEN:
			Byte length of data in the data buffer to be
			transmitted.

(TXCON) For TX3, 6, 9, 12, 15 Address: Operational Base + offset (0x7C, 0xB4, 0xEC, 0x124, 0x158)

Transmitter	control	Register

bit	Attr	Reset Value	Description
31:14	-		Reserved.
13	RW	0x0	TXSTALL AUTOCLR:
15	1		Here are the first priority compare with function stall.
			Set as one to response STALL handshake for current
			endpoint. Set by CPU, Auto Clear by UDC.
12	RW	0x0	TX_CF_INTE:
			Set as one to enable the INTERRUPT OUTPUT for
			TX_CF_INT (Clear Feature).
11:8	RW	0x0	TXENDP_NUM:
			Endpoint number setting.
7	-	-	Reserved.
6	RW	0x0	TXACKINTEN:
			Set as one to enable the INTERRUPT OUTPUT
			generation initiated by the assertion of TXACK.
5	RW	0x0	TXERRINTEN:
			Set as one to enable the INTERRUPT OUTPUT
			generation initiated by the assertion of TXERR.
4	RW	0x0	TXVOIDINTEN:
			Set as one to enable the INTERRUPT OUTPUT
			generation initiated by the assertion of TXVOID.
3	RW	0x1	TXEPEN:
			Transmit Endpoint Enable. The endpoint does not
			respond when cleared.
2	RW	0x0	TXNAK:
			Set as one to response NAK handshake about this
			endpoint. Set by CPU

1	RW	0x0	TXSTALL: Set as one to response STALL handshake about this endpoint. Set by CPU.
0	RW	0x0	TXCLR: Set this bit to flush the endpoint transmit memory. Set by CPU (RW).

(TXBUF) For TX3, 6, 9, 12, 15

Address: Operational Base + offset (0x80, 0xB8, 0xF0, 0x128, 0x160) ton Buffor Status D

Transmit	ransmitter Buffer Status Register				
bit	Attr	Reset Value	Description		
31:2	-	-	Reserved.		
1	R	0x0	TXURF:		
			Set to one when the transmit memory were under-run.		
0	R	0x0	TXFULL:		
			Transmit Buffer status		
			Indicate one packet has been written and available to		
			be transmitted in the data registers, will be cleared by		
			the UDC for a successful IN transaction when receive		
			ACK from UDC.		

(DMAINCTL) For TX3, 6, 9, 12, 15

Address: Operational Base + offset (0x84, 0xBC, 0xF4, 0x12C, 0x164)

DMA Control Register

bit	Attr	Reset Value	Description
31:1	-	-	Reserved
0	RW	0x0	DMAINSTA: Set as ONE to start the DMA operation. For the data movement from the local memory to the endpoint transmit buffer, and cleared by the DMA controller whenever operation is done.

(DMALM_IADDR) For TX3, 6, 9, 12, 15

Address: Operational Base + offset (0x88, 0xC0, 0xF8, 0x130, 0x168) DMA Local memory setting Register

bit	Attr	Reset Value	Description
31:2	RW	0x0	LMINADDR: Set to indicate the starting address of the local memory block.
1:0	-	-	Reserved
Notos: At	tr. DW -	Poad/writable P	- read only W - write only

Read/writable, **R** - read only, **vv** - write only

Functional Description 11.4

11.4.1 Operation

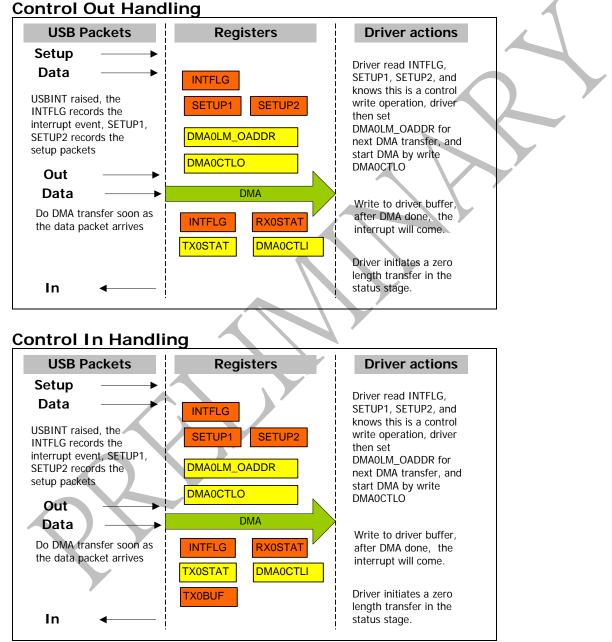
This document is intended to be a programming guide of UDC 2.0. The UDC 2.0 is a USB 2.0 device with AHB bus interface, and can be a DMA master with its efficient buffer management.

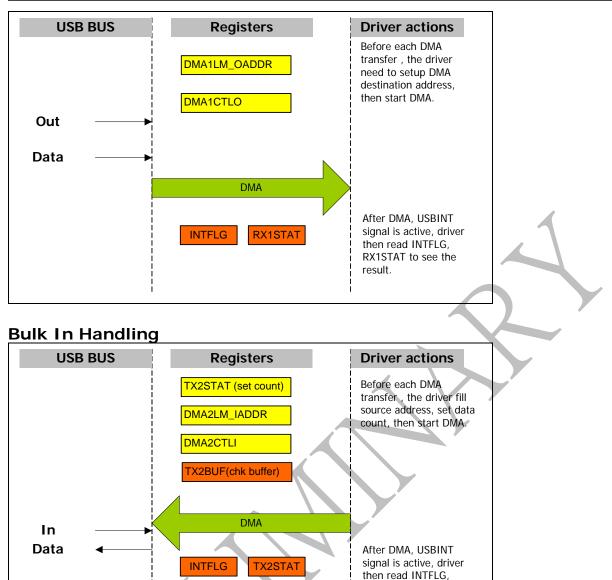
The functional description is composed of several sections:

Initialize the H/W **Control Write Steps** Control Read Steps Bulk Out Steps Bulk In Steps

From the point view of a driver, these operations cover all that a driver should provide. More detail programming sequences are listed in the following sections.

for simplicity


DIAGRAMS


Register need to read

Register need to write

DMA data
Note: USB ACK is omitted

Bulk Out Handling

11.4.2 Programming sequence

1. INITIALIZE THE H/W

Before default control pipe activate, we do following steps (example):

• Pre allocate a buffer for DMA source or target (size > 512 bytes), get its begin address, here say Imbuffer.

TX2STAT to see the

result.

• Do Soft disconnect, only set DEV_SELF_PWR bit in DEV_CTL register.

• If VBUS_STS bit in DEV_INFO equal 1, do power on reset to PHY --- set SOFT_POR in DEV_CTL, waiting more than 10ms and clear SOFT_POR.

• Configure EN_INT register:

Set EN_SETUP_INTR, EN_IN0_INTR, EN_OUT0_INTR in EN_INT register for endpoint 0. Set EN_BOUT1_INTR in EN_INT register for endpoint 1.

Set EN_BIN2_INTR in EN_INT register for endpoint 2.

Set EN_IIN3_INTR in EN_INT register for endpoint 3.

Set EN_USBRST_INTR, EN_RESUME_INTR, EN_SUSP_INTR in EN_INT register to enable USB reset interrupt, resume interrupt and suspend interrupt.

• Set INTCON register, enable INTEN flag, configure the INTTYPE and INTMODE field.

• Configure endpoint 's control register:

Set TX0ACKINTEN, TX0NAK in TX0CON for endpoint 0.

Set RX0ACKINTEN, TX0NAK, EPOEN in RX0CON for endpoint 0.

Set RX1ACKINTEN, EP1EN in RX1CON for endpoint 1.

Set TX2DMADN_EN, TX2EPEN in TX2CON for endpoint 2.

Set TX3ACKINTEN, TX3VOIDINTEN, TX3ERRINTEN, TX3EPEN in TX3CON for endpoint 3.

• Do Soft disconnect, set DEV_SELF_PWR, DEV_SOFT_CN, CSR_DONE in DEV_CTL register.

CONTROL WRITE STEPS

Setup Stage:

SETUP transaction starts

UDC first acks host or indicates error for SETUP packet, then raise USBINT System enters the ISR for USBINT. In ISR, read the INTFLAG register, if SETUP_INTR event happened, it implies transaction has been acked:

• Read SETUP1, SETUP2 register for SETUP data, and parse the SETUP package

• From the SETUP data, if this is a 2 stage transaction, then go directly to the Status Stage.

• Program DMA destination address, DMA0LM_OADDR, to Imbuffer, write DMA0CTLO register to start DMA for the incoming OUT transactions.

Data Stage:

Out transaction starts

UDC moves DATA packet to Imbuffer, then raise USBINT.

In ISR, read the INTFLAG register, if OUT0_INTR event happened, then:

- Read RX0STAT register, check if RX0ACK flag is on, retrive RX0_CNT field, accumulate it to the total_data_length.
- Data length is RX0_CNT, if RX0_CNT \neq 64 (Max Packet Size for Control), then mark this buffer as short_packet, then call upper_layer() to process lmbuffer, which knows how to process the short packet condition.
- Program DMA destination address, DMA0LM_OADDR, to Imbuffer, write DMA0CTLO register to start DMA for the incoming OUT transactions.

Status Stage:

In transactions starts

Since from Setup Stage we know the total_data_length, in Data Stage, we accumulate the data length received for each OUT transaction, when reached the total_data_length, we send a zero length IN transaction to the host:

- Set TX0STAT register, set TX0_CNT = 0
- Write DMA0CTLI to start DMA
- Wait for the TX0ACK in TX0STAT, if TX0ERR | TX0OVF | TX0URF happened, discard this transfer.

CONTROL READ STEPS

Setup Stage:

UDC first acks host or indicates error for SETUP packet, then raise USBINT System enters the ISR for USBINT. In ISR, read the INTFLAG register, if SETUP_INTR event happened, it implies transaction has been acked:

• Read SETUP1, SETUP2 register for SETUP data, and parse the SETUP packet

• From the SETUP data, if this is a 2 stage transaction, then directly go to the Status Stage.

• Wait for UDC dual port buffer available --- check TX0BUFFLG register for TX0_FULL status, then fill data buffer Imbuffer from upper_layer(), let DMA0LM_IADDR points to Imbuffer, then write DMA0CTLI to start DMA.

Data Stage:

In transaction starts.

From the last step, UDC will sent it to the host, then host will ACK, check TX0STAT for ack event, which cause the USBINT interrupt to occur In ISR, read the INTFLAG register, if IN0_INTR event happened, then:

- Read TX0STAT register, check if TX0ACK flag is on.
- Call upper layer() to put data in Imbuffer. Write TX0STAT register for data length TX0_CNT

• Wait for UDC dual port buffer available --- check TX0STAT register for TX0_BUF status, then fill data buffer Imbuffer from upper_layer(), let DMA0LM_IADDR points to Imbuffer, then write DMA0CTLI to start DMA

Status Stage:

OUT transaction start --- since from the Setup Stage we know the total_data_length --- it may be (i) the real data length that device can provide, or (ii) be specified on setup packet, choose either one which is smaller. In this stage, we accumulate the data length received on each IN transaction, when reached the total_data_length, host will send a zero length OUT packet.

Program DMA destination address, DMA0LM_OADDR, to dummy_buffer, write DMACTLO register to start next DMA for the incoming OUT transactions, though it has a zero length data packet.

USBINT will rise, and ISR entered:

- Read RX0STAT register, check if RX0ACK event is happened, if yes, the Control Read Transfer finished successfully.
- If RX0ERR | RX0OVF | RX0URF event happened, discard this transfer.

BULK OUT STEPS

Initialize for Endpoint:

- Program DMA destination address, DMA1LM_OADDR, to Imbuffer, write DMA1CTLO register to start DMA for the incoming OUT transactions.
 - UDC moves DATA packet to Imbuffer, then raise USBINT.
- OUT Transaction:
 - When USBINT rise, ISR will be entered:
 - Read RX1STAT register, data length is RX1_CNT, if RX1_CNT \neq 512 (Max
 - Packet Size for Bulk), then mark this buffer as short_packet, then call upper_layer() to process Imbuffer, which knows how to process the short packet condition.
 - If any of RX1ERR | RX1OVF | RX1URF happened, then discard this transaction.
 - Prepare for next OUT transaction. Program next DMA destination address, DMA1LM OADDR, and write DMA1CTLO register to start DMA.

BULK IN STEPS

Initialize for Endpoint:

Call upper_layer() to put data in Imbuffer, write TX2STAT register for data length TX2_CNT.

Let DMA2LM_IADDR points to Imbuffer, then write DMA2CTLI to start DMA. In Transaction:

When USBINT rise, ISR will be entered, read TX2STAT register:

- If TX2ACK is set, then call upper_layer() to get next data in Imbuffer.
- If any of TX2ERR | TX2OVF | TX2URF happened, then discard this transaction.

• Prepare for next IN transaction --- wait for UDC dual port buffer available, check TX2 STAT register for TX2_FULL status, then fill data buffer Imbuffer from upper_layer(), let DMA2LM_IADDR points to Imbuffer, then write DMA2CTLI to start DMA.

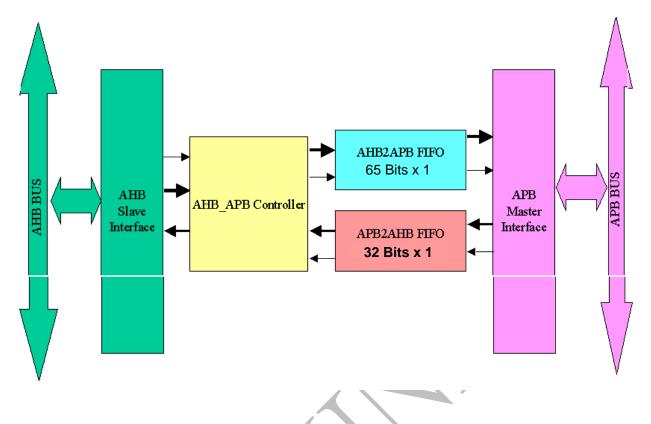
Chapter 12 AHB-to-APB Bridge

12.1 Design Overview

12.1.1 Overview

The AHB-to-APB Bridge is designed for data transfer between AHB bus and APB bus. AHB-to-APB Bridge is the only bus master on the AMBA APB. In addition, the AHB-to-APB Bridge is also a slave on the AHB bus. The AHB-to-APB bridge unit converts system transfers into APB transfers and performs the following functions:

- Latches the address and holds it valid through the transfer.
- Decodes the address and generates a peripheral select. Only one select signal can be active a transfer.
- Drives the data onto the APB bus for a write transfer.
- Drives the data onto the AHB bus for a read transfer.
- Generate a timing strobe, PENABLE, for the transfer.


12.1.2 Features

- Supports AHB to APB bus protocol translation
- One AHB slave interface port for receiving and generating signals of AHB bus
- One APB master interface port for receiving and generating signals of APB system
- One one-depth FIFO between AHB bus and APB bus for queuing AHB inputs This FIFO will be clock-independent buffer interface between different clock domains. (The AHB bus clock domain and APB bus clock domain)
- Support byte, half word, and word data transfer size
- There is a waiting cycle for system write transfer
- There is a Retry response while the AHB-to-APB Bridge cannot complete the AHB master transfer immediately

12.2 Architecture

This section provides a description about the functions and behavior under various conditions.

12.2.1 Block Diagram

12.2.2 Block Descriptions

AHB-to-APB consist of an AHB slave interface to response the transfer from AHB bus and an APB master interface to issue transfer to the slave module on the APB bus. There are two FIFOs to buffer the data between the transfers of AHB bus and APB bus.

12.3 Functional Description

12.3.1 Operation

AHB Bus Interface

The AHB-to-APB Bridge AHB slave port only responds to transfer when it is selected by the decoder with hsel_brg input when the corresponding memory address belongs to peripherals is accessed. The AHB-to-APB Bridge first checks whether the transfer is accessible or not for it by referring to the status of inputs, hsel_brg and hreadyin. Then AHB-APB controller in AHB-to-APB Bridge will check whether the accessible transfer is valid or not by referring to the HTRANS, a NONSEQ or SEQ transfer is valid and the other two types of transfer type are not valid. AHB-to-APB Bridge will accept the transfer if the AHB transfer pass the checking. Whenever APB-bridge accepts a transfer, the AHB-APB controller will process the following procedure:

Classify the transfer-direction. If the transfer is a read transfer, then it will follow the READ-procedure and if the transfer is a write transfer, then it will follow the Write-procedure.

Write-procedure:

Check whether AHB-to-APB FIFO is full or not.

If AHB-to-APB FIFO is full, then assert AHB bus response, HRESP as RETRY case.

If AHB-to-APB FIFO is not full, then AHB-APB controller asserts AHB bus response HRESP as OKAY and set the waiting state for a cycle. At the next clock, AHB-APB controller fires a put-request to AHB-to-APB FIFO and push AHB address, AHB write control, and AHB write data into AHB-to-APB FIFO.

Read procedure:

Check whether the AHB address makes an address-hit, that is, this read transfer has been fired before and the respective master has been re-granted and tries to get the required data again.

If current transfer does not make an address-hit, then AHB-APB controller will check whether the read-address-record register is empty or not. If the register is not empty, it means that there is read transfer has been fired before and the transfer has not been completed, then the current transfer will cause a retry response and waiting for processing next time.

If current transfer does not make an address-hit and the read-address-record register is empty, then AHB-APB controller will check whether the AHB-to-APB FIFO is full or not. If the AHB-to-APB FIFO is full, then it means that the APB master port is busy and there is another transfer has been queued in the FIFO, so the current transfer will be abandoned and cause a retry response.

If current transfer does not make an address-hit and read-address-record register is empty, and the AHB-to-APB FIFO is not full, AHB-APB controller will fire a put-request to AHB-to-APB FIFO and push the AHB address, AHB read control into FIFO.

If current transfer makes an address-hit and the APB-to-AHB FIFO is empty, then it means although this transfer has been fired to APB bus before, but the accessed data is not ready now. So the master who issues this transfer will need to wait for the data next time. The AHB-APB controller will assert a retry response to AHB bus.

If current transfer makes an address-hit and the APB-to-AHB FIFO is not empty, then it means that the read data is prepared for current transfer. AHB-APB controller will assert hready_brg and respond an OKAY reply to AHB bus. At the same time, AHB-APB controller will fire a get-request to APB-to-AHB FIFO for popping the required data.

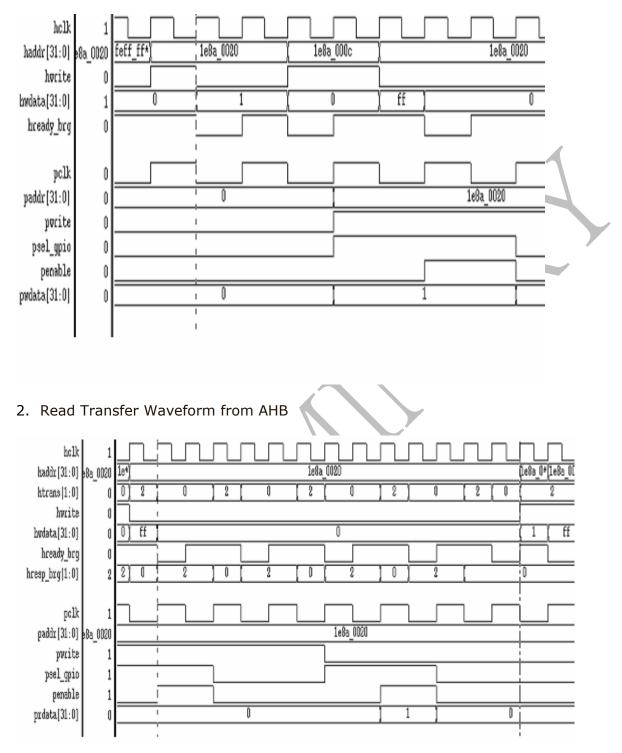
APB Bus Interface

The APB master interface will get the transfer control and data form the AHB-to-APB FIFO and start the state machine to drive the relative control signals and data to APB bus. The APB master also get read data from peripherals on APB bus and push the read data into APB-to-AHB FIFO while a read transfer is processing. The procedure is illustrated below:

First, APB master will check whether there is a transfer to be processed by referring to the condition of AHB-to-APB FIFO. If the AHB-to-APB is not empty, then it means an accessible and valid transfer needs to be processed by APB master.

The APB master will start the state machine to enter the setup phase and drive the relative control signals and data signals to APB bus.

Following the setup phase, the state machine in APB master will go into the enable phase. In this phase, the APB master will assert the data strobe signal, PENABLE, and get the read data from APB bus if the transfer is a read-transfer.


At the same time of getting the read data from APB bus, the APB master fires and puts-request to APB-to-AHB FIFO to push the read data into the FIFO.

After enable phase, the state machine in AHB-to-APB bridge will check whether there is any other transfer waiting for service or not and start the iteration illustrated before.

The bridge actives as AHB slave in AHB bus and APB master in APB bus. The slave interface in bridge handles APB data transfer. Because hclk, which is used in AHB components, and pclk, which is used in APB components, are different, so bridge provides write and read buffer to improve bus utilization. For example, if AHB master wants to write data to APB device, the bridge will capture write data that are from AHB master in write buffer and transfer the write data from write data buffer to APB device. It can avoid insetting wait state to drop off AHB bus utilization. When AHB master wants to read data from APB device, the bridge is designed to use RETRY response to AHB master wants. To avoid insetting wait state except two cycle response to improve bus utilization between data transfer in different clock domain. There are two waveforms below to describe data

transfer between AHB bus and APB bus.

1. Write Transfer Waveform from AHB

Chapter 13 UART (16550)

13.1 Design Overview

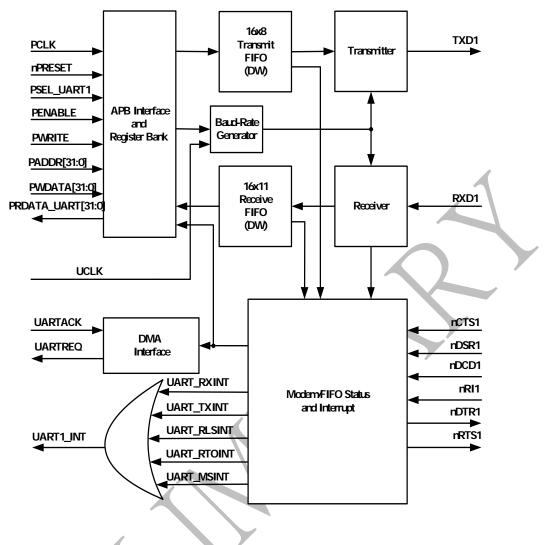
13.1.1 Overview

The UART is an APB slave performing: Serial-to-parallel conversion on data received from a peripheral device Parallel-to-serial conversion on data transmitted to the peripheral device

The CPU reads and writes data and control/status information through the APB interface. The transmitting and receiving paths are buffered with internal FIFO memories enabling up to 16-bytes to be stored independently in both transmit and receive modes. A baud rate generator can generate a common transmit and receive internal clock input. The baud rates will depend on the internal clock frequency. The UART will also provide transmit, receive and exception interrupts to system. A DMA interface is implemented for improving the system performance.

13.1.2 Features

- Compliance to AMBA APB specification
- Supports up to 115.2Kbps baud-rate
 Separate transmit and receive FIFO buffers (16 x 8) to reduce CPU interrupts
 Programmable baud rate generator. This enables division of the internal clock by (1 ~
- 65535 x 16) and generates an internal x16 clock Standard asynchronous communication bits (start, stop and parity). These are added
- prior to transmission and removed on reception


Independent masking of transmit FIFO, receive FIFO, and receive timeout and error condition interrupts

False start bit detection Line break generation and detection Fully-programmable serial interface characteristics: Data can be 5, 6, 7, 8 bits Even, odd, stick or no-parity bit generation and detection 1 or 1.5 or 2 stop bit generation Baud rate generation

13.2 Architecture

This section provides a description about the functions and behavior under various conditions.

13.2.1 Block Diagram

13.2.2 Block Descriptions

The UART consist of APB Slave interface for UART register configuration, The transfer data is buffered into transmit FIFO and transfer out by transmitter, and the received data is received by receiver and buffered into Receive FIFO, UART also support DMA request and interrupt to improve the system performance.

13.3 Registers

This section describes the control/status registers of the design.

Name	Offset	Size	Reset Value	Description
UART_RBR	0x0000	W	0x00000000	Receiver FIFO output.
UART_THR	0x0000	W	-	Transmit FIFO input.
UART_IER	0x0004	W	0x0000000	Enable/Mask interrupts generated by the UART.
UART_IIR	0x0008	W	0x000000C1	Get interrupt information.
UART_FCR	0x0008	W	0x000000C0	Control FIFO options.
UART_LCR	0x000C	W	0x0000007	Line Control register.

13.3.1 Registers Summary

UART_MCR	0x0010	W	0x00000000	Modem Controls register.
UART_LSR	0x0014	W	0x0000006	Line Status information.
UART_MSR	0x0018	W	0x0000000	Modem Status.

In addition, there are 2 Clock Divisor registers that together form one 16-bit. The registers can be accessed when the 7^{th} (DLAB) bit of the Line Control Register is set to '1'. At this time the above registers at addresses 0x00 and 0x04 can't be accessed.

Name	Offset	Size	Reset Value	Description
UART_DLL	0x0000	W	0x00000000	The LSB of the divisor latch.
UART_DLH	0x0004	W	0x00000000	The MSB of the divisor latch.

Notes:

<u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

13.3.2 Detail Register Description

UART_RBR

Address: Operational Base + offset(0x00) Receive Buffer Register

Bit	Attr	Reset Value	Description
31:0	R	0x0	Any data words received by the UART form the serial link are accessed by reading this register. Bit 0 in the LSR line status register can be used to check if all received bytes have been read. This bit will change to zero if no more bytes are present

UART_THR

Address: Operational Base + offset(0x00) Transmitter holding register

TTalis	miller noiu	ing register	
bit	Attr	Reset Value	Description
31:0	W	-	This register is used to buffer outgoing characters. Bit
			5 in the LSR, line status register can be used to check
			if new information must be written to THR. The value 1
			indicates that the register is empty. More than one
			character can be written to the transmitter holding
	-		register when the bit signals an empty state.

UART_IER

Address: Operational Base + offset(0x04)

Interrupt enable register allows enabling and disabling interrupt generation by the UART.

bit	Attr	Reset Value	Description
31:4	_	-	Reserved.
3	RW	0x0	Modem status Interrupt
			'0' – disabled '1' – enabled
2	RW	0x0	Receiver line status interrupt
			'0' – disabled '1' – enabled
1	RW	0x0	Transmitter holding register empty interrupt
			'0' – disabled '1' – enabled
0	RW	0x0	Received data available interrupt
			'0' – disabled '1' – enabled

UART_IIR

Address: Operational Base + offset(0x08)

Interrupt identification register enables the programmer to retrieve what is the current highest priority pending interrupt.

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:6	R	0x3	For compatibility reason. (FIFO enabled)
5:4	R	0x0	Reserved.
3:1	R	0x0	Indicates what the current highest priority pending interrupt is.
0	R	0x1	Indicates that an interrupt is pending or not. '0' – an interrupt is pending. '1' – no interrupt is pending.

The following table displays the list of possible interrupts along with the bits they enable, priority, and their source and reset control.

Bit 3	Bit 2	Bit 1	Priority	Interrupt Type	Interrupt Source	Interrupt Clear Control	
0	1	1	1 st	Receiver line status	Parity, Overrun or Framing errors or Break Interrupt.	Reading the Line Status Register.	
0	1	0	2 nd	Receive Data available	FIFO trigger level reached.	FIFO trigger level reached.	
1	1	0	3 rd	Timeout indication	There's at least 1 character in the FIFO but no character has been input to the FIFO or read from it for the last 4 Char times.	Reading from the FIFO (Receiver Buffer Register).	
0	0	1	4 th	Transmitter holding register empty	Transmitter Holding Register Empty.	Writing to the Transmitter Holding Register or reading the IIR or LSR.	
0	0	0	5 th	Modem status	nCTS, nDSR, nRI or nDCD.	Reading the Modem status register.	

UART_FCR

Address: Operational Base + offset(0x08)

FIFO control register allows selection of the FIFO trigger level (the number of bytes in FIFO required to enable the Received Data Available interrupt). In addition, the FIFOs can be cleared using this register.

bit	Attr	Reset Value	Description
31:8		-	Reserved.
7:6	W	0x3	Define the Receiver FIFO Interrupt trigger level.
			0x0 – 1 byte
			0x1 – 4 bytes
			0x2 – 8 bytes
			0x3 – 14 bytes
5:3	-	-	Reserved
2	W	0x0	Writing a '1' to bit 2 clears the Transmitter FIFO and
			resets its logic. The shift register is not cleared, i.e.
			transmitting of the current character continues.
1	W	0x0	Writing a '1' to bit 1 clears the Receiver FIFO and
			resets its logic. But it doesn't clear the shift register,
			i.e. receiving of the current character continues.
0	W	0x0	Ignored (Used to enable FIFOs in NS16550D). Since
			this UART only supports FIFO mode, this bit is ignored.

UART_LCR

Address: Operational Base + offset(0x0C)

The line control register allows the specification of the format of the asynchronous data communication used. A bit in the register also allows access to the Divisor Latches, which define the baud rate. Reading from the register is allowed to check the current settings of the communication.

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7	RW	0x0	Divisor Latch Access bit. '1' – The divisor latches can be accessed. '0' – The normal registers are accessed.
6	RW	0x0	Break Control bit. '1' – the serial out is forced into logic '0' (break state). '0' – break is disabled.
5	RW	0x0	Stick Parity bit. '0' – Stick Parity disabled. '1' - If bits 3 and 4 are logic '1', the parity bit is transmitted and checked as logic '0'. If bit 3 is '1' and bit 4 is '0' then the parity bit is transmitted and checked as '1'.
4	RW	0x0	Even Parity select. '0' – Odd number of '1' is transmitted and checked in each word (data and parity combined). In other words, if the data has an even number of '1' in it, then the parity bit is '1'. '1' – Even number of '1' is transmitted in each word.
3	RW	0x0	Parity Enable. '0' – No parity. '1' – Parity bit is generated on each outgoing character and is checked on each incoming one.
2	RW	0x1	Specify the number of generated stop bits. '0' – 1 stop bit. '1' – 1.5 stop bits when 5-bit character length selected and 2 bits otherwise Note that the receiver always checks the first stop bit only.
1:0	RW	0x3	Select number of bits in each character. 0x0 - 5 bits. 0x1 - 6 bits. 0x2 - 7 bits. 0x3 - 8 bits.

UART_MCR

Address: Operational Base + offset(0x10)

The modem control register allows transferring control signals to a modem connected to the UART.

bit	Attr	Reset Value	Description
31:5	-	-	Reserved.
4	RW	0×0	Loopback mode. '0' – normal operation. '1' – loopback mode. When in loopback mode, the Serial Output Signal (TXD) is set to logic '1'. The signal of the transmitter shift register is internally connected to the input of the receiver shift register. The following connections are made: nDTR → nDSR nRTS → nCTS

			Out1 → nRI Out2 → nDCD
3	RW	0x0	Out2. In loopback mode, connected to Data Carrier Detect (nDCD) input.
2	RW	0x0	Out1. In loopback mode, connected Ring Indicator (nRI) signal input.
1	RW	0x0	Request To Send (nRTS) signal control. 0' - nRTS is $1' + 0.01$ is $0'$
0	RW	0x0	Data Terminal Ready (nDTR) signal control. '0' – nDTR is '1' '1' – nDTR is '0'

UART_LSR

	tus regist	onal Base + offs er	
bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7	R	0x0	 `1' - At least one parity error, framing error or break indications have been received and are inside the FIFO. The bit is cleared upon reading from the register. `0' - Otherwise.
6	R	0x1	Transmitter Empty indicator. '1' – Both the transmitter FIFO and transmitter shift register are empty. The bit is cleared upon reading from the register or upon writing data to the transmit FIFO. '0' – Otherwise
5	R	0x1	Transmit FIFO is empty. '1' – The transmitter FIFO is empty. Generates Transmitter Holding Register Empty interrupt. The bit is cleared in the following cases: The LSR has been read, the IIR has been read or data has been written to the transmitter FIFO. '0' – Otherwise.
4	R	0x0	Break Interrupt (BI) indicator. '1' – A break condition has been reached in the current character. The break occurs when the line is held in logic 0 for a time of one character (start bit + data + parity + stop bit). In that case, one zero character enters the FIFO and the UART waits for a valid start bit to receive next character. The bit is cleared upon reading from the register. Generates Receiver Line Status interrupt. '0' – No break condition in the current character.
3	R	0x0	 Framing Error (FE) indicator. '1' - The received character at the top of the FIFO did not have a valid stop bit. The UART core tries re-synchronizing by assuming that the bit received was a start bit. Of course, generally, it might be that all the following data is corrupt. The bit is cleared upon reading from the register. Generates Receiver Line Status interrupt. '0' - No framing error in the current character
2	R	0x0	Parity Error (PE) indicator. '1' – The character that is currently at the top of the FIFO has been received with parity error. The bit is cleared upon reading from the register. Generates Receiver Line Status interrupt. '0' – No parity error in the current character

1	R	0x0	Overrun Error (OE) indicator. '1' – If the FIFO is full and another character has been received in the receiver shift register. If another character is starting to arrive, it will overwrite the data in the shift register but the FIFO will remain intact. The bit is cleared upon reading from the register. Generates Receiver Line Status interrupt. '0' – No overrun state.
0	R	0x0	Data Ready (DR) indicator. '0' – No characters in the FIFO. '1' – At least one character has been received and is in the FIFO. Reset when all data has read out from FIFO.

UART_MSR

Address: Operational Base + offset(0x18)

The register displays the current state of the modem control lines. Also, four bits also provide an indication in the state of one of the modem status lines. These bits are set to '1' when a change in corresponding line has been detected and they are reset when the register is being read.

register			
bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7	R	0x0	Complement of the nDCD input or equals to Out2 (MCR[3]) in loopback mode.
6	R	0x0	Complement of the nRI input or equals to Out1 (MCR[2]) in loopback mode.
5	R	0x0	Complement of the nDSR input or equals to nDTR (MCR[0]) in loopback mode.
4	R	0x0	Complement of the nCTS input or equals to nRTS (MCR[1]) in loopback mode.
3	R	0x0	Delta Data Carrier Detect (DDCD) indicator 1' - The nDCD line has changed its state.
2	R	0x0	Delta Ring Indicator (DRI) detector '1' – The nRI line has changed its state. Note: The definition is not as same as Trailing Edge of Ring Indicator (TERI) detector.
1	R	0x0	Delta Data Set Ready (DDSR) indicator '1' – The nDSR line has changed its state.
0	R	0x0	Delta Clear To Send (DCTS) indicator `1' – The nCTS line has changed its state.

UART_DLL/UART_DLH

Setting the 7th bit of LCR to '1' can access the divisor latches. You should restore this bit to '0' after setting the divisor latches in order to restore access to the other registers that occupy the same addresses. The 2 bytes form one 16-bit register, which is internally accessed as a single number. You should therefore set all 2 bytes of the register to ensure normal operation. The register is set to the default value of 0 during reset, which disables all serial I/O operations in order to ensure explicit setup of the register in the software. The value set should be equal to (system clock speed) / (16 x desired baud rate).

The internal counter starts to work when the LSB of DL is written, so when setting the divisor, write the MSB first and the LSB last.

UART_DLL

Address: Operational Base + offset(0x00) Divisor Latch LSB

bit Attr Reset Value Description	
31:8 Reserved.	

7:0 RW 0x0 The LSB of the baud-rate divis	or latch.
---	-----------

UART_DLH

Address: Operational Base + offset(0x04)
Divisor Latch MSB

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	0x0	The MSB of the baud-rate divisor latch.
Natary Attack Dead (unitable D. used and value M. unite and			

Notes: Attr: **RW** – Read/writable, **R** – read only, **W** – write only

13.4 Functional Description

13.4.1 Clock Signals

The frequency selected for UCLK must accommodate the desired range of baud rates: 16 x 65535 x baud rate >= F(UCLK) >= 16 x baud rate

Since the baud divisor latch is a 16-bit register, the divisor value is ranging from 1 to 65535. The minimum value must be set as 1. Setting 0 to the divisor is not allowed. The frequency of UCLK must also be within the required error limits for all baud rates to be used. The UART reference clock is from external UCLK for most accurate result.

13.4.2 Operation

Control data is written to the UART line control register, UART_LCR.

- UART_LCR defines:
- Transmission parameters
- Word length
- Number of transmission stop bits
- Parity mode
- Break generation

UART_DLL and UART_DLH define the baud rate divisor.

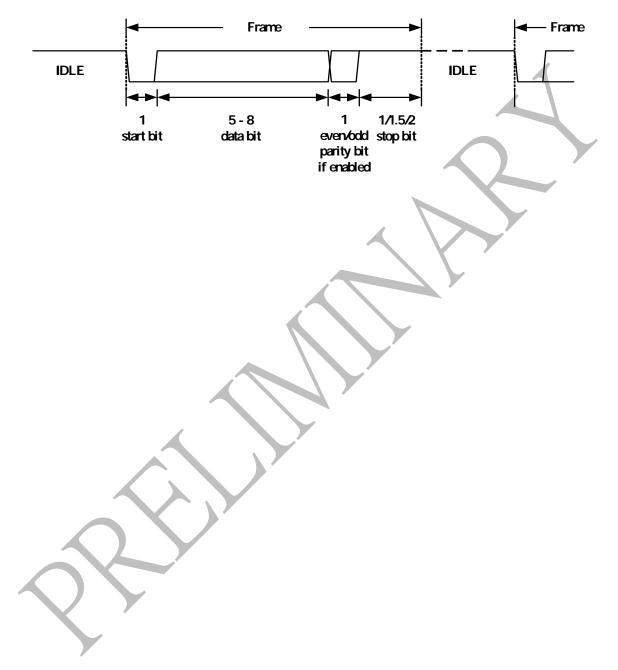
An internal clock enable signal is generated, and is a stream of one UCLK wide pulses with an average frequency of 16 times the desired baud rate. This signal is then divided by 16 to give the transmit clock.

Data Transmission or Reception

Data received or transmitted is stored in two 16-byte FIFOs. For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated in UART_LCR. Data continues to be transmitted until there is no data left in the transmit FIFO. There are 16 times samples of a UART bit. For each sample of bit, three readings are taken and the majority value is kept. In the following, the middle sampling point is defined, and one sample is took either side of it.

When the receiver is idle (RXD continuously 1) and a LOW is detected on the data input (a start bit has been received), the receive counter, with the clock enabled by Baud16, begins running and data is sampled on the eighth cycle of that counter is normal UART mode, or the fourth cycle of counter in SIR mode to allow for the shorter logic 0 pulses (half way through a bit period).

The start bit is valid if RXD is still LOW on the eighth cycle of sample clock, otherwise a false start bit is detected and it is ignored.


If the start bit was valid, successive data bits are sampled on every 16th cycle of sample clock (one bit period later) according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled.

Finally, a valid stop bit is confirmed if RXD is HIGH, otherwise a framing error has occurred. When a full word is received, the data is stored in the receive FIFO.

Overrun Condition

The overrun error is set when the FIFO is full, and the next character is completely received in the shift register. The data in the shift register is overwritten, but it is not written into the FIFO. When an empty location is available in the receive FIFO, and another character is received, the received character is copied into the receive FIFO. The overrun state is then cleared.

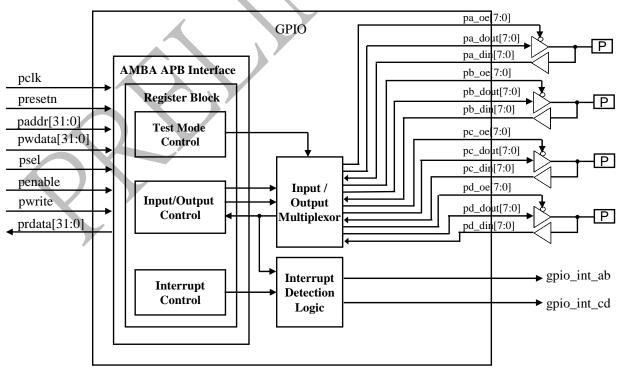
UART Packet Frame

Chapter 14 General Purpose IO (GPIO)

14.1 Design Overview

14.1.1 Overview

The General Purpose IO (GPIO) is an APB slave module that connects to the APB bus. The GPIO has up to 32 bits programmable input/output organized as four ports, Port A, Port B, Port C and Port D. Pins of both ports can configured as either inputs or outputs. Interrupt signal can be generated depending on a level, or a transitional value of a pin.


On system reset, all ports are inputs as default. The GPIO interfaces with input/output PAD cells using a data input, data output and output enable line per pin.

14.1.2 Features

- Compliance to the AMBA APB interface.
- Up to 32 individually programmable input/output pins.
- Control word read-back capability.
- All ports are inputs on system reset.
- The direction registers are programmable.
- Programmable interrupt generation capability, from a transition or a level condition, on any number of pins.

14.2 Architecture

This section provides a description about the functions and behavior under various conditions.

14.2.1 Block Diagram

14.2.2 Block Descriptions

The GPIO has up to 32 bits programmable input/output organized as four ports, Port

A, Port B, Port C, and Port D. The CPU reads and writes data and control/status information to and from GPIO via APB interface.

- AMBA APB Interface
 - The APB interface generates read and write decodes for accesses to control, interrupt, and data registers within the GPIO.
 - It implements the storage elements for the data, data direction, test mode control, and interrupt interface registers.
- Interrupt detection logic
 - The GPIO has the ability to generate mask-programmable interrupts based on the level, or the transitional value of any of its GPIO lines.
 - The General Purpose Input Output Interrupt (gpio_int_ab and gpio_int_cd) indicates to an interrupt controller that an interrupt has occurred in one or more of the GPIO lines. Bit reads HIGH in gpio_int_ab reflects that interrupt has occurred in Port A or Port B. Bit reads HIGH in gpio_int_cd reflects that interrupt has occurred in Port C or Port D.
 - Twenty registers in AMBA APB interface, each controlling a different feature or condition in the interrupt triggering chain.
 - Interrupt generation either on a change in the level, one edge, or both edges of the GPIO lines.
- Input/Output Control
 - Each port has an associated:
 - Data register
 - The data register is 8 bits wide and is used to
 - Read the input value on GPIO lines that are configured as inputs.
 - Program the output value on GPIO lines that are configured as outputs.
 - Data direction register The data direction register is 8 bits wide and is programmed to select whether individual input/output pin is configured as an input or an output.

14.3 Registers

This section describes the control/status registers of the design.

14.3.1 Registers Summary

Name	Offset	Size	Reset Value	Description
GPIO_PADR	0x0000	W	0x00000000	Port A data register.
GPIO_PACON	0x0004	W	0x00000000	Port A direction register.
GPIO_PBDR	0x0008	W	0x00000000	Port B data register.
GPIO_PBCON	0x000C	W	0x00000000	Port B direction register.
GPIO_PCDR	0x0010	W	0x00000000	Port C data register.
GPIO_PCCON	0x0014	W	0x00000000	Port C direction register.
GPIO_PDDR	0x0018	W	0x00000000	Port D data register.
GPIO_PDCON	0x001C	W	0x00000000	Port D direction register.
GPIO_TEST	0x0020	W	0x00000000	GPIO function test register.
GPIO_IEA	0x0024	W	0x00000000	Port A interrupt mask register.
GPIO_IEB	0x0028	W	0x00000000	Port B interrupt mask register.
GPIO_IEC	0x002C	W	0x00000000	Port C interrupt mask register.
GPIO_IED	0x0030	W	0x00000000	Port D interrupt mask register.
GPIO_ISA	0x0034	W	0x00000000	Port A interrupt sense register.
GPIO_ISB	0x0038	W	0x00000000	Port B interrupt sense register.
GPIO_ISC	0x003C	W	0x00000000	Port C interrupt sense register.
GPIO_ISD	0x0040	W	0x00000000	Port D interrupt sense register.
GPIO_IBEA	0x0044	W	0x00000000	Port A interrupt both-edges
				register.
GPIO_IBEB	0x0048	W	0x00000000	Port B interrupt both-edges
				register.

GPIO_IBEC	0x004C	W	0x00000000	Port C interrupt both-edges
				register.
GPIO_IBED	0x0050	W	0x00000000	Port D interrupt both-edges
				register.
GPIO_IEVA	0x0054	W	0x00000000	Port A interrupt event register.
GPIO_IEVB	0x0058	W	0x00000000	Port B interrupt event register.
GPIO_IEVC	0x005C	W	0x00000000	Port C interrupt event register.
GPIO_IEVD	0x0060	W	0x00000000	Port D interrupt event register.
GPIO_ICA	0x0064	W	0x00000000	Port A interrupt clear register.
GPIO_ICB	0x0068	W	0x00000000	Port B interrupt clear register.
GPIO_ICC	0x006C	W	0x00000000	Port C interrupt clear register.
GPIO_ICD	0x0070	W	0x00000000	Port D interrupt clear register.
GPIO_ISR	0x0074	W	0x00000000	GPIO interrupt status register.
NL L				

Notes:

<u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

14.3.2 Detail Register Description

$GPIO_PxDR(x=A, B, C, D)$

The GPIO_PxDR is the Port x data register. Address: Operational Base + offset (0x00, 0x08, 0x10, 0x18)

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	0x0	Port x data register.

$GPIO_PxCON(x=A, B, C, D)$

The GPIO_PxCON is the Port x data direction register. When asserted HIGH, the corresponding pin is configured as output. On the other hand, it configured as input. At reset, all bits are configured as input.

Address: Operational Base + offset (0x04, 0x0C, 0x14, 0x1C)

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	0x0	Port x direction register.
			0: Input 1: Output

GPIO_TEST

GPIO function test register.

Address: Operational Base + offset (0x20)

bit	Attr	Reset Value	Description
31:3		-	Reserved.
2:1	RW	0x0	Test mode.
			0x0 – PORTB -> PORTA
			0x1 – PORTA -> PORTB
			0x2 – PORTD -> PORTC
			0x3 – PORTC -> PORTD
0	RW	0x0	Test mode enable indicator.
			'1' – The GPIO loop-back test mode enable.
			`0' – Normal mode.

$GPIO_IEx (x=A, B, C, D)$

The GPIO_IEx register is the Port x interrupt mask register. Bits set to HIGH in GPIO_IEx allow the corresponding pins to trigger their individual interrupts and the combined **gpio_int** line. On the other hand, bits set to LOW represent disable interrupt trigger on the pins. The default value is set to LOW at reset.

Address: Operational Base + offset (0x24, 0x28, 0x2C, 0x30)

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	0x0	Port x interrupt mask register.
			0: Masked 1: Not masked

$GPIO_ISx (x=A, B, C, D)$

The GPIO_ ISx register is the Port x interrupt sense register. The default set is edge sensitive at reset.

Address: Operational Base + offset (0x34, 0x38, 0x3C, 0x40)

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	0x0	Port x interrupt sense register. 0: Edge on corresponding pin is detected. 1: Level on corresponding pin is detected.

$GPIO_IBEx (x=A, B, C, D)$

The GPIO_IBEx register is the Port x interrupt both-edges register. When the bits in GPIO_ISx are set to edge sensitive, bits set to HIGH in GPIO_IBEx configure the corresponding pin to detect both rising and falling edges, regardless of the corresponding bit in the GPIO_IEVx. The default value is set to LOW at reset.

Address	Address: Operational Base + offset (0x44, 0x48, 0x4C, 0x50)				
bit	Attr	Reset Value	Description		
31:8	-	-	Reserved.		
7:0	RW	0x0	Port x interrupt both-edges register.		
			0: Single edge, interrupt generation event is controlled		
			by GPIO IEVx.		

1: Both edges on corresponding pin trigger an interrupt.

$GPIO_IEVx (x=A, B, C, D)$

The GPIO_IEVx register is the Port x interrupt event register. When the corresponding bit is asserted to HIGH in GPIO_IEVx, it is configured to detect rising edges or high levels, depending on the corresponding bit value in GPIO_ISx. Clearing a bit configures the pin to detect falling edges or low levels, depending on the corresponding bit value in GPIO_ISx. The default value is set to LOW at reset.

Address: Operational Base + offset (0x54, 0x58, 0x5C, 0x60)

bit	Attr	Reset Value	Description
31:8	-	-	Reserved.
7:0	RW	0x0	Port x interrupt event register.
			0: Falling edges or low levels on corresponding pin
	<u> </u>		trigger interrupts.
			1: Rising edges or high levels on corresponding pin
			trigger interrupts.

$GPIO_ICx (x=A, B, C, D)$

The GPIO_ ICx register is the Port x interrupt clear register. Writing a 1 to a bit in this register clears the corresponding interrupt edge detection logic register. Writing a 0 has no effect. The register is write-only and all bits are cleared by a reset.

Address:	Address: Operational Base + offset (0x64, 0x68, 0x6C, 0x70)			
bit	Attr	Reset Value	Description	
31:8	-	-	Reserved.	
7:0	W	0x0	Port x interrupt clear register. 0: No effect. 1: Clear the corresponding interrupt detection logic register.	

GPIO_ISR

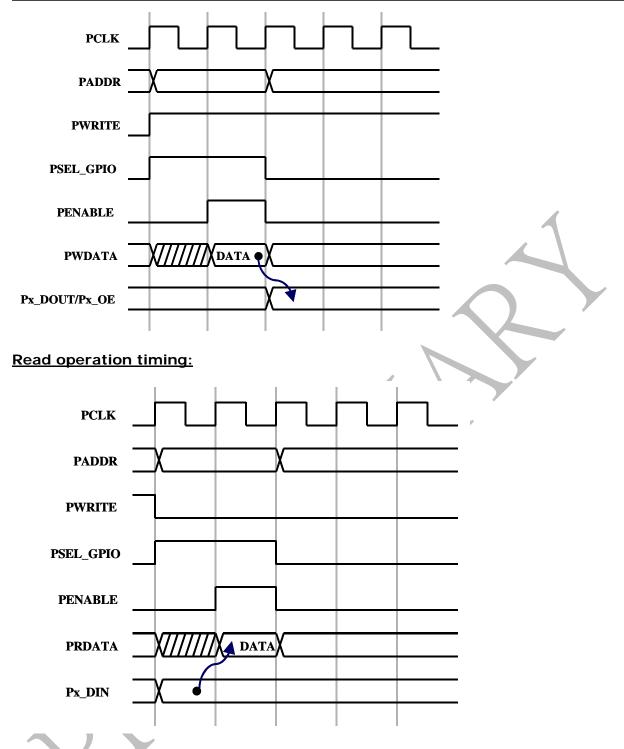
The GPIO_ ISR register is the interrupt status registers. Bits read HIGH in this register reflect the status of interrupts trigger conditions detected. Bits read LOW indicate that corresponding input pins have not initiated an interrupt. The register is read-only and all bits are cleared by a reset.

bit	Attr	Reset Value	Description
31:24	R	0x0	 Port D interrupt status register. The status of interrupts trigger conditions detection on pins. 0: GPIO interrupt not active. 1: GPIO asserting interrupt.
23:16	R	0x0	Port C interrupt status register.The status of interrupts trigger conditions detection on pins.0: GPIO interrupt not active.1: GPIO asserting interrupt.
15:8	R	0x0	 Port B interrupt status register. The status of interrupts trigger conditions detection on pins. 0: GPIO interrupt not active. 1: GPIO asserting interrupt.
7:0	R	0x0	Port A interrupt status register. The status of interrupts trigger conditions detection on pins. 0: GPIO interrupt not active. 1: GPIO asserting interrupt.

Notes: Attr: **RW** – Read/writable, **R** – read only, **W** – write only

14.4 Functional Description

14.4.1 Operation


For each port, there is a data register and a mode register. On reads, the data register holds the current status of the corresponding port pins, whether they are configured as inputs or outputs. Writing to a data register only affects the pins that are configured as outputs. Those function pins shared with GPIO ports are not stored in the registers. They will be directly wired to their source modules.

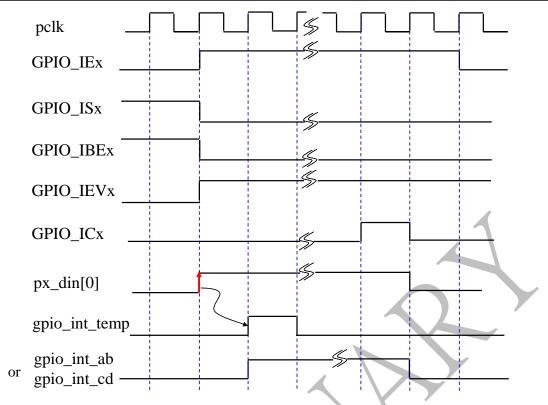
The interrupt section of the GPIO is controlled by a set of twenty registers. When one or more GPIO lines causes an interrupt, interrupt output **gpio_int_ab or gpio_int_cd** can be sent to the interrupt controller.

Port Mode registers:

The Port Mode registers operate in a different manner on each port. The input, output and function pin sharing are defined in the register section.

Write operation timing:

14.4.2 Programming sequence

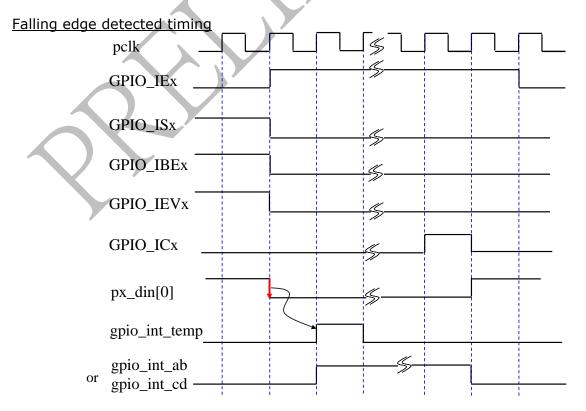

 Rising edge detected Bits set to "0" in GPIO_ISx (x=A, B, C and D), edge on corresponding pin is detected. Bits set to "0" in GPIO_IBEx (x=A, B, C and D) configure the corresponding pin to detect single edge.

Bits set to "1" in GPIO_IEVx (x=A, B, C and D) configure the corresponding pin to detect rising edge.

Bits set to "1" in GPIO_IEx (x=A, B, C and D) allow the corresponding pins to trigger their individual interrupts.

When one or more input data pins cause a rising edge-triggered interrupt, interrupt output **gpio_int_ab or gpio_int_cd** can be set to "1".

Rising edge detected timing


• Falling edge detected

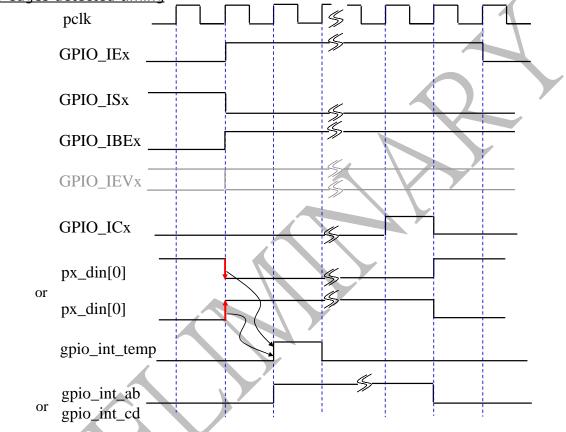
Bits set to "0" in GPIO_ISx (x=A, B, C and D), edge on corresponding pin is detected. Bits set to "0" in GPIO_IBEx (x=A, B, C and D) configure the corresponding pin to detect single edge.

Bits set to "0" in GPIO_IEVx (x=A, B, C and D) configure the corresponding pin to detect rising edge.

Bits set to "1" in GPIO_IEx (x=A, B, C and D) allow the corresponding pins to trigger their individual interrupts.

When one or more input data pins cause a falling edge-triggered interrupt, interrupt output **gpio_int_ab or gpio_int_cd** can be set to "1".

Both-edges detected


Bits set to "0" in GPIO_ISx (x=A, B, C and D), edge on corresponding pin is detected. Bits set to "1" in GPIO_IBEx (x=A, B, C and D) configure the corresponding pin to detect both edges.

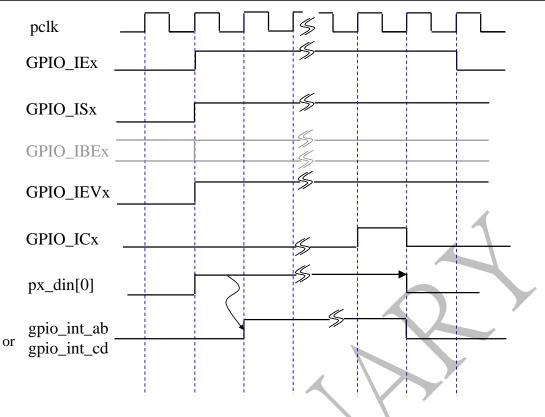
Bits set to "0" or "1" in GPIO_IEVx (x=A, B, C and D) are okay.

Bits set to "1" in GPIO_IEx (x=A, B, C and D) allow the corresponding pins to trigger their individual interrupts.

When one or more input data pins cause a falling edge-triggered or rising edge-triggered interrupt, interrupt output **gpio_int_ab or gpio_int_cd** can be set to "1".

Both-edges detected timing

• High level detected


Bits set to "1" in GPIO_ISx (x=A, B, C and D), level on corresponding pin is detected. Bits set to "0" or "1" in GPIO_IBEx (x=A, B, C and D) are okay.

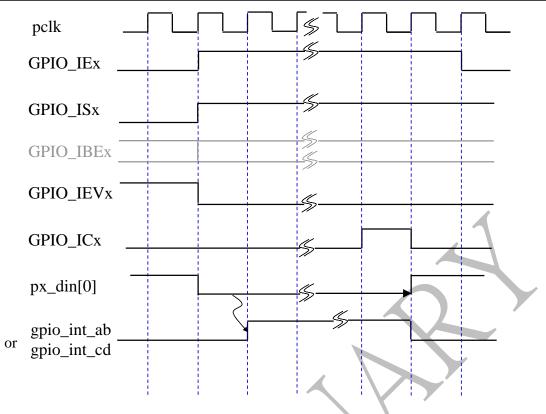
Bits set to "1" in GPIO_IEVx (x=A, B, C and D) configure the corresponding pin to detect high level.

Bits set to "1" in GPIO_IEx (x=A, B, C and D) allow the corresponding pins to trigger their individual interrupts.

When one or more input data pins causes a high level interrupt, interrupt output **gpio_int_ab or gpio_int_cd** can be set to "1".

High level detected timing

• Low level detected


Bits set to "1" in GPIO_ISx (x=A, B, C and D), level on corresponding pin is detected. Bits set to "0" or "1" in GPIO_IBEx (x=A, B, C and D) are okay.

Bits set to "0" in GPIO_IEVx (x=A, B, C and D) configure the corresponding pin to detect low level.

Bits set to "1" in GPIO_IEx (x=A, B, C and D) allow the corresponding pins to trigger their individual interrupts.

When one or more input data pins causes a low level interrupt, interrupt output **gpio_int_ab or gpio_int_cd** can be set to "1".

Low level detected timing

14.5 GPIO MUX

MUXO	MUX1	MUX2		Config register	register bit
	LCD_DATA16	RXD0	PULL-UP	SCU_IOMUXA_CON[1:0]	gpioa_lcd16_rxd0_sel
PORT-A	LCD_DATA17	TXD0	PULL-UP	SCU_IOMUXA_CON[3:2]	gpioa_lcd17_txd0_sel
PURT-A	FLASH CS1		PULL-UP	SCU_IOMUXA_CON[9]	
	LCD_HSYNC		PULL-UP	SCU_IOMUXA_CON[11]	
	SD-DATA0	SPI_MISO	PULL-UP		
PORT-B[0:5]	SD-CMD	SPI-MOSI	PULL-UP	SCU_IOMUXA_CON[13:12]	gpiob_sd_spi_sel
	SD-CLK	SPI_SCLK	PULL-UP		
SCL	FLASH CS2	PORT-B[6]	PULL-UP	SCU_IOMUXA_CON[15:14]	I2c_flashcs2_gpiob_sel
SDA	FLASH CS3	PORT-B[7]	PULL-UP	SCU_IOMUXA_CON[17:16]	I2c_flashcs3_gpiob_sel
			PULL-DOWN		
	LCD DATAEN		PULL-DOWN	SCU_IOMUXA_CON[10]	
	SCLK		PULL-DOWN	SCU_IOMUXB_CON[0]	gpioc_i2ssclk_sel
PORT-C	LRCK		PULL-DOWN	SCU_IOMUXB_CON[1]	gpioc_i2slrck_sel
PURIFC	DATAIN		PULL-DOWN	SCU_IOMUXB_CON[2]	gpioc_i2ssdi_sel
	DATAOUT		PULL-DOWN	SCU_IOMUXB_CON[3]	gpioc_i2ssdo_sel
	MCLK		PULL-DOWN	SCU_IOMUXB_CON[4]	gpioc_i2scko_sel
	ST_CEN[1]		PULL-DOWN	SCU_IOMUXB_CON[5]	gpioc_stcs1_sel
	SDMMC_PCA	TXD1	PULL-UP	SCU_IOMUXB_CON[7:6]	gpiod_sdpca_txd1_sel
	SDMMC_CDA	RXD1	PULL-UP	SCU_IOMUXB_CON[9:8]	gpiod_sdcda_rxd1_sel
	SDMMC_WPA		PULL-UP	SCU_IOMUXB_CON[10]	gpiod_sdwpa_sel
PORT-D	SDRAM CKE		PULL-UP	SCU_IOMUXB_CON[21]	gpiod_sdcke_sel
	PWM0			SCU_IOMUXB_CON[11]	gpiod_pwm0_sel
	PWM1		PULL-DOWN	SCU_IOMUXB_CON[12]	gpiod_pwm1_sel
	PWM2		PULL-DOWN	SCU_IOMUXB_CON[13]	gpiod_pwm2_sel
PORT-E	LCD_DATA8		PULL-UP	SCU_IOMUXB_CON[15]	gpioe_lcd_se

Rock-Chips Confidential

RK27XX Databook

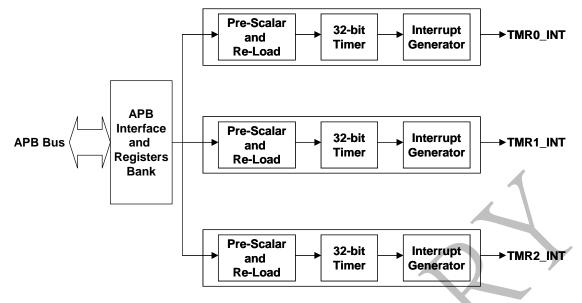
u				
	LCD_DATA9	PULL-UP		
	LCD_DATA10	PULL-UP		
	LCD_DATA11	PULL-UP		
	LCD_DATA12	PULL-UP		
	LCD_DATA13	PULL-UP		
	LCD_DATA14	PULL-UP		
	LCD_DATA15	PULL-UP		
	VIP_CLKO	PULL-UP	SCU_IOMUXB_CON[16]	gpiof_vipclk_sel
PORT-F	A11	PULL-UP	SCU_IOMUXB_CON[17]	sdtaddr11_gpiof_sel
	A12	PULL-UP	SCU_IOMUXB_CON[18]	sdtaddr12_gpiof_sel

Chapter 15 Timers

15.1 Design Overview

15.1.1 Overview

The timer module is an APB slave. This module is composed of 3 timers, TMR0, TMR1 and TMR2. All the TMRs can be used as interval timers to generate periodical interrupts. Timer can operate under free-running mode or periodical mode. When running in periodical mode, the counting value will be loaded into counter via APB interface. The timer will count from the loaded value. When zero is reached, the timer will generate an interrupt then the loaded value will be reloaded into counter. When running in free-running mode, timer will count from its maximum value (0xFFFF_FFF) down to zero then wraps around. When zero reached, an interrupt will be generated. The interrupts of TMR0, TMR1 and TMR2 are all mask-able.


15.1.2 Features

- Built-in three 32 bits timer modules
- Provide independent free-running or periodical mode
- Mask-able interrupts
- Programmable counter

15.2 Architecture

This section provides a description about the functions and behavior under various conditions.

15.2.1 Block Diagram

15.2.2 Block Descriptions

The Timer in Leopard Generic Core consist of a APB slave interface for timer register setting and three separate 32 bit timer, each timer can be set for different interval time and generate it's own periodical interrupt.

15.3 Registers

This section describes the control/status registers of the design.

Name	Offset	Size	Reset Value	Description
TMROLR	0x0000	W	0x00000000	Load register.
TMR0CVR	0x0004	W	0x00000000	Current value register.
TMR0CON	0x0008	W	0x0000002	Control register.
TMR1LR	0x0010	W	0x00000000	Load register.
TMR1CVR	0x0014	W	0x00000000	Current value register.
TMR1CON	0x0018	W	0x0000002	Control register.
TMR2LR	0x0020	W	0x00000000	Load register.
TMR2CVR	0x0024	W	0x00000000	Current value register.
TMR2CON	0x0028	W	0x0000002	Control register.

15.3.1 Registers Summary

Notes:

<u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

15.3.2 Detail Register Description

TMRxLR(x=0,1,2)

Address: Operational Base + offset(0x00, 0x10, 0x20)

Load register for timer counter

bit	Attr	Reset Value	Description
31:0	W	0x0	Load register for timer counter. Counting value ranges from $0 \sim (2^{32} - 1)$.

TMRxCVR(x=0,1,2)

Address: Operational Base + offset(0x04, 0x14, 0x24)

Current value register

bit	Attr	Reset Value	Description
31:0	R	0x0	The current counter value.

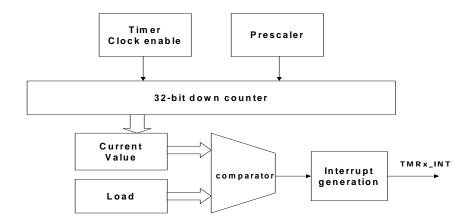
TMRxCON(x=0,1,2)

Address: Operational Base + offset(0x08, 0x18, 0x28) Control register

bit	Attr	Reset Value	Description
31:9	-	-	Reserved.
8	RW	0x0	Timer enable/disable. 0: Disable 1: Enable
7	RW	0x0	Timer counting mode selection. 0: Free-Running 1: Periodical
6:4	RW	0×0	Prescale factor. 0x0: 1 0x1: 1/4 0x2: 1/8 0x3: 1/16 0x4: 1/32 0x5: 1/64 0x6: 1/128 0x7: 1/256
3	RW	0x0	Interrupt mask. 0: Disable 1: Enable
2	RW	0x0	Interrupt clear. This bit is set when an interrupt is pending. Writing a '0' to this bit will clear the interrupt
1	RW	0x1	Interrupt control bit. 0:Edge-triggered 1:Level-triggered
0	RW	-	Reserved.

Notes: Attr: RW – Read/writable, R – read only, W – write only

15.4 Functional Description


15.4.1 Operation

The timer is loaded by writing to the TMRxLR and, if enabled, counting down to zero. When zero is reached, an interrupt is generated. Writing to the interrupt control bit of the TMRxCON can clear the interrupt.

After reaching a zero count, if the timer is operating in free-running mode it continues to decrement from its maximum value $(2^{32} - 1)$. If periodical mode is selected, the timer reloads the count value from the TMRxLR and continues to decrement. Under this mode, the counter effectively generates a periodical interrupt. The mode is selected by setting the bit 6 of the TMRxCON.

At any point, the current counter value may be read from the TMRxCVR via APB interface.

The entire scenario can be explained by the figure as below:

A pre-scale unit generates the timer clock. The enable is then used by the counter to create a clock with a timing of one of the following:

- PCLK
- PCLK/4, PCLK/8, PCLK/16, PCLK/32, PCLK/64, PCLK/128, PCLK/256

The pre-scale value can be determined by programming the bit6 \sim bit4 in TMRxCON register.

The counter clock frequency can be evaluated by the formula as given below:

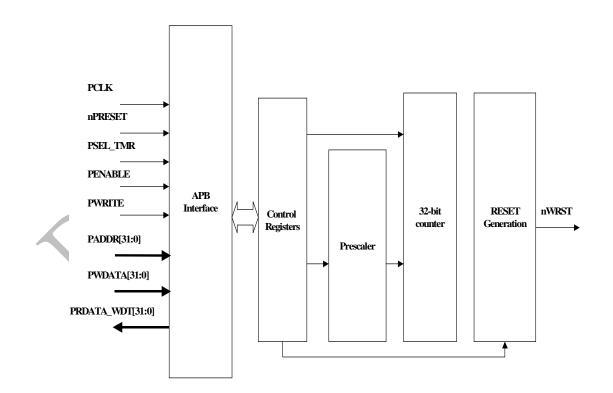
F_{timer} = F_(PCLK or TMRCLKIN) / (Pre-scale * Counter Value)

Chapter 16 Watchdog Timer (WDT)

16.1 Design Overview

16.1.1 Overview

The watchdog timer (WDT) module is an APB slave, providing access to the programmable 32-bit counters. It provides a watchdog function to avoid system malfunction or software failure. Once the watchdog timer is programmed and the system abnormal situations occurred, the watchdog timer would generate a reset signal.


16.1.2 Features

- Watchdog function
- Built-in 32 bits programmable reset counter

16.2 Architecture

This section provides a description about the functions and behavior under various conditions.

16.2.1 Block Diagram

16.2.2 Block Descriptions

The WDT consist of an APB slave interface for WDT register setting and the Prescaler and a 32 bit timer will generate a reset signal(nWRST) according to the register setting.

16.3 Registers

This section describes the control/status registers of the design.

16.3.1 Registers Summary

Name	Offset	Size	Reset Value	Description
WDTLR	0x0000	W	0x00000000	Load register.
WDTCVR	0x0004	W	0x0000FFFF	Current value register.
WDTCON	0x0008	W	0x00000000	Control register.

Notes:

Size: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

16.3.2 Detail Register Description

WDTLR

Address: Operational Base + offset(0x00) Load register for timer counter

Bit	Attr	Reset Value	Description
31:0	W	0x0	Load register for timer counter. Counting value ranges from 2^{32} – 1.

WDTCVR

Address: Operational Base + offset(0x04)

Current value register.

Bit	Attr	Reset Value	Description
31:0	R	0xFFFF	The current counter value.

WDTCON

Address: Operational Base + offset(0x08) Control register

bit	Attr	Reset Value	Description
31:5	RW		Reserved.
4	RW	0x0	Reset enable/disable. Enable or disable bit of watchdog timer output for reset signal. 0: Disable the reset function of the watchdog timer. 1: Enable reset signal of the µplatform core at watchdog timeout.
3	RW	0x0	Watchdog Timer enable/disable. 0: Disable 1: Enable
2:0	RW	0x0	Prescale factor.0x0: 10x1: 1/40x2: 1/80x3: 1/160x4: 1/320x5: 1/640x6: 1/1280x7: 1/256

Notes: Attr: RW - Read/writable, R - read only, W - write only

16.4 Functional Description

16.4.1 Operation

When watchdog timer is enabled and the counting value is loaded into counter, it starts to decrement the loaded value until zero is reached. System software must refresh the contents of the counter before zero is reached. If software fails to refresh the counter, the watchdog will generate a reset to resume the entire system. For debugging or performance purpose, programming the register bit in WDTCON can disable this reset. The system refresh requirement and the APB clock can determine the counter value and prescaler value.

A pre-scale unit generates the timer clock. The enable is then used by the counter to create a clock with a timing of one of the following:

• PCLK

• PCLK/4, PCLK/8, PCLK/16, PCLK/32, PCLK/64, PCLK/128, PCLK/256

The pre-scale value can be determined by programming the bit6 \sim bit4 in WDTCON register.

Chapter 17 Real Time Clock (RTC)

17.1 Design Overview

17.1.1 Overview

The Real Time Clock (RTC) is an APB slave device. It can be used to provide a basic alarm function or long time base counter. This is achieved by generating an interrupt signal after counting a programmed number of cycles of a real time clock input. Counting in one-second intervals is achieved by use of a 1 Hz clock that is coming from the clock divider. The RTC also provides a system power on/off sequence triggered by CPU and can further control the system power through output control pin. The RTC core power is independent from system power so the RTC counter can running continuously during system power off.

17.1.2 Features

- 24 hour time mode with highest precision of one sixteenth of a second
- Calendar function with correction for leap year
- Mask-able interrupt
- System power off sequence with output control pin
- Programmable alarm wake up system power with output control pin
- Independent RTC reset signal prevent RTC reset during power on/off

RTC function is no included in RK2706/RK2708/Rk2710 chips. For detail descriptions, please refer **RK27xx Real Time Clock**. **PDF**.

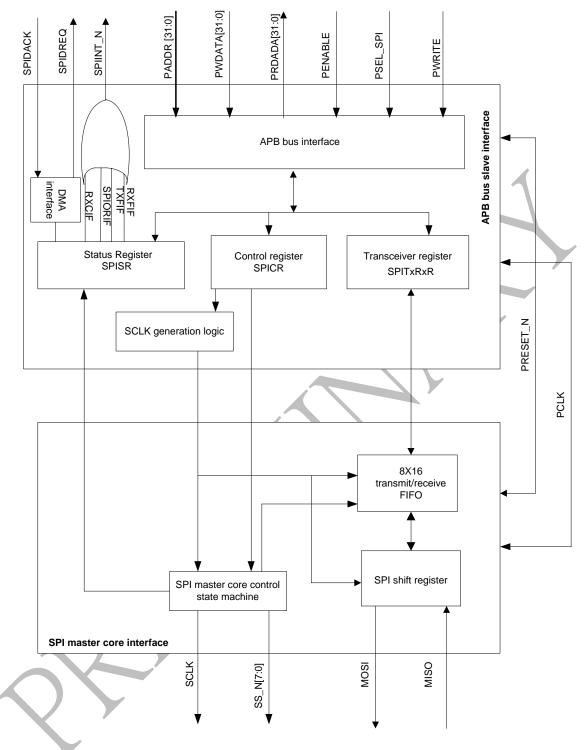
Chapter 18 SPI Master Controller

18.1 Design Overview

18.1.1 Overview

The Serial Peripheral Interface (SPI) master controller is a full-duplex, synchronous, serial data link that is standard across many microprocessors, microcontrollers, and peripherals. It enables communication between microprocessors and peripherals and/or inter-processor communication. The SPI master controller system is flexible enough to interface directly with numerous commercially available peripherals.

The SPI master controller is compatible with above-mentioned protocols as SPI bus master. At the host side, the core acts like an APB compliant slave device.


18.1.2 Features

- AMBA APB slave interface
- DMA Interface
- Four transfer protocols available with selectable clock polarity and clock phase
- Different bit rates available for SCLK
- Full duplex synchronous serial data transfer
- Bi-direction mode
- Support up to 8 slave devices
- MSB or LSB first data transfer

18.2 Architecture

This section provides a description about the functions and behavior under various conditions.

18.2.1 Block Diagram

18.2.2 Block Descriptions

The SPI master controller consist of an APB Slave interface for control and transceiver register setting and a SPI master controller interface that generate SPI signals for peripherals. The transmit/receive FIFO used to buffer the data between APB slave interface and SPI master controller.

18.3 Registers

This section describes the control/status registers of the design.

18.3.1 Registers Summary

Name	Offset	Size	Reset Value	Description
SPI_TxR	0x0000	W	0x0000000	SPI master controller transmit FIFO input
SPI_RxR	0×0000	W	0x00000000	SPI master controller receiver FIFO output
SPI_IER	0x0004	W	0x00000000	Enable/Mask interrupts generated by the SPI master controller
SPI_FCR	0x0008	W	0x00000000	SPI master controller FIFO control register
SPI_FWCR	0x000C	W	0x00000100	SPI master controller transaction flow control register
SPI_DLYCR	0x0010	W	0x00000000	SPI master controller delay control register
SPI_TxCR	0x0014	W	0x00000000	Transmit counter
SPI_RxCR	0x0018	W	0x00000000	Receive counter
SPI_SSCR	0x001C	W	0x0000000	SPI master controller slave select and characteristic register
SPI_ISR	0x0020	W	0x0000000	SPI master controller interrupt status register

Notes:

<u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

18.3.2 Detail Register Description

SPI_TxR

Address: Operational Base + offset(0x00)

This register contains data to be transmitted on the SPI master controller bus on the MOSI pin.

Bit	Attr	Reset Value	Description
31:16	-		Reserved.
15:0	W	0x0	SPI master controller transmit data FIFO

SPI_RxR

Address: Operational Base + offset(0x00)

This register contains the data received from the SPI master controller bus on the MISO pin.

bit	Attr	Reset Value	Description
31:16		-	Reserved.
15:0	R	0x0	SPI master controller receive data FIFO

SPI_IER

Address: Operational Base + offset(0x04)

This register contains the bits to control the interrupt generation of this SPI master controller

bit	Attr	Reset Value	Description
31:4	-	-	Reserved.
3	RW	0x0	Transmit FIFO interrupt enable bit (TxFIEN). This bit enables transmit FIFO interrupt when transmit FIFO trigger level is reached.

			<pre>%1"enable. %0"disable.</pre>
2	RW	0x0	Receive FIFO interrupt enable bit (RxFIEN). This bit enables receive FIFO interrupt when receive FIFO trigger level is reached. "1"enable. "0"disable.
1	RW	0x0	Receive FIFO overrun interrupt enable bit (RxFOIEN). This bit enables receive FIFO overrun interrupt when receive FIFO overrun condition is occurred. "1"enable. "0"disable.
0	RW	0x0	Receive transfer complete interrupt enable bit (RxCIEN). This bit enables receive transfer complete interrupt each time a receive transaction is ended. "1"enable. "0"disable.

SPI_FCR

Address: Operational Base + offset(0x08)

The FCR allows selection of the FIFO trigger level (the number of entries in receive FIFO required to enable the receive FIFO interrupt and the number of empty entries in the transmit FIFO required to enable the transmit FIFO interrupt). In addition, the FIFOs can be cleared using this register.

bit	Attr	Reset Value	Description
31:14	-	_	Reserved.
13:11	RW	0x0	Define the receive FIFO interrupt trigger level. The receive FIFO interrupt trigger level meaning is described below.
			For example trigger level 4 entries is for indication that at least there has 4 entries data available in receive FIFO.
			0x0 – 2 entries 0x1 – 4 entries
			0x2 – 6 entries
			0x3~0x7 – Reserved.
10:8	RW	0x0	Define the transmit FIFO interrupt trigger level.
			The transmit FIFO interrupt trigger level meaning is
			described below.
			For example trigger level 4 entries is for indication that
			at least there has 4 entries empty location for pushing
			data into transmit FIFO.
			0x0 - 2 entries $0x1 - 4$ entries
			0x2 – 6 entries
			0x3~0x7 – Reserved.
7:2		-	Reserved.
1	R	0x0	Transmit FIFO full flag (TxFF).
			This bit is set whenever transmit FIFO is full.
0	R	0x0	Receive data available flag (RxDAF).
			This bit is set whenever at least has one data entry
			available in receive FIFO.

Notes:

The transmit and receive FIFO reset signal would sustain **3 pclk cycle**, during the reset period any access to FIFO would be ignored.

SPI_FWCR

Address: Operational Base + offset(0x0C)

This register is used to control SPI master controller transaction flow.
--

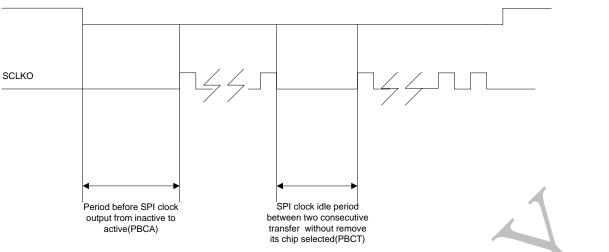
bit Attr	Reset Value	Description		
31:12 -		Reserved.		
11 W	- 0x0	SPI master controller soft reset bit (SRST_N). Writing		
TT AA	0.00	a '1' to this bit will reset the SPI master controller logic.		
10 RW	0x0	SPI master enable (SPIEN). This bit enables the SPI		
10 KW	0.00	master controller.		
		"1" enables the SPI master		
		"0" disables the SPI master		
9 RW	0x0	SPI run bit (SPIRUN). When the CPU set this bit from		
9 KW	0.00	$0^{\prime\prime}$ to $1^{\prime\prime}$, the SPI master controller begins to transfer		
		the data stored in the transmit FIFO and/or receive the		
		data into receive FIFO on the SPI master controller		
		bus. And it will be cleared to "0" after the transaction is		
		ended automatically.		
8 RW	0x1	SPI master controller clock idle enable bit (CKIDLEN).		
	0/1	This bit determines whether the SPI master controller		
		clock could be asserted in an idle state or not during a		
		transaction process if the master core meet the		
		receive FIFO full or transmit FIFO empty condition.		
		"1" SPI master controller clock could be asserted in an		
		idle state.		
		"0" SPI master controller clock could not be asserted in		
		an idle state.		
7:6 -	-	Reserved.		
5 RW	0x0	Transmit and receive simultaneously transfer enable		
		(TxRxsten). This bit is to indicate whether the transmit		
		and receive transfer would concurrently happen during		
		a transaction .		
		'0' Tx and Rx would not concurrently happen.		
		'1' Tx and Rx would concurrently happen.		
4 RW	0x0	SPI master controller clock polarity bit (CPOL)(1). This		
		bit determines the polarity of SCLK.		
		"0" SCLK is low when idle.		
	0.0	*1" SCLK is high when idle.		
3 RW	0x0	Clock Phase Bit (CPHA)(1). This bit determines the		
		clock phase of SCLK in relationship to the serial data.		
		"0" - data is valid on first SCLK edge (rising or falling) after slave select has asserted.		
		"1" - data is valid on second SCLK edge (rising or		
		falling) after slave select has asserted.		
2 RW	0x0	LSB-First Enable (LSBEN).		
		"1" LSB first transfer.		
		"0" MSB first transfer.		
1 RW	0x0	Bidirectional mode enable (BIDIREN).		
Ť		This bit is used to configure the SPI master controller		
		operation is in bidirectional mode or unidirectional		
		mode.		
		" $1'' = Bidirectional mode.$		
		"0" = Unidirectional mode.		
0 RW	0x0	Look back mode (LBKMD). This bit is to indicate the		
		operation mode of the SPI master controller is in a		
		normal operation mode or in a look back mode.		
		`0' Normal operation mode. `1' Look back mode.		

Notes:

The soft reset signal would sustain 3 pclk cycles, during the reset period any access to FIFO would be ignored.

SPI_DLYCR

Address: Operational Base + offset(0x10)


This register is used to set the necessary clock delay during a transaction according to the slave device specification requirement.

Attr	Reset Value	Description
-	-	Reserved.
RW	0x0	Period between Tx and Rx transfer (PBTxRx). This field defines the delay between transmit transfer complete and receive transfer start. 0x0: Non SPI master controller clock delay. 0x1: 4 SPI master controller clock delay. 0x2: 8 SPI master controller clock delay. 0x3: 16 SPI master controller clock delay. 0x4: 32 SPI master controller clock delay. 0x5: 64SPI master controller clock delay. 0x6: 128 SPI master controller clock delay. 0x7: 256 SPI master controller clock delay.
-	-	Reserved.
RW	0x0	Period between two consecutive transfers (PBCT). This field defines the delay between consecutive transfers to the device without removing its chip select. 0x0: Non SPI master controller clock delay. 0x1: 4 SPI master controller clock delay. 0x2: 8 SPI master controller clock delay. 0x3: 16 SPI master controller clock delay. 0x4: 32 SPI master controller clock delay. 0x5: 64 SPI master controller clock delay. 0x6: 128 SPI master controller clock delay. 0x7: 256 SPI master controller clock delay.
RW	0x0	 Period before SPI master controller clock active (PBCA). This field defines the delay before SPI master controller clock is from idle to active after the chip select is asserted. 0x0: 1/2 SPI master controller clock delay. 0x1: 4 SPI master controller clock delay. 0x2: 8 SPI master controller clock delay. 0x3: 16 SPI master controller clock delay. 0x4: 32 SPI master controller clock delay. 0x5: 64SPI master controller clock delay. 0x6: 128 SPI master controller clock delay. 0x7: 256 SPI master controller clock delay.
	- RW - RW	 RW 0x0 RW 0x0

Notes:

The delay meaning will be illustrated by timing diagram below

SPI_TxCR

Address: Operational Base + offset(0x14)

This register controls the total transfer data size in each transmit transaction

bit	Attr	Reset Value	Description	
31:16	-	-	Reserved.	
15:0	RW	0x0	0: Stop the transmit transaction. 1-65535: Start to a transmit transaction.	

SPI_RxCR

Address: Operational Base + offset(0x18)

This register controls the total transfer data size in each receive transaction.

bit	Attr	Reset Value	Description
31:16	-	-	Reserved.
15:0	RW	0x0	0: Stop the receive transaction. 1-65535: Start to a receive transaction.

SPI_SSCR

Address: Operational Base + offset(0x1C)

SPI master controller slaves select and characteristic control register.

bit	Attr	Reset Value	Description	
	Alli	Reset value		
31:15		-	Reserved.	
14:11	RW	0x0	Character length de	termines bits (SPICHRL).
			This field specifies he	ow many bits would be transferred
			in each transfer.	
			0x0: Reserved	0x1: Reserved
			0x2: Reserved	0x3: 4 bits
			0x4: 5 bits	0x5: 6 bits
			0x6: 7 bits	0x7: 8bits
			0x8: 9 bits	0x9: 10 bits
			0xA: 11 bits	0xB: 12 bits
			0xC: 13 bits	0xD: 14 bits
			0xE: 15 bits	0xF: 16bits
10:8	RW	0x0	SPI master controlle	er slave select register(SPISSR).
			0x0: Slave0 device (SS_N[0]) is set to an active state.
			0x1: Slave0 device (SS_N[1]) is set to an active state.
			0x2: Slave0 device (SS_N[2]) is set to an active state.
			0x3: Slave0 device (SS_N[3]) is set to an active state.
				SS_N[4]) is set to an active state.

			$0x5$: Slave0 device (SS_N[5]) is set to an active state. $0x6$: Slave0 device (SS_N[6]) is set to an active state. $0x7$: Slave0 device (SS_N[7]) is set to an active state.
7:6	-	-	Reserved.
5:0	RW	0x0	SPI master controller clock divisor bits (SPIDIVR). The value of SPIDIVR is used to generate the transmit and receive bit rate of this SPI master controller. And the bit rate equation will be described more detail at below section.

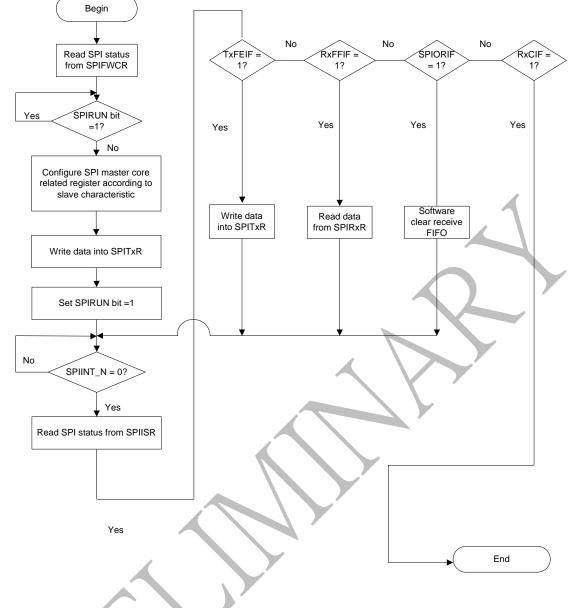
Notes:

CPHA, CPOL, should be set to match the protocol expected by the SPI slave device.

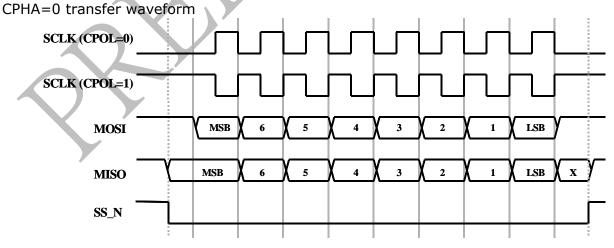
SPI_ISR

Address: Operational Base + offset(0x20)

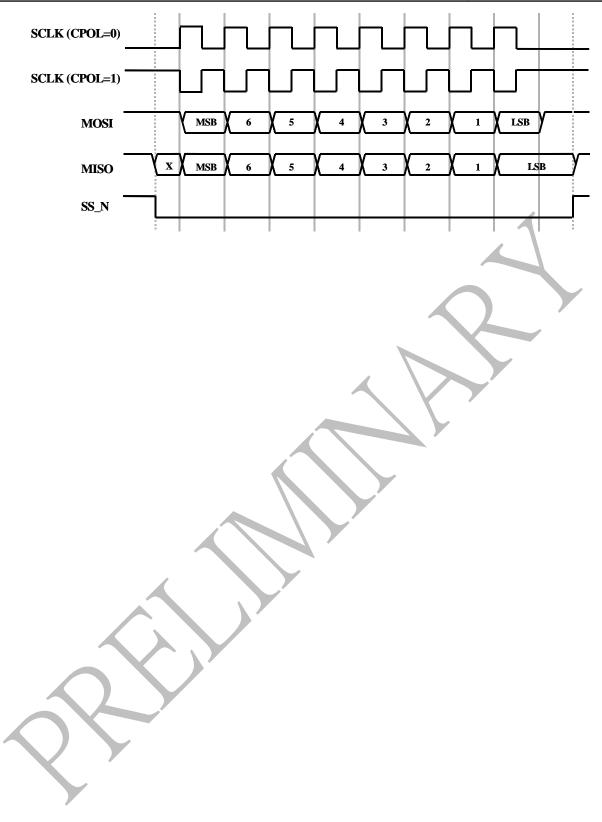
bit	Attr	Reset Value	Description
31:4	-	-	Reserved.
3	R	0x0	Transmit FIFO Interrupt Flag (TxFIF). This bit is set when the transmit FIFO trigger level is reached, and CPU wishes to keep transmit data to the device. An interrupt will be asserted to the CPU when both this bit is set and TxFEIEN bit is enabled. This bit will be cleared when transmit FIFO pointer drops below trigger level
2	R	0x0	Receive FIFO Interrupt flag (RxFIF). This bit is set whenever the receive FIFO trigger level is reached. An interrupt will be asserted to the CPU when both this bit is set and RxFFIEN bit is enable. This bit will be cleared when receive FIFO pointer drops below trigger level
1	R	0x0	 SPI master controller overrun Interrupt flag (SPIORIF). '1' - If the receive FIFO is full and another character has been received in the receiver shift register. If another character is starting to arrive, it will overwrite the data in the shift register but the FIFO will remain intact. The bit is cleared upon the receive FIFO is cleared by software simultaneously. '0' - No overrun state an another SPI master controller transaction
0	R	0×0	Receive complete Interrupt flag (RxCIF). This bit is set whenever the receive transaction is over. An interrupt will be asserted to the CPU when both this bit is set and RxCIEN bit is enabled. The bit is cleared upon reading from the register.


Notes: Attr: **RW** – Read/writable, **R** – read only, **W** – write only

18.4 Functional Description


18.4.1 Operation

SPI master controller operation flow chart


The flow chart below is to describe how the software to configure and perform a SPI master controller transaction through this SPI master controller.

SPI master controller data transfer waveform

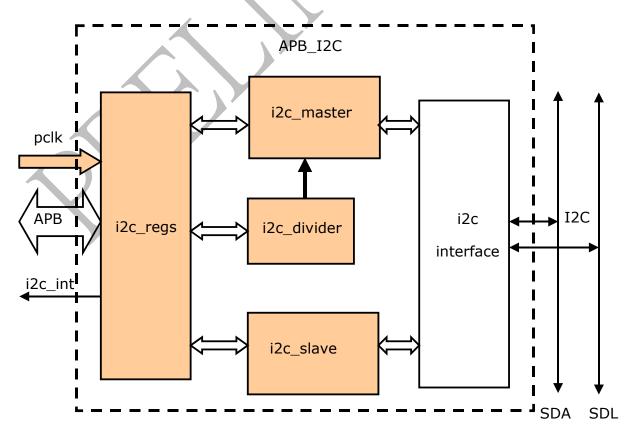
CPHA=1 transfer waveform

Chapter 19 I2C Controller

19.1 Design Overview

19.1.1 Overview

The Inter-Integrated Circuit (I2C) is a two wired (SCL and SDA), bi-directional serial bus that provides an efficient and simple method of information exchange between devices. The I2C bus is a multi-master bus protocol using arbitration to avoid bus collision if two or more masters attempt to control the bus at the same time. This I2C bus controller supports both master and slave modes acting as a bridge between AMBA protocol and generic I2C bus system.


19.1.2 Features

- Item Compatible with I2C-bus
- AMBA APB slave interface
- Supports master and slave modes of I2C bus
- Multi masters operation
- Software programmable clock frequency and transfer rate up to 400Kbit/sec
- Supports 7 bits and 10 bits addressing modes
- Interrupt or polling driven byte-by-byte data transfer
- Clock stretching and wait state generation

19.2 Architecture

This chapter provides a description about the functions and behavior under various conditions.

19.2.1 Block Diagram

19.2.2 Block Descriptions

i2c_regs – Control and Status Registers

The i2c_regs component is used to control the I2C controller operation by the host with APB interface. It implements the register set and the interrupt functionality. The CSR component operates synchronously with the pclk clock.

i2c_master – I2C Master Control and State Machine

The I2C master controller implements the I2C master operation for transmit data to and receive data from other I2C devices. The I2C master controller operates synchronously with the pclk.

i2c_slave – I2C Slave Control and State Machine

The I2C slave controller implements the I2C master operation for transmit data to and receive data from other I2C devices. The I2C slave controller operates synchronously with the pclk.

i2c_divider – Clock Divider

The clock divider module generates I2C clock SCL output signals from pclk at frequency according the given equation.

i2c_interface – I2C interface (These are logics under top module. There is actually no such a module)

SDA output enable from I2C master controller and slave controller are ANDed together as the output ports. Similarly, SCL output enable from I2C master controller and slave controller are ANDed together. SDA output and SCL output are actually ties to the ground since I2C is an open drain architecture. So once enabled, SDA/ SCL on I2C will be pulled low.

19.3 Registers

This chapter describes the control/status registers of the design. Software should read and write these registers using 32-bits accesses.

Name	Offset	Size	Reset Value	Description
I2C_MTXR	0x0000	W	0x00000000	Master transmit register input
I2C_MRXR	0x0004	W	0x00000000	Master receive register output
I2C_STXR	0x0008	W	0x00000000	Slave transmit register input
I2C_SRXR	0x000C	W	0x00000000	Slave receive register output
I2C_SADDR	0x0010	W	0x000003FF	I2C controller slave address
I2C_IER	0x0014	W	0x00000000	Enable/Mask interrupts
				generated by the I2C
				controller
I2C_ISR	0x0018	W	0x00000000	Interrupt status register
I2C_LCMR	0x001C	W	0x00000000	I2C line command register
I2C_LSR	0x0020	W	0x00000000	I2C core status
I2C_CONR	0x0024	W	0x00000000	I2C operation register 1
I2C_OPR	0x0028	W	0x00000000	I2C operation register 2

19.3.1 Registers Summary

Notes: <u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

19.3.2 Detail Register Description

I2C_MTXR

Address: Operational Base + offset(0x00)

This register contains data to be transmitted on the I2C for master purpose.

bit	Attr	Reset Value	Description
31:8	-	-	Reserved
7:0	RW	0x0	I2C master transmit data register.

I2C_MRXR

Address: Operational Base + offset(0x04)

This register contains data to be received on the I2C for master purpose.

bit	Attr	Reset Value	Description
31:8	-	-	Reserved

I2C_STXR

Address: Operational Base + offset(0x08)

This register contains data to be transmitted on the I2C for slave purpose.

bit	Attr	Reset Value	Description
31:8	-	-	Reserved
7:0	RW	0x0	I2C slave transmit data register.

I2C_SRXR

Address: Operational Base + offset(0x0C)

This register contains data to be received on the I2C for slave purpose.

bit	Attr	Reset Value	Description
31:8	-	-	Reserved
7:0	R	0x0	I2C slave receive data register.

I2C_SADDR

Address: Operational Base + offset(0x10)

This register contains address to be matched on the I2C for slave purpose.

bit	Attr	Reset Value	Description
31:10	-	-	Reserved
9:0	RW	0x3FF	Slave address.

I2C_IER

Address: Operational Base + offset(0x14)

This register contains the bits to control the interrupt generation of I2C controller.

bit	Attr	Reset Value	Description
31:8	-	-	Reserved
7	RW	0x0	Arbitration lose interrupt enable bit.
			"1" - enable. "0" - disable.
6	RW	0x0	Abnormal stop interrupt enable bit.
			"1" - enable. "0" - disable.
5	RW	0x0	Broadcast address matches (address zero) interrupt
			enable bit.
			"1" - enable. "0" - disable.
4	RW	0x0	Slave address matches interrupt enable bit.
			"1" - enable. "0" – disable.
3	RW	0x0	Slave ACK period interrupt enable bit (SRX mode).
			"1" - enable. "0" - disable.
2	RW	0x0	Slave receives ACK interrupt enable bit (STX mode).
			"1" - enable. "0" - disable.
1	RW	0x0	Master ACK period interrupt enable bit (MRX mode).
			"1" - enable. "0" - disable.
0	RW	0x0	Master receives ACK interrupt enable bit (MTX mode).
			"1" - enable. "0" - disable.

I2C_ISR

Address: Operational Base + offset(0x18) I2C interrupt status register.

bit	Attr	Reset Value	Description
31:8	-	-	Reserved
7	RW	0x0	Arbitration lose status bit.
<i>'</i>		0.00	1'' - Arbitration lose occurs
			"0" - No Arbitration lose occurs
			Write this bit "0" to clear.
			Write "1" will not change this bit.
6	RW	0x0	Abnormal stop status bit.
0	K VV	0.00	"1" – Abnormal stop occurs
			"0" – No abnormal stop occurs
			Write this bit "0" to clear.
5	RW	0.40	Write "1" will not change this bit.
С	RW	0x0	Broadcast address (address zero) matches status bit.
			"1" – Broadcast address matches.
			"0" – No broadcast address matches.
			Write this bit "0" to clear.
4		00	Write "1" will not change this bit.
4	RW	0x0	Slave address matches status bit.
			"1" -Slave address matches.
			"0" – No slave address matches (When read).
			Clear slave address matches interrupt (When
			write).
			Write this bit "0" to clear.
2		00	Write "1" will not change this bit.
3	RW	0x0	Slave ACK period interrupt status bit (SRX mode).
			"1" – interrupt generation
			"0" – no interrupt generation
			Write this bit "0" to clear.
2	DW	00	Write "1" will not change this bit.
2	RW	0x0	Slave receives ACK interrupt status bit (STX mode).
			"1" – interrupt generation
			"0" – no interrupt generation
			Write this bit "0" to clear.
4	DW		Write "1" will not change this bit.
1	RW	0x0	Master ACK period interrupt status bit (MRX mode).
			"1" – interrupt generation
4			"0" – no interrupt generation
		T T	Write this bit "0" to clear.
		0.00	Write "1" will not change this bit.
0	RW	0×0	Master receives ACK interrupt status bit (MTX mode).
			"1" – interrupt generation
			"0" – no interrupt generation
			Write this bit "0" to clear.
			Write "1" will not change this bit.

I2C_LCMR

Address: Operational Base + offset(0x1C) This register contains the bits to generate start and stop commands of I2C controller.

bit	Attr	Reset Value	Description
31:3	-	-	Reserved
2	RW	0x0	"RESUME" condition generation bit. "1" - enable. "0" - disable. Write "1" to start "RESUME" action. It cannot be cancelled by write "0". This bit is self-cleared after

			"RESUME" action.
			Write "0" is undefined.
1	RW	0x0	"STOP" condition generation bit. "1" - enable. "0" - disable. Write "1" to start "STOP" action. It cannot be cancelled by write "0". This bit is self-cleared after "STOP" action.
0	RW	0x0	 Write "0" is undefined. "START" condition generation bit. "1" - enable. "0" - disable. Write "1" to start "START" action. It cannot be cancelled by write "0". This bit is self-cleared after "START" action. Write "0" is undefined.

I2C_LSR

Address: Operational Base + offset(0x20) This register is used to read I2C core status

This regi					
bit	Attr	Reset Value	Description		
31:2	-	-	Reserved		
1	R	0x0	I2C receives ACK status bit (MTX and STX modes). "0" – I2C bus receives ACK "1" – I2C bus receives NAK.		
0	R	0x0	I2C core busy status bit. '1' – After START condition detect. '0' – After STOP condition detect.		

I2C_CONR

Address: Operational Base + offset(0x24)

This register is used to set the operation modes and ACK enable bit of I2C controller.

bit	Attr	Reset Value	Description
31:5	-	-	Reserved
4	RW	0x0	I2C bus acknowledge enable register "0" – enable (ACK). "1" – disable (NAK). When enable, the SDA is free (TX mode), and is LOW (RX mode) in acknowledge time.
3	RW	0x0	Master receive/transmit mode select bit "0": receive. "1": transmit.
2	RW	0x0	Master port enable bit "0": disable. "1": enable.
1	RW	0x0	Slave receive/transmit mode select bit "0": receive. "1": transmit.
0	RW	0x0	Slave port enable bit "0": disable. "1": enable.

I2C_OPR

Address: Operational Base + offset(0x28)

This register is used to set I2C core enable bit, frequency divider factor, internal state machine reset and slave address length modes.

bit	Attr	Reset Value	Description
31:9	-	-	Reserved
8	RW	0x0	 I2C slave address mode bit. "0" - 7 bits address mode. "1" - 10 bits address mode.
7	RW	0x0	I2C state machine (both master/slave) reset bit. "0" – don't reset state machine

			"1" – reset state machine
6	RW	0x0	I2C core enable bit
			"0" – disable I2C controller.
			"1" – enable I2C controller.
5:0	RW	0x0	I2C clock divisor bits (I2CCDVR).
			The value of I2CCDVR is used to generate the transmit
			and receive bit rate of the I2C master part. And the bit
			rate equation will be described more detail in section
			below.

Notes: Attr: RW - Read/writable, R - read only, W - write only

19.4 Functional Description

19.4.1 Operation

12C bus terminology	
TERM	DESCRIPTION
Master	The device initiates/stops a transfer and generates SCL clock signals.
Slave	The device addressed by a master.
Transmitter	The device which sends data to SDA line.
Receiver	The device which receives data from SDA line.
Multi-master	More than one master can attempt to control the bus without corrupting the message.
Arbitration	If multi-master condition occurs, only one master is allowed to own the bus during this procedure.
Synchronization	Procedure to synchronize the clock signals of two or more devices.

The I2C controller supports both the Master and Slave functions. It also supports the 7-bits/10-bits addressing mode and support general call address. The maximum clock frequency and transfer rate can be up to 400Kbit/sec.

The operations of I2C controller is divided to 3 parts and described separately: initialization, master mode programming, and slave mode programming.

More details are listed in the Program Sequence section.

Initialization

The I2C controller is based on AMBA APB bus architecture and usually is part of a SOC. So before I2C operates, some system setting & configuration must be conformed, which includes:

I2C Register memory mapping

• I2C interrupt connection type: CPU interrupt scheme should be considered. If the I2C interrupt is connected to extra Interrupt Controller module, we need decide the INTC vector.

I2C Clock Rate: The I2C controller uses the APB clock/5 as the system clock so the APB clock will determine the I2C bus clock. The correct register setting is subject to the system requirement.

Master Mode Programming

SCL Clock: When the I2C controller is programmed in Master mode, the SCL frequency is determine by I2C_OPR register. The SCL frequency is calculated by the following formula

SCL Divisor = $(I2CCDVR[5:3] + 1) \times 2^{(I2CCDVR[2:0] + 1)}$

SCL = PCLK/ 5*SCLK Divisor

The I2CCDVR[2:0] is coarse factor and I2CCDVR[5:3] is fine tune factor for the SCL

clock.

Data Receiver Register Access: The Master data receive register (I2C_MRXR) can only be correctly accessed at Master Receiver Mode. When accessing the I2C_MRXR register, make sure the I2C_CONR[3:2] is set to receiver mode.

Start Command and 1'st Byte Address: The I2C controller combines the start command and 1'st byte address data output together. SW cannot issue start command only. So before issuing start command, SW must prepare the correct address data (include R/W bit) to the I2C_MTXR register. Since the I2C protocol allows the repeated start command, the resume command needs to be issued with repeated start.

Interrupt and Resume: I2C controller interrupt status is generated by HW and cleared by SW. The clear scheme is to write 0 to the correspond bit. Writing 1 to interrupt status bits will not get any affect. The interrupt clear affect only the interrupt status bits. For reasons of flexibility and interrupt latency reduction, the interrupt clear will not resume the I2C function. The I2C function resumes when I2C_LCMR register resume bit is set to 1. This separates the I2C service routine from the ISR (Interrupt Service Routine). SW must carefully design the I2C service routine because the I2C controller may be locked in some special state. When operating at Transmit mode, SW should prepare the next transmit data on the I2C_MTXR register before issue the resume command.

Read/Write Command: The I2C Read/Write command depends on the last bit of address. SW should take the responsibility of Read/Write control. The Read/Write control and the Master Receive/Transmit mode setting must be correctly set before resume the I2C function.

Multi-Master Arbitration: When I2C controller works on Multi-Master I2C bus, HW will detect the bus busy condition and arbitration loss. When it happens, HW will stop the transaction and notify SW. SW should take the responsibility of re-transmit and time-out handling.

Master Interrupt Condition: There are 3 interrupt bits in I2C_ISR register related to master mode.

Master ACK (Bit 0): The bit is asserted when Master receives ACK. In other words, the interrupt happens only at Master Transmit Mode.

Master ACK Period (Bit 1): The bit is asserted when Master needs to send out ACK. In other words, the interrupt happens only at Master Receive Mode.

Arbitration Loss (Bit 7): The bit is asserted when Master starts a transaction but lose the bus arbitration.

Stop Command: Master can issue Stop command when receive Master ACK or Master ACK Period interrupt. Because the Stop command is attached at the end of a transaction, the resume command needs to be issued with stop command. According to the I2C spec, the NAK must be sent out at Receive Mode in Master ACK Period before Stop.

Slave Mode Programming

Data Receiver Register Access: The Slave data receive register (I2C_SRXR) can only be correctly accessed at Slave Receiver Mode. When accessing the I2C_SRXR register, make sure the I2C_CONR[1:0] is set to slave mode.

7 Bits and **10** Bits Address: I2C Slave transaction starts when Slave address is matched. The I2C controller supports both the standard 7 bits address mode and 10 bits address mode. The I2C controller filters out the transaction of which address is not matched with the I2C_SADDR register. However, I2C controller only filters the 1st address mode, SW should take care the 2nd address for 10 bits address mode. The 7 or 10 bits address mode is set with I2C_OPR[8].

7 Bits Address Setting: Slave function begins upon detecting a received address matched with I2C_SADDR register. The I2C_SADDR does not include the Read/Write bit. The I2C_SADDR[9:7] is ignored at 7 bits address mode.

10 Bits Address Setting: The I2C_SADDR register must be correctly initialized before slave function start to work. The I2C_SADDR does not include the Read/Write bit. The I2C controller detects the received 1st address by the I2C_SADDR[9:8] combined with the 10 bits mode address prefix(0b11110xx).

Address Matching: The 1st transaction received by I2C controller in slave mode is the address. When the address matched with the slave address of the I2C controller, it will notify SW with an interrupt. I2C_ISR[4] high represents the incoming slave address matched with the specific slave address of the I2C controller. I2C_ISR[5] high represents the broadcast, the general call (0x00), is detected.

When address matched, SW should read the I2C_SRXR register to figure out the transaction is a read or write and set the slave mode accordingly before resume ACK. If the next transaction is a read, the read data needs to be prepared to the I2C_STXR before resume.

10 Bits Address 2nd Phase: Because the I2C controller takes care only the 1st address matching at 10 bits address mode, SW should take care the 2nd address comparison. When the 2nd byte address comparison fails, SW should issue a reset, I2C_OPR[7], and issue a resume. After reset and resume, HW will ignore the rest coming transactions until next start detected.

Interrupt and Resume: the interrupt is generator by I2C controller and cleared by SW. The clear scheme is to write 0 to the corresponding bit. Writing 1 to interrupt status bits will not get any affect. The interrupt clear affect only the interrupt status bits. For reasons of flexibility and interrupt latency reduction, the interrupt clear will not resume the I2C function. The I2C function resumes when I2C_LCMR register resume bit is set to 1. This separates the I2C service routine from the ISR (Interrupt Service Routine). SW must carefully design the I2C service routine because the I2C controller may be locked in some special state. When operating at Transmit mode, SW should prepare the next transmit data on the I2C_STXR register before issue the resume command.

Read/Write Command: The I2C Read/Write command depends on the last bit of address. SW should take the responsibility of Read/Write control. The Read/Write control and the Master Receive/Transmit mode setting must be correctly set before resume the I2C function.

Salve Interrupt Condition: There are 5 interrupt bits in I2C_ISR register related to slave mode.

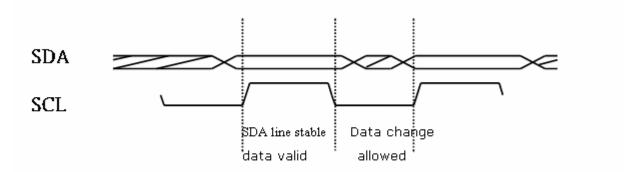
Slave ACK (Bit 2): The bit is asserted when Slave receives ACK. In other words, this interrupt happens only at Salve Transmit Mode.

Salve ACK Period (Bit 3): The bit is asserted when Slave needs to send out ACK. In other words, this interrupt happens only at Slave Receive Mode.

Slave address match (bit 4): The bit is asserted when the coming address is matched with the slave address of the I2C controller. Slave ACK interrupt is not asserted when Slave address match interrupt is asserted.

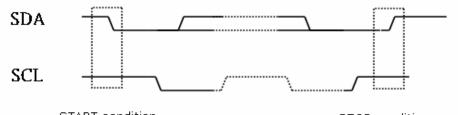
Broadcast address match (bit 5): The bit is asserted when the coming address matched with general call (0x00) address. Slave ACK interrupt is not asserted when general call address match interrupt is asserted.

Abnormal stop occurs (bit 6): The bit is asserted when Slave receive abnormal stop.


I 2C controller data transfer waveform

Bit transferring

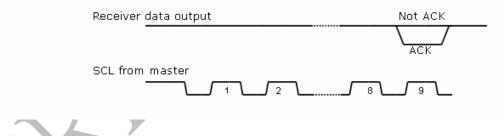
(a) Data Validity


The SDA line must be stable during the high period of SCL, and the data on SDA line

can only be changed when SCL is in low state.

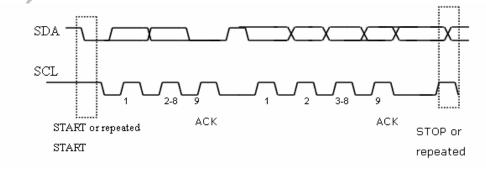
(b) START and STOP conditions

START condition occurs when SDA goes low while SCL is in high period. STOP condition is generated when SDA line goes high while SCL is in high state.

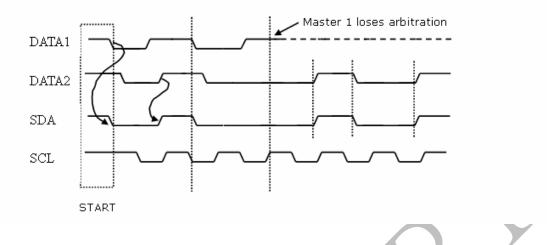

START condition

STOP condition

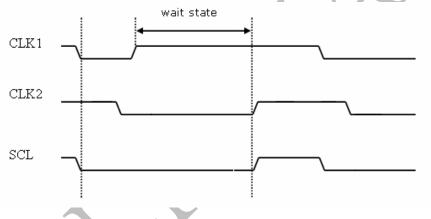
Data transfer


(a) Acknowledge

After a byte of data transferring (clocks labeled as $1 \sim 8$), in 9th clock the receiver must assert an ACK signal on SDA line, if the receiver pulls SDA line to low, it means "ACK", on the contrary, it's "NOT ACK".


(b) Byte transfer

The master own I2C bus might initiate multi byte ot transfers to a slave, the transfers starts from a "START" command and ends in a "STOP" command. After every byte transfer, the receiver must reply an ACK to transmitter.


(c) Arbitration

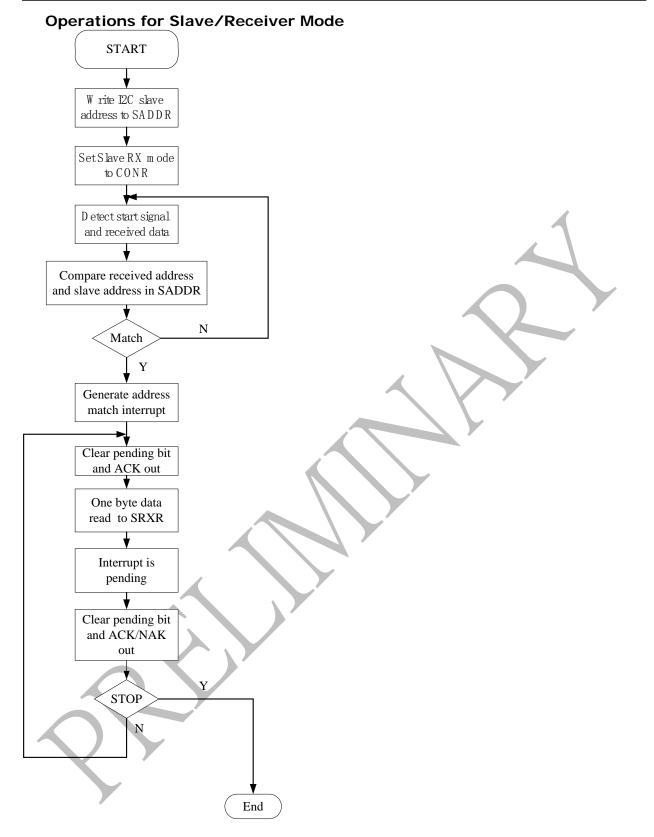
Arbitration takes place at SDA line, while the SCI line is at high level. The master transmits a high level, while another master transmits a low level will lose arbitration.

(d) Synchronization

Clock synchronization is performed using the wired-and connextion of I2C interface to the SCL line.

19.4.2 Programming sequence

Control/Status Register programming sequence


The I2C controller core operation flow chart below is to describe how the software configures and performs an I2C transaction through this I2C controller core. Descriptions are divided into 4 sections, master transmit mode, master receive mode, slave transmit mode and slave receive mode. Users are strongly advised to following.

START SetCONR as MasterTX mode SetM TXR as accessed slave address Read LSR to check bus free Set start to LCMR Slave address in MTXR is transmitted ACK period and then interrupt is pending STOP Ν Set stop to Write new LCMR data to MTXR Clear pending bit Clear pending bit Data in MTXR is Wait until stop shifted to slave condition is effective ᡟ End

Operations for Master/Transmitter Mode

Operations for Master/Receiver Mode START Set stop to SetCONR as LCMR MasterTX mode ¥ Clear pending bit $\operatorname{Set} M T X R$ as accessed slave SetCONR as address MasterRX mode Wait until stop condition is Read LSR to check effective Clear pending bit bus free ᡟ ► End One byte Data Set start to transferred to LCMR MRXR Slave address in MTXR Interrupt is is transmitted pending Write ACK/NAK Receive ACK/NAK, then to CONR interrupt is pending Clear pending bit Y STOP N Y Ν STOP

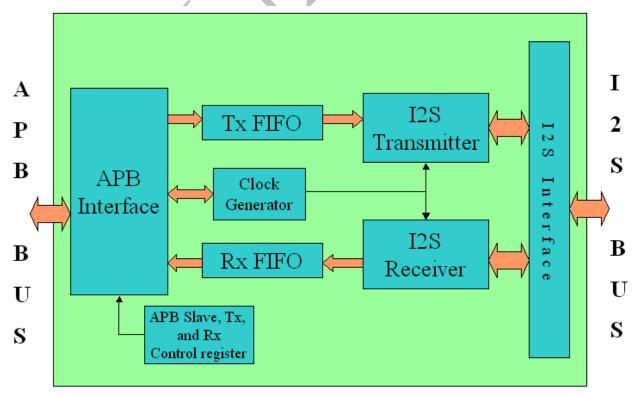
Operations for Slave/Transmitter Mode START ŧ W rite I2C slave address to SADDR SetSlaveRX mode to CONR D etect start signal and received data ¥ Compare received address and slave address in SADDR ¥ Ν Match Y Generate address match interrupt Set Slave TX mode to CONR ► Set data to STXR Clear pending bit Y STOP ΙN The data in STXR End is transmitted Receive ACK/NAK and then interrupt pending

Chapter 20 I2S Controller

20.1 Design Overview

20.1.1 Overview

The I2S Controller is designed for interfacing between the APB bus and the I2S bus. The I2S bus (Inter-IC sound bus) is a serial link for digital audio data transfer between devices in the system and be invented by Philips Semiconductor. Now it is widely used by many semiconductor manufacturers.


Devices often use the I2S bus are ADC, DAC, DSP, CPU, etc. With the I2S interface, we can connect audio devices and the embedded SoC platform together and provide an audio interface solution for the system.

20.1.2 Features

Have both transmitter and receiver Support mono/stereo audio file Support audio resolution: 8, 16 bits Support audio sample rate from 32 to 96 KHz Support I2S, Left-Justified, Right-Justified digital serial audio data interface Have 2 FIFOs with hardware configurable size for Tx and Rx transfer Support Master and Slave mode function For Tx and Rx Transfer.

20.2 Architecture

This chapter provides a description about the functions and behavior under various conditions.

20.2.1 Block Diagram

20.2.2 Block Descriptions

APB Interface/Control Register

The APB Interface implements the APB slave operation. It contains control registers of APB slave, transmitter and receiver inside. Through the APB slave, system can control this I2S design.

Clock Generator

The Clock Generator implements clock generation function. The input source clock to the module is MCLK_I2S, and by the divider of the module, the clock generator generates SCLK and LRCK to transmitter and receiver.

I2S Transmitter

The I2S Transmitter implements transmission operation. The transmitter can act as either master or slave, with I2S, Left-Justified, and right-Justified serial audio interface. The digital data input is through TX FIFO, and output serial data to I2S Interface.

I2S Receiver

The I2S Receiver implements Receive operation. The receiver can act as either master or slave, with I2S, Left-Justified, and right-Justified serial audio interface. The serial data input is from I2S interface, and input digital data to RX FIFO.

TX FIFO/RX FIFO

The TX FIFO/RX FIFO is the buffer to store audio data. Both FIFOs have their FIFO control circuit. The size of each FIFO can be programmable, which the default size is 32 bits x 32.

I2S Interface

The I2S Interface is used to connect I2S bus and both transmitter and receiver of the design. For transmitter, it has four stereo output channels to connect devices, like audio DAC. It is only one of four stereo channels active at one time. For receiver, it has one stereo input channel. The I2S Interface also implements loop-back mode. At loop-back mode, the TX channel 0 is connected directly to RX channel.

20.3 Registers

This chapter describes the control/status registers of the design.

20.3.1 Registers Summary

Name	Offset	Size	Reset Value	Description
I2S_OPR	0x0000	W	0x10000018	I2S version control and operation start register.
I2S_TXR	0x0004	W	0x0000000	I2S transmitter FIFO input.
I2S_RXR	0x0008	W	0x0000000	I2S receiver FIFO output.
I2S_TXCTL	0x000C	W	0x00010811	I2S transmitter control
				register.
I2S_RXCTL	0x0010	W	0x00010811	I2S receiver control register.
I2S_FIFOSTS	0x0014	W	0x00010055	I2S transmit and receive FIFO
				control register.
I2S_IER	0x0018	W	0x0000000	I2S interrupt Enable/Mask
				register.
I2S_ISR	0x001C	W	0x0000000	I2S interrupt status register.

2. Notes:

Size: B - Byte (8 bits) access, HW - Half WORD (16 bits) access, W - WORD (32 bits) access

20.3.2 Detail Register Description

I2S_OPR

Address: Operational Base + offset(0x00) This register contains I2S Controller's version and transmit/receive operation bit.

bit	Attr	Reset Value	Description
31:24	R	0x1	I2S version
23:18	-	-	Reserved
17	W	0x0	Reset Tx logic.
			Writing to this bit will reset Tx logic and its FSM.
16	W	0x0	Reset Rx logic.
			Writing to this bit will reset Rx logic and its FSM.
15:7	-	-	Reserved
6	W	0x0	HDMA REQ1 Disable
			0 : Enable HDMA REQ1
			1 : Disable (HDMA REQ1 Always 1)
5	W	0x0	HDMA REQ2 Disable
			0 : Enable HDMA REQ2
			1 : Disable (HDMA REQ2 Always 1)
4	RW	0x1	HDMA_REQ1_CH
			This bit is to indicate the Hardware DMA IF1 is used for
			which FIFO
			0 : TX
			1 : RX
3	RW	0x1	HDMA_REQ2_CH
			This bit is to indicate the Hardware DMA IF2 is used for
			which FIFO
			0 : TX
2	RW	00	1 : RX
2	RW	0x0	12S loop-back mode.
			This bit is to indicate the operation mode of the I2S
			Controller is in a normal operation mode or in a loop-back mode.
			0 : Normal operation mode.
			1 : Loop-back mode.
1	RW	0x0	I2S transmit-operation start.
_			The transmitter starts to send SCLK and LRCK signals
			and transmit data stored in the Tx FIFO to receiver
			after this bit is set to 1.
			(Transmitter acts as a master)
0	RW	0x0	I2S receive-operation start.
			The receiver starts to send SCLK and LRCK signals and
			receive data from transmitter after this bit is set to 1.
		r	(Receiver acts as a master)

I2S_TXR

Address: Operational Base + offset(0x04)

I2S transmit FIFO input.

bit	Attr	Reset Value	Description
31:0	W	0x0	Written data in this register will be transmitted on the
			I2S bus through the Transmit FIFO.

I2S_RXR

Address: Operational Base + offset(0x08)

1	25 recei	ve FIFO	output.	
	bit	Attr	Reset Value	Description
-				

31:0	R	0x0	Received data from I2S bus through the Receive FIFO
			will be read in this register.

I2S_TXCTL

Address: Operational Base + offset(0x0C) This register controls the setting of the transmitter.

bit	Attr	Reset Value	Description
31:18	-	-	Reserved
17:16	RW	0x1	Oversampling rate select bits.
			0x0 : 32fs 0x1 : 64fs
			0x2 : 128fs 0x3 : reserved
			Oversampling rate = LRCK / SCLK
15:8	RW	0x8	Ratio bits.
			(MCLK / Ratio) = oversampling rate = SCLK
			frequency.
			This value is from $1 \sim 255$. Default value is 8.
7:6	-	-	Reserved
5:4	RW	0x1	Sample data resolution.
			Number of bits that are transmitted from each audio
			word.
			0x0 : 8 bits 0x1 : 16 bits
			0x2~0x3: Reserved
3	RW	0x0	Mono/Stereo mode.
			When the bit is set to 1, transmitter is at Mono mode,
			and data output from left channel.
			Default is stereo mode.
2:1	RW	0x0	Bus Interface mode
			Choose the type of the bus interface.
			0x0 : I2S 0x1 : Left - Justified
			0x2 : Right - Justified 0x3 : reserved
0	RW	0x1	Master/Slave mode select.
			This bit decides that transmitter acts as a master or
			slave.
			1 : Master mode
			0 : Slave mode

12S_RXCTL

Address: Operational Base + offset(0x10) This register controls the setting of the receiver

		rois the setting o	
bit	Attr	Reset Value	Description
31:25	-		Reserved
24	W	0x0	Clear Rx FIFO bit.
			Writing a '1' to this bit clears the Receiver FIFO and
			resets its logic. But it doesn't clear the shift register,
			i.e. receiving of the current character continues.
23:18	_	-	Reserved
17:16	RW	0x1	Oversampling rate select bits.
			0x0 : 32fs 0x1 : 64fs
			0x2 : 128fs 0x3 : reserved
			Oversampling rate = LRCK / SCLK
15:8	RW	0x8	Ratio bits.
			(MCLK / Ratio) = oversampling rate = SCLK
			frequency.
			This value is from $1 \sim 255$. Default value is 8.
7:6	-	-	Reserved
5:4	RW	0x1	Sample data resolution.
			Number of bits that are transmitted from each audio

r			
			word. (20 and 24 bits is not available now)
			0x0 : 8 bits 0x1 : 16 bits
			0x2 : 20 bits 0x3 : 24 bits
3	RW	0x0	Mono/Stereo mode.
			When the bit is set to 1, transmitter is at Mono mode,
			and data output from left channel.
			Default is stereo mode.
2:1	RW	0x0	Bus Interface mode
			Choose the type of the bus interface.
			0x0 : I2S 0x1 : Left - Justified
			0x2 : Right - Justified 0x3 : reserved
0	RW	0x1	Master/Slave mode select.
			This bit decides that transmitter acts as a master or
			slave.
			1 : Master mode
			0 : Slave mode

12S_FIFOSTS

Address: Operational Base + offset(0x14)

This register shows FIFO status and interrupts trigger level.

bit	Attr	Reset Value	Description
31:20	-	-	Reserved
19:18	RW	0x0	Tx interrupt trigger level.
			0x0 : almost empty 0x1 : half full
			0x2 : almost full 0x3 : reserved
17:16	RW	0x1	Rx interrupt trigger level.
			0x0 : almost empty 0x1 : half full
			0x2 : almost full 0x3 : reserved
15:10	-	-	Reserved
9	R	0x0	Tx FIFO half full flag.
			This bit is set whenever Tx FIFO is half full.
8	R	0x0	Rx FIFO half full flag.
			This bit is set whenever Rx FIFO is half full.
7	R	0x0	Tx FIFO almost full flag.
			This bit is set whenever Tx FIFO is almost full.
6	R	0x1	Tx FIFO almost empty flag.
			This bit is set whenever Tx FIFO is almost empty.
5	R	0x0	Rx FIFO almost full flag.
			This bit is set whenever Rx FIFO is almost full.
4	R	0x1	Rx FIFO almost empty flag.
			This bit is set whenever Rx FIFO is almost empty.
3	R	0x0	Tx FIFO full flag.
			This bit is set whenever Tx FIFO is full.
2	R	0x1	Tx FIFO empty flag.
			This bit is set whenever Tx FIFO is empty.
1	R	0x0	Rx FIFO full flag.
			This bit is set whenever Rx FIFO is full.
0	R	0x1	Rx FIFO empty flag.
			This bit is set whenever Rx FIFO is empty.

I2S_IER

Address: Operational Base + offset(0x18)

This regi	This register contains the bits to control the interrupt generation of this I2S Controller.						
bit	Attr	Reset Value	Description				
31.3	-	-	Reserved				

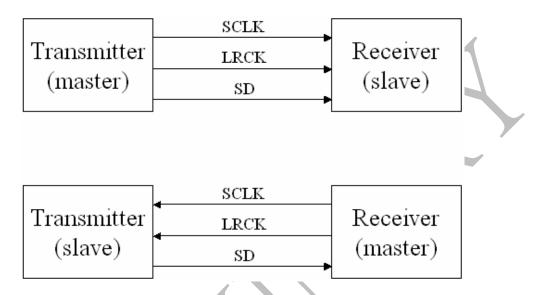
2 RW 0x0 Tx FIFO data trigger interrupt enable bit.	31:3	-	-	Reserved
	2	RW	0x0	Tx FIFO data trigger interrupt enable bit.

			This bit enables the interrupt when Tx FIFO's trigger level is reached. 0x0 : Disable. 0x1 : Enable.
1	RW	0x0	Rx FIFO data trigger interrupt enable bit. This bit enables the interrupt when Rx FIFO's trigger level is reached. 0x0 : Disable. 0x1 : Enable.
0	RW	0x0	Rx FIFO overrun interrupt enable bit. This bit enables the interrupt when Rx FIFO overrun condition is occurred. 0x0 : Disable. 0x1 : Enable.

I2S_ISR

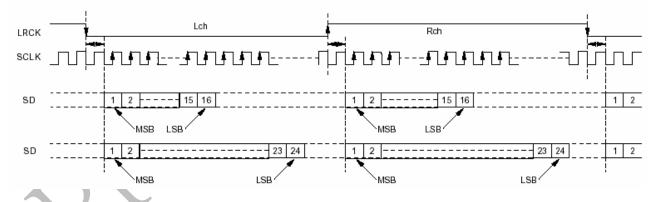
Address: Operational Base + offset(0x1C) I2S interrupt status register

bit	Attr	Reset Value	Description
31:3	-	-	Reserved
2	R	0x0	Tx FIFO almost empty interrupt. This bit is set when Tx FIFO's trigger level is reached, and CPU wishes to keep transmitting data to the device. The bit is cleared when data in Tx FIFO is above trigger level.
1	R	0x0	Rx FIFO data trigger interrupt. This bit is set when Rx FIFO's trigger level is reached. The bit is cleared when data in Rx FIFO is below trigger level.
0	R	0x0	Rx FIFO overrun interrupt. This bit is set when Rx FIFO is full and another character has been received in the receiver shift register . If another character is starting to arrive, it will overwrite the data in the shift register but the FIFO will remain intact. The bit is cleared after Rx FIFO is cleared by software simultaneously.

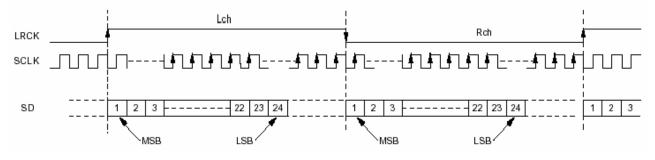

Notes: Attr: RW - Read/writable, R - read only, W - write only

20.4 Functional Description

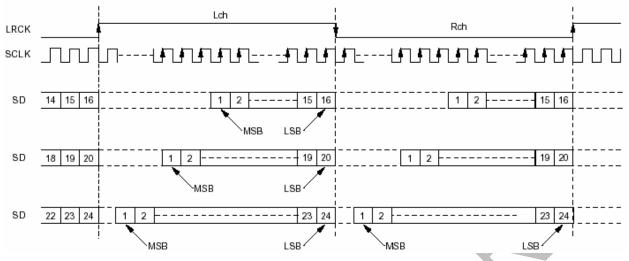
20.4.1 Operation


Digital audio serial data interface format

The I2S interface core supports three digital serial data interface formats for audio data transfer: I2S, Left-Justified, Right-justified. All these formats have SCLK, LRCK, and SD signals. The signal's direction is as below:


I2S Interface format

This is the waveform of I2S interface. For LRCK signal, it goes "low" to indicate left channel and "high" to right channel. For SD signal, it transfers MSB-first and sends the MSB bit one SCLK clock cycle after LRCK goes low.


Left-Justified Interface format

This is the waveform of Left-Justified interface. For LRCK signal, it goes "high" to indicate left channel and "low" to right channel. For SD signal, it transfers MSB-first and sends the MSB bit at the same time when LRCK goes high.

Right-justified Interface format

This is the waveform of Right-Justified interface. For LRCK signal, it goes "high" to indicate left channel and "low" to right channel. For SD signal, it transfers MSB-first; but different from I2S or Left-Justified interface, its data is aligned to LSB at falling edge of the LRCK signal.

I2S Normal Operation

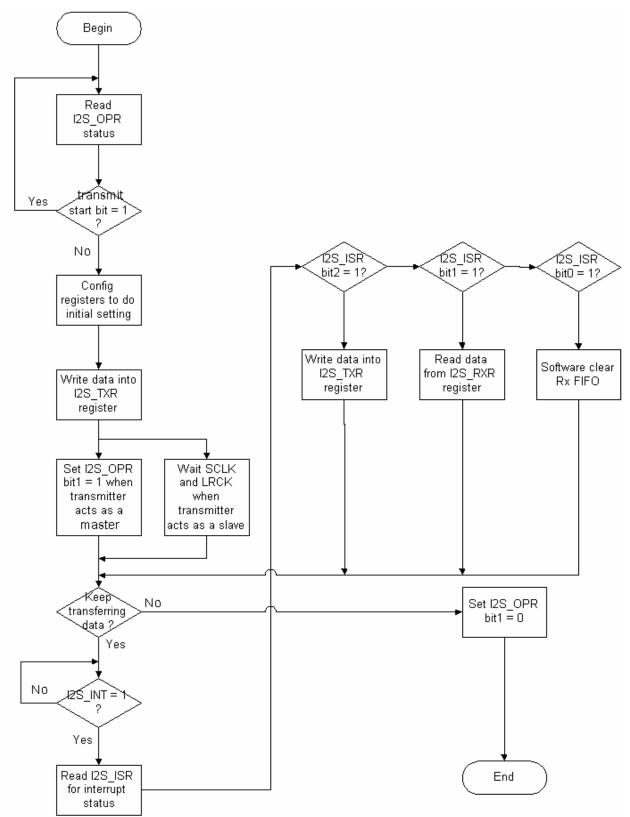
Referring to Figure 6-1, in the I2S Controller, there are four conditions: transmitter-master & receiver-master; transmitter-master & receiver-slave; transmitter-slave & receiver-master; transmitter-slave & receiver-slave.

When transmitter acts as a master, it sends all signals to receiver (slave), and CPU control when to send clock and data to the receiver. When acting as a slave, SD signal still goes from transmitter to receiver, but SCLK and LRCK signals are from receiver (master) to transmitter. Based on three interface specifications, transmitting data should be ready before transmitter receives SCLK and LRCK signals. CPU should know when the receiver to initialize a transaction and when to send data.

When the receiver acts as a master, it sends SCLK and LRCK signals to the transmitter (slave) and receives serial data. So CPU must tell the transmitter when to start a transaction for it to prepare transmitting data then start a transfer and send clock and channel-select signals. When the receiver acts as a slave, CPU should only do initial setting and wait for all signals and then start reading data.

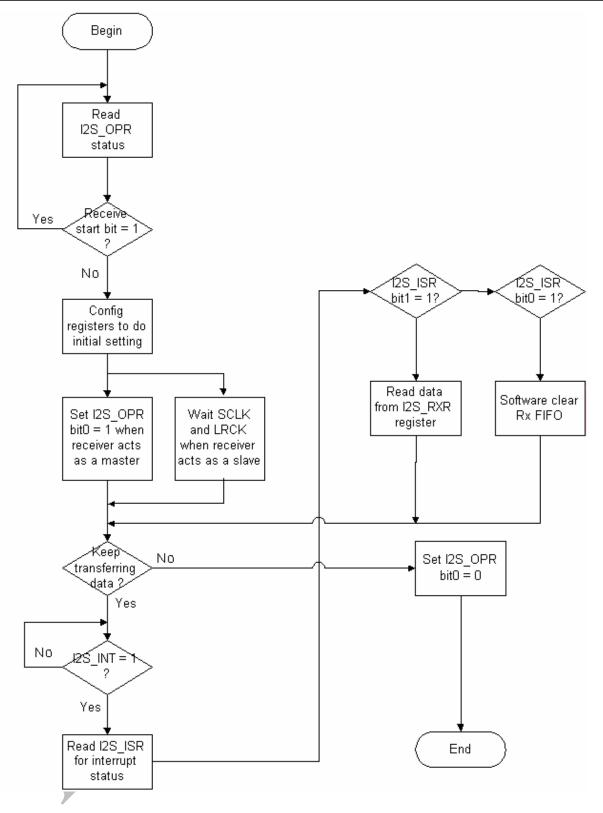
I2S initial setting

Before transmitting or receiving data, CPU need do initial setting to the I2S register. These includes CPU settings, I2S interface registers settings, and maybe the embedded SoC platform settings. These registers must be set before starting data transfer. Detail settings about the registers of the I2S interface refer to chapter 5 "Function Registers".


I2S Loop-back Test

The I2S interface has two operation modes: Normal mode and Loop-back mode. In the Loop-back mode operation, transmitter acts as a master and receiver acts as a slave. Transmitter device 0's output is connected to receiver's input. That is, TX_SCLKOUT[0], TX_LRCKOUT[0] and SDO[0] is connected to RX_SCLKIN, RX_LRCKIN and SDI.

20.4.2 Programming sequence


I2S Tx Operation Flow Chart

The flow chart below is to describe how the software to configure and perform an I2S transmitting transaction from transmitter's view.

I2S Rx Operation Flow Chart

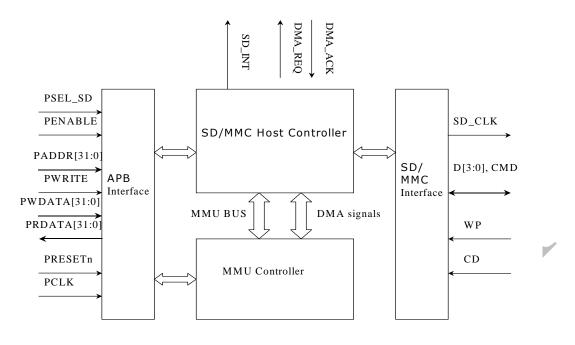
The flow chart below is to describe how the software to configure and perform an I2S receiving transaction from receiver's view.

Chapter 21 SD /MMC Host Controller

21.1 Design Overview

21.1.1 Overview

The SD 1.01/MMC 3.3 Host Controller(here after referred to as SD/MMC Host Controller) is an APB slave module that connects to the standard APB bus. The SD/MMC Host Controller is an interface bridge used between host microprocessor and SD/MMC memory card. There is a MMU structure with DMA interface for the SD/MMC Host Controller that can increase the data transfer rate between host microprocessor and SD/MMC memory card. It is designed to cover a wide area of applications such as PDA, DSC, Cellular phone, MP3 player, etc.


21.1.2 Features

- Compliant with the AMBA V2.0 APB interface
- Compliant with SD spec. Version 1.01 except SPI mode
- Compliant with MultiMediaCard system specification V3.3 except SPI mode, Stream R/W mode and I/O (Interrupt) mode
- Variable SD/MMC card clock rate 0 25 MHz which depends on APB clock frequency
- Controllable SD/MMC card clock to save power consumption
- Interrupt mechanism for card detection, command and response transfer and data transfer
- Cyclic Redundancy Check CRC7 for command and CRC16 for data integrity
- Support MMU ping-pong structure to enhance the SD/MMC data transfer performance
- Support microprocessor and DMA data transfer with byte, half word and word access

21.2 Architecture

This chapter provides a description about the functions and behavior under various conditions.

21.2.1 Block Diagram

21.2.2 Block Descriptions

- APB Interface
 - The interface between AMBA APB and MMU, SD/MMC Host Controller
 1. SD/MMC Host Controller
 - Accept the command from host microprocessor and access to SD/MMC memory card
- MMU Controller
 - The MMU Controller is a swappable data buffer controlled by the host microprocessor and it can increase the data transfer rate between the host microprocessor and SD/MMC memory card
- SD/MMC Interface
 - Controlled by host microprocessor and generate signals to SD/MMC memory card

21.3 Registers

This chapter describes the control/status registers of the design.

21.3.1 Registers Summary

Name	Offset	Size	Reset Value	Description
MMU_CTRL	0x0000	W	0x00000044	MMU control register
MMU_PNRI	0x0004	W	0x00000000	MMU pointer I setting register
CUR_PNRI	0x0008	W	0×00000000	MMU pointer I current register
MMU_PNRII	0x000C	W	0x0000000	MMU pointer II setting register
CUR_PNRII	0x0010	W	0×00000000	MMU pointer II current register

MMU_ADDR	0x0014	W	0x00000000	MMU address setting register
CUR_ADDR	0x0018	W	0x0000000	MMU address current register
MMU_DATA	0x001C	W	0x0000000	MMU data register
SD_CTRL	0x0020	W	0x00000FFF	SD/MMC Host control register
SD_INT	0x0024	W	0x00000000	SD/MMC Host interrupt register
SD_CARD	0x0028	W	0x0000007	SD/MMC card register
SD_CMDREST	0x0030	W	0x0000000	SD/MMC command and response transfer register
SD_CMDRES	0x0034	W	0x00000000	SD/MMC card command and response transfer status register
SD_DATAT	0x003C	W	0x00000000	SD/MMC data transfer register
SD_CMD	0x0040	W	0x0000000	SD/MMC command argument register
SD_RES3	0x0044	W	0x0000000	SD/MMC card response argument 3 register
SD_RES2	0x0048	W	0x0000000	SD/MMC card response argument 2 register
SD_RES1	0x004C	W	0x0000000	SD/MMC card response argument 1 register
SD_RES0	0x0050	W	0x0000000	SD/MMC card response argument 0 register

Notes:

Size: B – Byte (8 bits) access, HW – Half WORD (16 bits) access, W –WORD (32 bits) access

21.3.2 Detail Register Description

MMU_CTRL

Address: Operational Base + offset(0x00) MMU control register

bit	uorregi	Reset Value	Description
	Attr		
31:13	-	-	Reserved
12	RW	0x0	Endian control when CPU access to data buffer
			1: Big endian access
			0: Little endian access
11	RW	0x0	MMU DMA transfer signal
			0: MMU DMA transfer end
			1: MMU DMA transfer begin
10	RW	0x0	MMU DMA transfer direction
			0: Read 1: Write
9	RW	0x0	MMU bus control swap data buffer
			0: The MMU0 bus control data buffer I
			1: The MMU0 bus control data buffer II
8	RW	0x0	CPU control swap data buffer
			0: The host microprocessor control data buffer I
			1: The host microprocessor control data buffer II
7	RW	0x0	Set 1 to reset data buffer II pointer and return to 0
			automatically
6	R	0x1	Data buffer II pointer end signal

5:4	RW	0x0	Indicate data buffer II transfer width 0x0: Byte 0x 1: Half word 0x3: Word Note: 0x2 is not supported
3	RW	0x0	Set 1 to reset data buffer I pointer and return to 0 automatically
2	R	0x1	Data buffer I pointer end signal
1:0	RW	0x0	Indicate data buffer I transfer width 0x0: Byte 0x1: Half word 0x3: Word Note: 0x2 is not supported

MMU_PNRI

Address: Operational Base + offset(0x04)

MMU poi	<u>nter I se</u>	etting register	1
bit	Attr	Reset Value	Description
31:11	-	-	Reserved
10:0	RW	0x0	Set begin pointer for data buffer I transfer

CUR_PNRI

Address: Operational Base + offset(0x08) MMU pointer I current register

bit	Attr	Reset Value	Description
31:11	-	-	Reserved
10:0	R	0x0	Read the current pointer for data buffer I transfer

MMU_PNRII

Address: Operational Base + offset(0x0C)

MMU poir	MMU pointer II setting register					
bit	Attr	Reset Value	Description			
31:11	-	-	Reserved			
10:0	RW	0x0	Set begin pointer for data buffer II transfer			

CUR_PNRII

Address: Operational Base + offset(0x10)

MMU pointer II current register

bit	Attr	Reset Value	Description
31:11	-	-	Reserved
10:0	R	0x0	Read the current pointer for data buffer II transfer

MMU_ADDR

Address: Operational Base + offset(0x14) MMU address setting register

bit	Attr	Reset Value	Description
31:24	-	-	Reserved
23:0	RW	0x0	Set begin pointer for data address transfer

CUR_ADDR

Address: Operational Base + offset(0x18) MMU address current register

bit	Attr	Reset Value	Description		
31:24	-	-	Reserved		
23:0	R	0x0	Read the current pointer for data address transfer		

MMU_DATA

Address: Operational Base + offset(0x1C) MMU data register

bit	Attr	Reset Value	Description
31:0	RW	0x0	MMU data register

SD_CTRL

Address: Operational Base + offset(0x20) SD/MMC Host control register

bit	Attr	Reset Value	Description
31:14	-	-	Reserved
13	RW	0x0	Power control type for SD/MMC cards 0: The SD/MMC card power is controlled by CPU 1: The SD/MMC card power is controlled by CD
12	RW	0x0	Card detect type for SD cards 0: The card detect function is used by mechanism 1: The card detect function is used by CD/DAT3
11	RW	0x1	SD/MMC Card clock stop register 0: Run the SD/MMC Card clock 1: Stop the SD/MMC Card clock
10:0	RW	0x7FF	SD/MMC Card clock divider register
	•	•	

SD_INT

Address: Operational Base + offset(0x24) SD/MMC Host interrupt register

bit	Attr	Reset Value	Description	
31:7	-	-	Reserved	
6	RW	0x0	Command and response transfer interrupt status	
			0: No 1: Yes	
5	RW	0x0	Data transfer interrupt status	
			0: No 1: Yes	
4	RW	0x0	Card detect interrupt status	
			0: No 1: Yes	
3	-		Reserved	
2	RW	0x0	Command and response transfer interrupt enable	
			0: disable 1: enable	
1	RW	0x0	Data transfer interrupt enable	
4			0: disable 1: enable	
0	RW	0x0	Card detect interrupt enable	
			0: disable 1: enable	
		7		

SD_CARD

Address: Operational Base + offset(0x28) SD/MMC card register

bit	Attr	Reset Value	Description
31:7	-	-	Reserved
6	RW	0x0	Card select enable
			0: No 1: Yes
5	RW	0x0	Card power control signal
			0: disable 1: enable
4	RW	0x0	Card detect interrupt enable
			0: disable 1: enable
3	-	-	Reserved

2	R	0x1	Card busy signal
1	R	0x1	Card write protect signal
0	R	0x1	Card detect signal

SD_CMDREST

Address: Operational Base + offset(0x30) SD/MMC command and response transfer register

SD/MMC command and response transfer register			
bit	Attr	Reset Value	Description
31:14	-	-	Reserved
13	RW	0x0	Command transfer signal
			0: Command transfer end
			1: Command transfer begin
12	RW	0x0	Response transfer signal
			0: Response transfer end
			1: Response transfer begin
11:9	RW	0x0	Response transfer type
			0x0: R1 0x1: R1b 0x2:R2 0x3:R3 0x6:R6
			Note: Other values are not supported
8	RW	0x0	Command and response transfer error status
			0: No error 1: Error
7:6	-	-	Reserved
5:0	RW	0x0	SD/MMC Command Index

SD_CMDRES

Address: Operational Base + offset(0x34) SD/MMC command and response transfer status register

bit	Attr	Reset Value	
		Reset value	Description
31:9	-	-	Reserved
8	R	0x0	Card command transfer signal
			0: Command transfer end
			1: Command transfer begin
7	R	0x0	Card response transfer signal
			0: Response transfer end
			1: Response transfer begin
6	R	0x0	Card command and response error status
			0: No error 1: Error
5	R	0x0	Card command and response bus conflict error
			0: No error 1: Error
4	R	0x0	Card response timeout error
			0: No error 1: Error
3	R	0x0	Card response transmission bit error
			0: No error 1: Error
2	R	0x0	Card response index error
			0: No error 1: Error
1	R	0x0	Card response CRC error
			0: No error 1: Error
0	R	0x0	Card response end bit error
			0: No error 1: Error

SD_DATAT

Address: Operational Base + offset(0x3C)

SD/MMC data transfer register

31:14Reserved13RW0x0Data transfer signal 0: Data transfer end 1: Data transfer begin12RW0x0Data transfer direction 0: Read 1: Write11RW0x0Data transfer bus width 0: 1 line 1: 4 lines10RW0x0Data transfer with DMA interface 0: Disable 1: Enable9RW0x0Data transfer cycle 0: single or last 1: multiple8R0x0Data transfer bus conflict error 0: No error 1: Error7R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error	bit	Attr	Reset Value	Description
12RW0x00: Data transfer end 1: Data transfer begin12RW0x0Data transfer direction 0: Read 1: Write11RW0x0Data transfer bus width 0: 1 line 1: 4 lines10RW0x0Data transfer with DMA interface 0: Disable 1: Enable9RW0x0Data transfer cycle 0: single or last 1: multiple8R0x0Data transfer error status 0: No error 1: Error7R0x0Data transfer timeout error 0: No error 1: Error6R0x0Data transfer cRC error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error	31:14	-	-	
12RW0x0Data transfer begin12RW0x0Data transfer direction 0: Read 1: Write11RW0x0Data transfer bus width 0: 1 line 1: 4 lines10RW0x0Data transfer with DMA interface 0: Disable 1: Enable9RW0x0Data transfer cycle 0: single or last 1: multiple8R0x0Data transfer error status 0: No error 1: Error7R0x0Data transfer bus conflict error 0: No error 1: Error6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer timeout error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error	13	RW	0x0	Data transfer signal
12RW0x0Data transfer direction 0: Read 1: Write11RW0x0Data transfer bus width 0: 1 line 1: 4 lines10RW0x0Data transfer with DMA interface 0: Disable 1: Enable9RW0x0Data transfer cycle 0: single or last 1: multiple8R0x0Data transfer error status 0: No error 1: Error7R0x0Data transfer bus conflict error 0: No error 1: Error6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error				0: Data transfer end
11RW0x0Data transfer bus width 0: 1 line 1: 4 lines10RW0x0Data transfer with DMA interface 0: Disable 1: Enable9RW0x0Data transfer cycle 0: single or last 1: multiple8R0x0Data transfer error status 0: No error 1: Error7R0x0Data transfer timeout error 0: No error 1: Error6R0x0Data transfer cRC error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error				1: Data transfer begin
11RW0x0Data transfer bus width 0: 1 line 1: 4 lines10RW0x0Data transfer with DMA interface 0: Disable 1: Enable9RW0x0Data transfer cycle 0: single or last 1: multiple8R0x0Data transfer error status 0: No error 1: Error7R0x0Data transfer bus conflict error 0: No error 1: Error6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error	12	RW	0x0	Data transfer direction
10RW0x0Data transfer with DMA interface 0: Disable 1: Enable9RW0x0Data transfer cycle 0: single or last 1: multiple9RW0x0Data transfer cycle 0: single or last 1: multiple8R0x0Data transfer error status 0: No error 1: Error7R0x0Data transfer bus conflict error 0: No error 1: Error6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error				
10RW0x0Data transfer with DMA interface 0: Disable 1: Enable9RW0x0Data transfer cycle 0: single or last 1: multiple8R0x0Data transfer error status 0: No error 1: Error7R0x0Data transfer bus conflict error 0: No error 1: Error6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error	11	RW	0x0	
9RW0x0Data transfer cycle 0: single or last 1: multiple8R0x0Data transfer error status 0: No error 1: Error7R0x0Data transfer bus conflict error 0: No error 1: Error6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error				
9RW0x0Data transfer cycle 0: single or last 1: multiple8R0x0Data transfer error status 0: No error 1: Error7R0x0Data transfer bus conflict error 0: No error 1: Error6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error	10	RW	0x0	
Build Hamilton Option0: single or last 1: multiple8R0x0Data transfer error status 0: No error 1: Error7R0x0Data transfer bus conflict error 0: No error 1: Error6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error				
8R0x0Data transfer error status 0: No error 1: Error7R0x0Data transfer bus conflict error 0: No error 1: Error6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error	9	RW	0x0	
7R0x0Data transfer bus conflict error 0: No error 1: Error6R0x0Data transfer bus conflict error 0: No error 1: Error6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error	_	_		
7R0x0Data transfer bus conflict error 0: No error 1: Error6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error	8	R	0x0	
6R0x0Data transfer timeout error 0: No error 1: Error6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error				
6R0x0Data transfer timeout error 0: No error 1: Error5R0x0Data transfer CRC error 0: No error 1: Error4R0x0Read data transfer start bit error 0: No error 1: Error	7	R	0x0	
5 R 0x0 Data transfer CRC error 4 R 0x0 Read data transfer start bit error 0: No error 1: Error 0: No error 1: Error				
5 R 0x0 Data transfer CRC error 0: No error 1: Error 4 R 0x0 Read data transfer start bit error 0: No error 1: Error 0: No error 1: Error 0: No error 1: Error	6	R	0x0	
4 R 0x0 Read data transfer start bit error 0: No error 1: Error				
4 R 0x0 Read data transfer start bit error 0: No error 1: Error	5	R	0x0	Data transfer CRC error
0: No error 1: Error				0: No error 1: Error
	4	R	0x0	Read data transfer start bit error
3 R Ovo Road data transfer and hit error				0: No error 1: Error
	3	R	0x0	Read data transfer end bit error
0: No error 1: Error				0: No error 1: Error
2:0 R 0x0 Write data transfer CRC status	2:0	R	0x0	Write data transfer CRC status
0x2: No error 0x5: CRC error 0x7:No response				0x2: No error 0x5: CRC error 0x7:No response
Note: Other values are not supported				Note: Other values are not supported

SD_CMD

Address: Operational Base + offset(0x40) SD/MMC command argument register

bit	Attr	Reset Value	Description
31:0	RW	0x0	Command argument

SD_RES3

Address: Operational Base + offset(0x44) SD/MMC card response argument-3 register

SD/Mile card response argument-5 register				
bit	Attr	Reset Value	Description	
31:0	R	0x0	Card response argument-3	

SD_RES2

Address: Operational Base + offset(0x48) SD/MMC card response argument-2 register

bit	Attr	Reset Value	Description
31:0	R	0x0	Card response argument-2

SD_RES1

Address: Operational Base + offset(0x4C)

SD/MMC card response argument-1 register

bit	Attr	Reset Value	Description
31:0	R	0x0	Card response argument-1

SD_RESO

Address: Operational Base + offset(0x50)

SD/MMC card response argument-0 register							
bit	Attr	Reset Value	Description				
31:0	R	0x0	Card response argument-0				

Notes: Attr: **RW** – Read/writable, **R** – read only, **W** – write only

21.4 Functional Description

21.4.1 Operation

MMU operation

The following sections will describe the operation of MMU:


Interface reset

All MMU registers are cleared during power on reset (PRESETn LOW) and then the MMU goes into normal operation.

Normal operation

After a power-on reset, the host microprocessor needs to set some registers in order to start MMU normal operation. The MMU operations can separate into two portions. One is the host microprocessor operation accessed from MMU_DATA register and the other is the application operation accessed from MMU bus. The operation steps are described as follows:

- 1. Set MMU_PNRI register and MMU_PNRII register to indicate the access range for data buffer I and data buffer II.
- 2. Set MMU_ADDR register to indicate the access range for DMA data transfer.
- 3. Set MMU_swap bit to choose which data buffer the application wants to access.
- Set cpu_swap bit to choose which data buffer the host microprocessor wants to access.
- 5. Set bufi_width bits and bufii_width bits to indicate the data buffer I and data buffer II access bus width.
- 6. Set bufi_reset bit and bufii_reset bit to start the access data buffer operation.
- 7. Set dma_dir bit to indicate the DMA data transfer is Read or Write.
- 8. Set dma_enb bit to start the DMA data transfer.
- 9. In the host microprocessor side, the host microprocessor accesses the data buffer from MMU_DATA register. In the application side, the application accesses the data buffer from MMU bus. The MMU bus operation timings are drawn as below:

MMU_cycle	
MMU_datao[31:0]	
MMU_r MMU_datai[31:0]	

SD/MMC Host Controller operation

The following sections will describe the operation of SD/MMC Host Controller:

Interface reset

All SD/MMC Host Controller registers are cleared during power on reset (PRESETn LOW) and then the SD/MMC Host Controller waits for SD/MMC memory card insertion, gives power to SD/MMC memory card and goes to normal operation.

• Normal operation

After a power-on reset the SD/MMC Host Controller must initialize the SD/MMC memory cards by a special SD/MMC bus protocol. Each message is represented by one of the following transaction:

Command transaction:

A command is a token which starts an operation. A command is sent from the host either to a single card (addressed command) or to all connected cards (broadcast command). A command is transfer serially on the CMD line.

Response transaction:

A response is a token which is sent from an addressed card, or (synchronously) from all connected cards, to the host as an answer to a previously received command. A response is transfer serially on the CMD line.

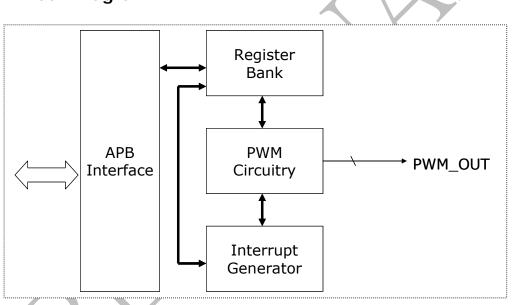
Data transaction:

Data can be transferred from the card to the host or vice versa. Data is transferred via the data lines.

Data transfers to/from the SD/MMC Memory Card are done in blocks. Data blocks are always succeeded by CRC bits. Single and multiple block operations are defined. Note that the Multiple Block operation mode is better for faster write operation. A multiple block transmission is terminated when a stop command follows on the CMD line. Data transfer can be configured by the host to use single or multiple data lines (as long as the card supports this feature).

Chapter 22 PWM Timer

22.1 Overview


There are four PWM blocks in PWM Timer (PWM0, PWM1, PWM2 and PWM3). Each PWM block built-in 4-bit pre-scalar from PCLK. The PWM Timer supports both reference mode, which can output various duty-cycle waveforms, and capture, which can measure the duty-cycle of input waveform.

22.1.1 Key Features

- Programmable 4-bit pre-scalar
- 32-bit timer/counter facility
- Single-run or continues-run PWM mode
- Support maskable interrupt

22.2 Architecture

22.2.1 Block Diagram

22.2.2 Block Descriptions

PWM Register Block

This block controls the setting of PWM mode.

PWM Circuitry

This block includes clock pre-scalar and reference comparator for PWM timer.

Interrupt Generator

This block handles the interrupt generation, masking, and clearing.

22.3 Registers

22.3.1 Registers Summary

Name	Offset	Size	Reset Value	Description
PWMT0_CNTR	0x0000	W	0x00000000	Main counter register
PWMT0_HRC	0x0004	W	0x00000000	PWM HIGH
				Reference/Capture register
PWMT0_LRC	0x0008	W	0x00000000	PWM LOW Reference/Capture
				register
PWMT0_CTRL	0x000C	W	0x00000000	Current value register
PWMT1_CNTR	0x0010	W	0x00000000	Main counter register
PWMT1_HRC	0x0014	W	0x00000000	PWM HIGH
				Reference/Capture register
PWMT1_LRC	0x0018	W	0x00000000	PWM LOW Reference/Capture
				register
PWMT1_CTRL	0x001C	W	0x00000000	Current value register
PWMT2_CNTR	0x0020	W	0x00000000	Main counter register
PWMT2_HRC	0x0024	W	0x00000000	PWM HIGH
				Reference/Capture register
PWMT2_LRC	0x0028	W	0x00000000	PWM LOW Reference/Capture
			· ·	register
PWMT2_CTRL	0x002C	W	0x00000000	Current value register
PWMT3_CNTR	0x0030	W	0x0000000	Main counter register
PWMT3_HRC	0x0034	W	0x00000000	PWM HIGH
				Reference/Capture register
PWMT3_LRC	0x0038	W	0x00000000	PWM LOW Reference/Capture
				register
PWMT3_CTRL	0x003C	W	0x00000000	Current value register

Notes: <u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

22.3.2 Detail Register Description

PWMTn_CNTR (n=0~3)

Address: Operational Base + offset(0x00, 0x10, 0x20, 0x30) PWM0 timer counter.

bit .	Attr	Reset Value	Description
31:0	RW	0	Main PWM timer counter. Counting value ranges from $0 \sim (2^{32} - 1)$.

PWMTn_HRC (n=0~3)

Address: Operational Base + offset(0x04, 0x14, 0x24, 0x34) PWM0 HIGH reference or capture register

bit	Åttr	Reset Value	Description
31:0	RW	0	PWM HIGH reference/capture registers

PWMTn_LRC (n=0~3)

Address: Operational Base + offset(0x08, 0x18, 0x28, 0x38)

PWM0 total reference or capture register

bit	Attr	Reset Value	Description
31:0	RW	0	PWM total reference/capture registers

PWMTn_CTRL (n=0~3)

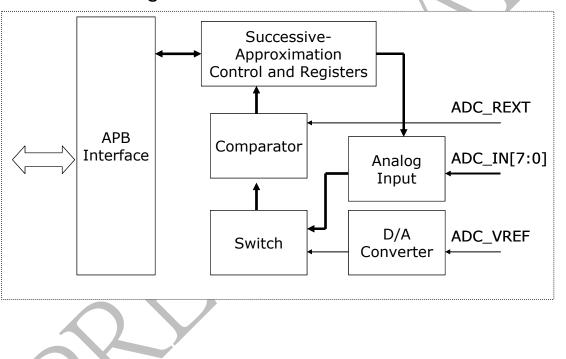
Address: Operational Base + offset(0x0C, 0x1C, 0x2C, 0x3C) This control register of PWM0 Timer.

bit	Attr	Reset Value	Description			
31:13	-	-	Reserved.			
12:9	R/W	0	Prescale factor.			
_	,		0000: 1/2 0001: 1/4			
			0010: 1/8 0011: 1/16			
			0100: 1/32 0101: 1/64			
			0110: 1/128 0111: 1/256			
			1000: 1/512 1001: 1/1024			
			1010: 1/2048 1011: 1/4096			
			1100: 1/8192 1101: 1/16384			
			1110: 1/32768 1111: 1/65536			
8	R/W	0	Capture mode enable/disable			
			0: Disable 1: Enable			
7	R/W	0	PWM reset.			
			0: Normal operation 1: Reset PWM			
6	R/W	0	Interrupt status and clear bit.			
			Write "1" to clear interrupt status.			
5	R/W	0	PWM timer interrupt enable/disable.			
			PWM timer will assert an interrupt when PWMTx_CNTR			
			value is equal to the value of PWMTx_LRC or			
			PWMTx_HRC.			
	5 /14/		0: Disable 1: Enable			
4	R/W	0	Single counter mode.			
			0: PWMTx_CNTR is restarted after it reaches value			
			equal to the PWMTx_LRC value.			
			1: PWMTx_CNTR is not increased anymore after it			
3	R/W	0	reaches value equal to the PWMTx_LRC value.			
5	rt/ VV	U	PWM output enable/disable. 0: Disable 1: Enable			
2:1	_	-	Reserved			
0	- R/W	0	PWM timer enable/disable.			
0	rt/ VV	U	0: Disable 1: Enable			

Notes: Attr: RW - Read/writable, R - read only, W - write only

Chapter 23 ADC Controller

23.1 Overview


The ADC is an 4-channel signal-ended 10-bit Successive Approximation Register (SAR) A/D Converter. It converts the analog input signal into 10-bit binary digital codes at maximum conversion rate of 100KSPS with 1MHz A/D converter clock.

23.1.1 Key Features

- 4 input channels
- Maximum 10-bit resolution
- Maximum conversion rate of 100KSPS
- Channel 3 is tied to 1.2V

23.2 Architecture

23.2.1 Block Diagram

23.2.2 Block Descriptions

Successive-Approximate Register and Control Logic Block

This block is exploited to realize binary search algorithm, storing the intermediate result and generate control signal for analog block.

Comparator Block

This block compares the analog input ADC_CH[3:0] with the voltage generated from D/A Converter, and output the comparison result to SAR and Control Logic Block for binary search. Three level amplifiers are employed in this comparator to provide enough gain.

23.3 Registers

23.3.1 Registers Summary

Name	Offset	Size	Reset Value	Description
ADC_DATA	0x0000	W	0x00000000	ADC data registers
ADC_STAS	0x0004	W	0x00000000	ADC status register
ADC_CTRL	0x0008	W	0x00000000	ADC controller register

Notes: <u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

23.3.2 Detail Register Description

ADC_DATA

Address: Operational Base + offset(0x00)

This register contains the data after A/D Conversion.

bit	Attr	Reset Value	Description
31:10	-	-	Reserved.
9:0	R	0x00000000	A/D value of the last conversion.

ADC_STAS

Address: Operational Base + offset(0x04) The status register of A/D Converter.

The state	io regioe		
bit	Attr	Reset Value	Description
31:1	-	-	Reserved.
0	R	0	ADC status.
			0: ADC stop 1: Conversion in progress

ADC_CTRL

Address: Operational Base + offset(0x08) The control register of A/D Converter.

bit	Attr	Reset Value	Description
31:7	-	-	Reserved.
6	RW	0	Interrupt status.
			This bit will be set to 1 when end-of-conversion. Set 0
	•		to clear the interrupt.
5	RW	0	Interrupt enable.
			0: Disable 1: Enable
4	RW	0	Start of Conversion(SOC)
			Set this bit to 1 to start an ADC conversion. This bit will
			reset to 0 by hardware when ADC conversion has
			started.
3	RW	0	ADC power down control bit
			0: ADC power down
			1: ADC power up and reset
2:0	RW	0	ADC input source selection.
			000 : Input source 0 (ADC_CH[0])
			001 : Input source 1 (ADC_CH[1])
			010 : Input source 2 (ADC_CH[2])
			011 : Input source 3 (ADC_CH[3])

Notes: Attr: RW - Read/writable, R - read only, W - write only

23.4 Function Description

A/D Conversion Sequence

The following is an example sequence of setting up A/D Converter, starting of conversion, and acquiring the result value.

- Power-up A/D Converter in ADC_CTRL[3]
- Select input channel of A/D Converter in ADC_CTRL[2:0] bit
- Set ADC start conversion in ADC_CTRL[4]
- Wait an A/D interrupt or poll the ADC_STAS register to determine when the conversion is completed
- Read the conversion result in the ADC_DATA register

Chapter 24 System Control Unit (SCU)

24.1 Design Overview

The SCU is an APB slave module that is designed for generating all of the internal and system clocks and resets of chip. Basically, SCU provides a memory remap function after boot for ARM7EJ, which makes the system memory space can be effectively utilized. SCU generates system clock from PLL output clock or external clock source , and generate system reset from external power-on-reset or watchdog timer reset. The SCU also provide power management mechanism for system power saving and general control bit.

Key Features

- Compliance to the AMBA APB interface
- Centralization of clock and reset sources control
- Memory space remap for ARM7EJ
- Five power management mode --- normal , slow , idle , stop, power off
- General peripheral control bit and chip status record

24.2 Registers

This section describes the control/status registers of the design.

• Registers Summary

Name	Offset	Size	Reset Value	Description	
SCU_ID	0x0000	w	0xA1000604	Generic Core ID	
SCU_REMAP	0x0004	w	0x0	Decoder remap control	
				register	
SCU_PLLCON1	0x0008	w	0x01850310	ARM PLL output freqrency	
				control register (200MHz)	
SCU_PLLCON2	0x000c	W	0x01850270	DSP PLL output freqrency	
				control register (160MHz)	
SCU_PLLCON3	0x0010	w	0x019807f8	CODEC PLL output freqrency	
				control register (24.576MHz)	
SCU_DIVCON1	0x0014	w	0x00700207	Clock divide frequency control	
				register	
SCU_CLKCFG	0x0018	W	0x0	Clock gating control register	
SCU_RSTCFG	0x001c	w	0x0000010	Soft reset control register	
SCU_PWM	0x0020	w	0x0bb80000	System Power Management	
				control register	
SCU_CPUPD	0x0024	W	0x0	ARM7 Power down control	
				register	
SCU_CHIPCFG	0x0028	w	0x00040005	System General Control	
				register	
SCU_STATUS	0x002c	W	0x0	SCU status register	
SCU_IOMUXA_CON	0x0030	w	0x00040000	Chip I/O mux controller	
				register A	
SCU_IOMUXB_CON	0x0034	w	0x0	Chip I/O mux controller	
				register B	
SCU_GPIOUPCON	0x0038	w	0x0	Gpio PAD IO up or not	
				controller register	
SCU_DIVCON2	0x003c	w	0x0	Clock divide frequency control	
				register	

• Detail Register Description

SCU_ID

Address : Base Addr+0x00 Product ID register

bit		Reset Value	Description
31:0	R	0xA1000604	Chip Generic Core ID

SCU_REMAP

Address : Base Addr+0x04

Decoder remap control register

bit	Attr	Reset Value	Description
31:0	RW	0x0	Decoder remap function. Write value 0xdead_beef to this register to start remap function
SCU_PLLCON1 Address : Base Addr+0x08			

SCU_PLLCON1

Address : Base Addr+0x08 ARM PLL configuration register

RM PLL C	onfigur	ation register				
bit	Attr	Reset Value	Description			
31:26	-	-	Reserved			
25	RW	0x0	ARM PLL test control			
			0 : normal			
			1 : test			
24	RW	0x1	ARM PLL saturation behavior enable			
			0: disable			
			1 : enable			
23	RW	0x1	ARM PLL Enables fast locking circuit			
			0 : disable			
			1 : enable			
22	RW	0x0	ARM PLL Power down control			
			1: powerdown			
21:16	RW	0x5	ARM PLL CLKR factor control			
15:4	RW	0x31	ARM PLL CLKF factor control			
3:1	RW	0x0	ARM PLL CLKOD factor control			
0	RW	0x0	ARM PLL Bypass mode control			
			1: bypass			

SCU_PLLCON2

Address : Base Addr+0x0c DSP PLL configuration register

bit	Attr	Reset Value	Description			
31:26		-	Reserved			
25	RW	0x0	DSP PLL test control			
		*	0 : normal			
			1 : test			
24	RW	0x1	DSP PLL saturation behavior enable			
			0: disable			
			1 : enable			
23	RW	0x1	DSP PLL Enables fast locking circuit			
			0 : disable			
			1 : enable			
22	RW	0x0	DSP PLL Power down control			
21:16	RW	0x5	DSP PLL CLKR factor control			
15:4	RW	0x27	DSP PLL CLKF factor control			
3:1	RW	0x0	DSP PLL CLKOD factor control			
0	RW	0x0	DSP PLL Bypass mode control			

SCU_PLLCON3

Address : Base Addr+0x10 CODEC PLL configuration register

bit	Attr	Reset Value	Description			
31:26	-	-	Reserved			
25	RW	0x0	CODEC PLL test control			
			0 : normal			
			1 : test			
24	RW	0x1	CODEC PLL saturation behavior enable			
			0: disable			
			1 : enable			
23	RW	0x1	CODEC PLL Enables fast locking circuit			
			0 : disable			
			1 : enable			
22	RW	0x0	CODEC PLL Power down control			
21:16	RW	0x18	CODEC PLL CLKR factor control			
15:4	RW	0x7f	CODEC PLL CLKF factor control			
3:1	RW	0x4	CODEC PLL CLKOD factor control			
0	RW	0x0	CODEC PLL Bypass mode control			

SCU_DIVCON1

Address : Base Addr+0x14 Internal clock configuration register

bit	Attr	Reset Value	Description				
31	RW	0x0	Select USB PHY clk 0: 24MHz 1: 12MHz				
30:29	RW	0x0	Select Sensor CLK 00: select 24MHz 01 : select 48MHz				
28	RW	0x0	10 : select 27MHz Select LCDC CLK 0 : select divider output 1 : select 27MHz from external osc				
27:20	RW	0x07	Control LCDC CLK divider frequency value lcdclk = pllclk/(lcdclk_div_sel+1)				
19:18	RW	0x0	Control LCDC CLK divider frequency source 00 : select armpll_clk 01 : select DSPpll_clk 10 : select codecpll_clk				
17:10	RW	0x0	Control LS_ADC CLK divider frequency ladcclk = pclk/(ladcclk_sel+1)				
9	RW	0x1	Control CODECCLK work frequency 0 : select divider output from codec pll (default) 1 : select 12MHz from osc input				
8:5	RW	0x0	Control CODECCLK divider frequency codecclk = codecpll_clk/(codecclk_sel+1)				
4:3	RW	0x00	Control PCLK divider frequency 00 : HCLK: PCLK = 1:1 (default) 01 : HCLK: PCLK = 2:1 10 : HCLK: PCLK = 4:1				
2	RW	0x1	clk ratio between armclk and hclk 1 : armclk: hclk=1:1 (default) 0 : armclk: hclk=2:1				
1	RW	0x1	DSP subsys slow mode. When HIGH, enter into slow				

			mode
0	RW	0x1	ARM subsys slow mode. When HIGH, enter into slow
			mode

SCU_CLKCFG

Address : Base Addr+0x18

Internal clock gating control register

bit	Attr	Reset Value	Description				
31	RW	0x0	WDT pclk disable. When HIGH, disable clock				
30	RW	0x0	Rtc pclk disable. When HIGH, disable clock				
29	RW	0x0	PWM pclk disable. When HIGH, disable clock				
28	RW	0x0	Timer pclk disable. When HIGH, disable clock				
27	RW	0x0	Gpio pclk disable. When HIGH, disable clock				
26	RW	0x0	HS_ADC clock disable. When HIGH, disable clock				
25	RW	0x0	HS_ADC hclk disable. When HIGH, disable clock				
24	RW	0x0	LS_ADC clock disable. When HIGH, disable clock				
23	RW	0x0	LS_ADC pclk disable. When HIGH, disable clock				
22	RW	0x0	SD/MMC clock disable. When HIGH, disable clock				
21	RW	0x0	spi clock disable. When HIGH, disable clock				
20	RW	0x0	i2c clock disable. When HIGH, disable clock				
19	RW	0x0	uart1 clock disable. When HIGH, disable clock				
18	RW	0x0	uart0 clock disable. When HIGH, disable clock				
17	RW	0x0	i2s pclk clock disable. When HIGH, disable clock				
16	RW	0x0	i2s clock disable. When HIGH, disable clock				
15	RW	0x0	VIP clock disable. When HIGH, disable clock				
14	RW	0x0	VIP hclk clock disable. When HIGH, disable clock				
13	RW	0x0	_CDC clock disable. When HIGH, disable clock				
12	RW	0x0	LCDC HCLK clock disable. When HIGH, disable clock				
11	RW	0x0	embedded SRAM HCLK clock disable. When HIGH, disable clock				
10	RW	0x0	a2a HCLK clock disable. When HIGH, disable clock				
9	RW	0x0	NANDC HCLK clock disable. When HIGH, disable clock				
8	RW	0x0	Reserved				
7	RW	0x0	Reserved				
6	RW	0x0	USB dev HCLK clock disable. When HIGH, disable clock				
5	RW	0x0	USB host HCLK clock disable. When HIGH, disable clock				
4	RW	0x0	DW DMA clock disable. When HIGH, disable clock				
3	RW	0x0	HDMA clock disable. When HIGH, disable clock				
2	RW	0x0	SDRAM HCLK clock disable. When HIGH, disable clock				
1	RW	0x0	DSP clock disable. When HIGH, disable clock				
0	RW	0x0	OTP clock disable. When HIGH, disable clock				

SCU_RSTCFG

Address : Base Addr+0x1c Internal soft reset control register

bit	Attr	Reset Value	Description			
31:13	-	-	Reserved			
12	RW	0x0	ARM7EJC soft reset			
11	RW	0x0	Dual Core ECT soft reset			
10	RW	0x0	Dual Core Mailbox soft reset			
9	RW	0x0	SD/MMC soft reset request. When HIGH, reset relative logic			

8	RW	0x0	HS_ADC soft reset request. When HIGH, reset			
			relative logic			
7	RW	0x0	LS_ADC soft reset request. When HIGH, reset			
			relative logic			
6	RW	0x0	CODEC soft reset request. When HIGH, reset			
0		0.00				
			relative logic			
5	RW	0x0	DSP peripheral module soft reset request. When			
			HIGH, reset relative logic			
4	RW	0x1	DSP CORE soft reset request. When HIGH, res			
			relative logic			
3	RW	0x0	Sensor soft reset request. When HIGH, reset			
			relative logic			
2	RW	0x0	LCDC soft reset request. When HIGH, reset			
			relative logic			
1	RW	0x0	USB DEV soft reset request. When HIGH, reset			
			relative logic			
0	RW	0x0	USB HOST soft reset request. When HIGH, reset			
Ū			relative logic			
L		1	relative logic			

SCU_PWM

		ddr+0x20 anagement reg Reset Value	jister Description
31:16	RW	0x0bb8	pll lock period control
15:7	-	-	Reserved
6	RW	0x0	External wakeup pin type selection 0 positive polarity 1 negative polarity
5	RW	0x0	Disable RTC alarm wakeup stop mode 0 Enable RTC alarm wakeup 1 Disable RTC alarm wakeup
4	RW	0x0	Disable external wakeup stop mode 0 Enable external wakeup pin 1 Disable external wakeup pin
3	RW	0x0	SCU interrupt clear bit 0 pending 1 clear
2:0	RW	0x0	Power Management mode 000 : Normal mode 100 : stop mode Others : Reserved

SCU_CPUPD

Address : Base Addr+0x24 ARM power down control register

bit	Attr	Reset Value	Description
31:0	RW	0x0	If write " 0xdeed_babe" will power down ARM7 clock

SCU_CHIPCFG

Address : Base Addr+0x28

S	ystem	CO	nfig	ura	tion	contro	ol re	gister	
			-		_				

bit	Attr	Reset Value	Description
31:20	RW	0x0	Reserved

19	RW	0x0	Nor flash size
			0 : 16 bit
			1 : 8bit
18	RW	0x1	Reserved
17	RW	0x0	DSP to ARM interrupt
16	RW	0x0	ARM to DSP interrupt
15:4	-	-	Reserved
3	RW	0x0	ARM7EJC high vector selection
2	RW	0x1	UHC databus16_8
			0 : 8bit
			1 : 16bit
1	RW	0x0	SEL_DOWNSTREAM
			0 USB PHY for UDC
			1 USB PHY for UHC
0	RW	0x1	Reserved
CU_STA	TUS		
		ddr+0x2c	

SCU_STATUS

Address : Base Addr+0x2c Chip status register

bit	Attr	Reset Value	Description
31:5	R	0x0	Reserved
4	R	0x0	DSPSYSCLKVALID 0 system clock unstable 1 system clock stable
3	R	0x0	ARMSYSCLKVALID 0 system clock unstable 1 system clock stable
2	R	0x0	CODEC PLL clock locked indicator 0 unstable 1 stable
1	R	0x0	DSP PLL clock locked indicator 0 unstable 1 stable
0	R	0×0	ARM PLL clock locked indicator 0 unstable 1 stable

SCU_IOMUXA_CON Address : Base Addr+0x30 Chip IO mux control register

bit	Att	tr R	Reset Value	Description			
31:	20 -	-	-	Reserved			
19	RV	ν c	0x0	i2s_codec_ext_sel 0 : i2s connected to internal codec 1 : i2s connected to pad			
18	RV	V C	Dx1	i2c_codec_ext_sel 0 : i2c connected to internal codec 1 : i2c connected to pad			
17:	16 RV	V C	0x0	I2c_flashcs3_gpiob_sel (I2C /FLASH/GPIO IO MUX control) 00: i2c sda 01: nand flash cs3 10: gpiob7			
15:	14 RV	V C	0x0	I2c_flashcs2_gpiob_sel (I2C /FLASH/GPIO IO MUX control) 00: i2c scl 01: nand flash cs2 10: gpiob6			

13:12	RW	0x0	gpiob_sd_spi_sel (GPIO /SD/SPI IO MUX control)		
			00: gpiob0~gpiob5 01: sd 10: spi		
11	RW	0x0	gpio_lcdvsyn_sel (GPIO / LCD IO MUX		
			control)		
			0: gpioa7 1: lcd vsync		
10	RW	0x0	gpio_lcden_sel (GPIO / LCD IO MUX control)		
			0: gpioa6 1: lcd data enable		
9	RW	0x0	gpio_flashcs1_sel (GPIO / FLASH IO MUX		
			control)		
			0: gpioa5 1: nand flash cs1		
8	RW	0x0	gpio_lcd22_sel (GPIO / LCD IO MUX control)		
			0: gpioa4 1: lcd data22		
7:6	RW	0x0	gpioa_lcd20_nrts0_sel (GPIO /LCD/UART0 IO		
			MUX control)		
			00: gpioa3 01: lcd data20 10: uart0 nrts		
5:4	RW	0x0	gpioa_lcd18_ncts0_sel (GPIO /LCD/UART0 IO		
			MUX control)		
			00: gpioa2 01: lcd data18 10: uart0 ncts		
3:2	RW	0x0	gpioa_lcd17_txd0_sel (GPIO /LCD/UART0 IO		
			MUX control)		
			00: gpioa1 01: lcd data17 10: uart0 txd		
1:0	RW	0x0	gpioa_lcd16_rxd0_sel (GPIO /LCD/UART0 IO		
			MUX control)		
			00: gpioa0 01: lcd data16 10: uart0 rxd		

SCU_IOMUXB_CON

Address : Base Addr+0x34 Chip IO mux control register

	bit	Attr	Reset Value	Description			
	31:21	-	-	Reserved			
	22	RW	0x0	vip_hadc_sel (VIP / HADC mux control			
				0: vip 1: hadc			
	21	RW	0x0	gpiod_sdcke_sel (GPIO IO / SDRAM CKE MUX			
				control)			
				0:gpiod3 1: SDRAM CKE			
	20	RW	0x0	gpiof_uhc_vbus_sel (GPIO IO / UHC VBUS MUX			
				control)			
_	10		00	0:gpiof4 1: UHC vbus			
	19	RW	0×0	gpiof_uhc_ocur_sel (GPIO IO / UHC OCUR MUX			
				control)			
	18	RW	0x0	0:gpiof3 1: UHC over current sdtaddr12_gpiof_sel (SDT/GPIO IO MUX control)			
	10		0.00	0: sdt addr12 1: gpiof2			
	17	RW	0x0	sdtaddr11_gpiof_sel (SDT/GPIO IO MUX control)			
			0/10	0: sdt addr11 1: gpiof1			
	16	RW	0x0	gpiof_vipclk_sel (GPIO /VIP IO MUX control)			
				0: gpiof0 1: VIP clk out			
	15	RW	0x0	gpioe_lcd_sel (GPIO /LCD IO MUX control)			
				0: gpioe0~7 1: lcd data8~15			
	14	RW	0x0	gpiod_pwm3_sel (GPIO /PWM IO MUX control)			
				0: gpiod7 1: pwm3			
	13	RW	0x0	gpiod_pwm2_sel (GPIO /PWM IO MUX control)			
_				0: gpiod6 1: pwm2			
	12	RW	0x0	gpiod_pwm1_sel (GPIO /PWM IO MUX control)			
		DIA	0.0	0: gpiod5 1: pwm1			
L	11	RW	0x0	gpiod_pwm0_sel (GPIO /PWM IO MUX control)			

			0: gpiod4 1: pwm0			
10	RW	0x0	gpiod_sdwpa_sel (GPIO/SD IO MUX control) 0: gpiod2 1:SD wpa			
9:8	RW	0x0	<pre>gpiod_sdcda_rxd1_sel (GPIO/SD/UART1 IO MUX control) 00: gpiod1 01: SD cda 10: UART1 rxd</pre>			
7:6	RW	0x0	<pre>gpiod_sdpca_txd1_sel (GPIO/SD/UART1 IO MUX control) 00: gpiod0 01: SD pca 10: UART1 txd</pre>			
5	RW	0x0	gpioc_stcs1_sel (GPIO/SDT IO MUX control) 0: gpioc7 1: Static Mem cs1			
4	RW	0x0	gpioc_i2scko_sel (GPIO/I2S IO MUX control) 0: gpioc6 1: i2s clk out			
3	RW	0x0	gpioc_i2ssdo_sel (GPIO/I2S IO MUX control) 0: gpioc5 1: i2s sdo			
2	RW	0x0	gpioc_i2ssdi_sel (GPIO/I2S IO MUX control) 0: gpioc4 1: i2s sdi			
1	RW	0x0	gpioc_i2slrck_sel (GPIO/I2S IO MUX control) 0: gpioc3 1: i2s lrck			
0	RW	0x0	gpioc_i2ssclk_sel (GPIO/I2S IO MUX control) 0: gpioc2 1: i2s sclk			

SCU_GPIOUPCON

Address : Base Addr+0x38

Chip general IO pullup or pulldown control register

	bit	Attr	Reset Value	Description
	31:0	RW	0x0	GPIO A/B/C/D PAD IO up or not controller
				0: UP 1: NO
SCU_DIVCON2				

an I Daga Addr 1 0.2a

A	daress :	Base	Addr+Ux3c				
	bit	Attr	Reset Value	Description			
	31:3	B Reserved					
	2:1	RW	0x0	Control HSADC CLK divider frequency			
				00 : osc : hsadcclk = 1:1 (default)			
				01 : osc : hsadcclk = 2:1			
		4		10 : osc : hsadcclk = $4:1$			
	0	RW	0x0	HSADC select control			
				0 : select internal clock			
	-			1: select external clock			

24.3 Application Notes

1. System remap

The system memory map will be remapped by programming SCU_REMAP register. Writing value with 0xdead_beef to this register cause the decoder change to new memory map from original one. Writing other value except 0xdeed_beef will back to original memory map.

- 2. PLL usage
- PLL output frequency configuration

The output frequency Fout is related to the reference frequency Fref by: Fout = Fref * NF / NR / OD

Fout is clk output of PLL, and Fref is clk input of PLL from external oscillator (24MHz). Another , other factors such as NF, NR, OD can be configured by programming SCU_PLLCONx (x = $1 \sim 3$) register , and their value will affect Fout as follows .

(1) CLKR: A 6-bit bus that selects the values 1-64 for the reference divider

NR = CLKR[5:0] + 1 Example: /1 pgm 000000

/4 pgm 000011

/8 pgm 000111

(2) CLKF: A 12-bit bus that selects the values 1-4096 for the PLL multiplication factor NF = CLKF[11:0] + 1

Example:

х́1	pgm 000000000000
X2	pgm 000000000001
X4096	pgm 11111111111

(3) CLKOD: A 3-bit bus that selects the values 1-8 for the PLL post VCO divider OD = CLKOD[2:0] + 1

Example:

- /1 pgm 000
- /4 pgm 011
- /8 pgm 111
- PLL frequency range requirement Fref/NR value range requirement : 300KHz - 600MHz
 Fref/NR * NF value range requirement: 120MHz - 600MHz
 If different CLKR and CLKF configuration value cause internal out of range, unpredicted

result will be caused.

• PLL frequency change method

Before set some factors such NR/NF/OD to change PLL output frequency, you must change PLL from normal to bypass mode by programming SCU_PLLCONx register or change chip from normal to slow mode by programming SCU_DIVCON register. The later method is recommended. Then until PLL is in lock state by check SCU_STATUS register you can change PLL into normal mode, or after delay about 0.3ms.

PLL powerdown

You can make PLL into or out of powerdown mode by programming SCU_PLLCONx register . After PLL will be out of powerdown mode , you can check SCU_STATUS register to confirm PLL in lock state.

3. Power management

The SCU provide five power management mode for system power saving and system can enter each power saving mode by setting appropriate control registers and programming sequence.

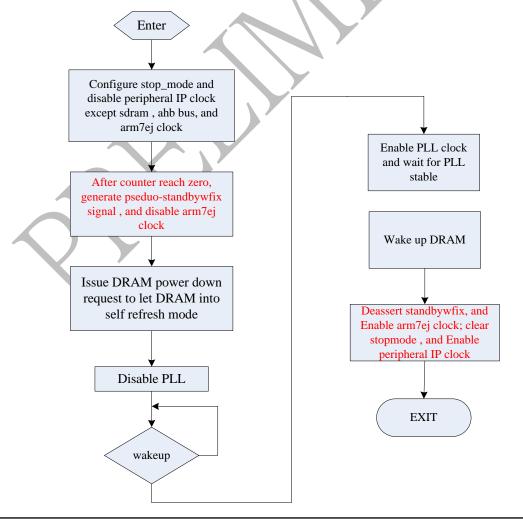
Mode	CPU	System IP	Peripheral IP	Power	Frequency
Normal	Run	Stop unused IP clock by software setting	Stop unused IP clock by software setting	On	200MHz/ 133MHz (ARM) 160MHz (DSP)
Slow	Run	Stop unused IP clock by software setting	Stop unused IP clock by software setting	On	24MHz Low speed
IDLE	Halt	Stop unused IP clock by software	Stop unused IP clock by software	On	Normal frequency or slow

		setting	setting		
Stop	Halt	Off	Off	On	Off
Power off	Off	Off	Off	RTC battery	Off

Normal mode :

In normal mode , CPU , system IPs and all peripheral IPs should works normally. The power consumption will be maximum when all IPs are turn on. Software allow to stop unused IP clock by programming SCU_CLKCFG register to reduce the power consumption.

Slow mode:


In SLOW mode, the system clock source is switching from high speed clock (PLL) to external lower speed clock source, and then power down PLL for further power saving. Enter by setting SCU_DIVCON register to select system clock source from PLL to the external OSC and set SCU_PLLCONx register to turn off PLL. Exit by turning on PLL and wait for PLL locked , switch system clock source back to PLL clock.

IDLE mode:

In IDLE mode , the CPU is expected to be idle and just wait for interrupts. In this case, software will make CPU to power down state and stop CPU clock by setting SCU_CPUPD register. The peripheral IP will keep running and wake up the CPU by external interrupt or external wakeup.

Stop mode:

In STOP mode, the operation of CPU and all IP should be halted. The clock of all IP is stop since PLL is power down. The system can release the stop mode from external wakeup pin or RTL alarm interrupt.

Power Off mode:

In power off mode , the system power is shut down. And the RTC is switch to battery power and keep running. The system can be power on again from RTC alarm or manually. For detail programming sequence please refer to RTC specification.

Programming Sequence:

- Normal mode:
 - Disable unused IP clock by setting SCU_CLKCFG register.
- Slow mode:
 - ◆ SCU_DIVCON[1:0] register to "11" to select clock source to low speed clock.
 - Turn off the PLL by setting SCU_PLLCONx[22]
 - Before switch to PLL clock , turn on PLL by setting SCU_PLLCONx[22] and read SCU_STATUS[0] to check PLL lock status.
- IDLE mode:
 - Set SCU_CPUPD to 0xdeed_babe
 - Idle mode will exit by external interrupt or wakeup pin
- STOP mode
 - Set SCU_PWM[2:0] to "100"
 - Set SCU_PWM[5:4] to select wakeup stop mode method
 - Set RTC alarm time in RTC control register if use RTC alarm to wakeup
 - Set SCU_PWM[6] to select ewakeup signal polarity if use external wakeup pin to wakeup
 - Disable all IP clock by setting SCU_CLKCFG except SDRAM clock
 - Set SCU_CPUPD to 0xdeed_babe to disable CPU clock and Power down PLL
 - Check the interrupt status when wakeup from stop mode and use SCU_PWM[3] to clear SCU_INT if system wakeup by external pin.

Chapter 25 LCD Controller

25.1 Design Overview

LCDC Unit is a controller interface to LCD panel, including a 2048X32bit SRAM. **Key features**

- Compatible MCU and RGB interface •
- Compatible 8bits series and 24bits parallel RGB interface.
- Support delta RGB interface panel.
- Support YUV or RGB image source data input relatively in line.
- Support 8 grade alpha operations.
- Support even/odd field mode.
- Support 4:2:2 or 4:2:0 YUV source data input.
- Support 16bits or 24bits RGB source data input.
- Support scale base on YUV source.
- Support MCU buffer write and bypass mode.

25.2 Register

25.2.1 Register summary

symbol	description	Reset	R/W	offset	wid
					th
lcdc_ctrl	LCDC control register	0x00	RW	0x00	14
mcu_ctrl	Alpha buffer base address & Mcu mode	0x660	RW	0x04	14
	control register	0			
hor_period	define output horizontal total dots	0x	RW	0x08	11
vert_period/	define output vertical total lines; reuse in mcu mode		RW	0x0c	10
wait	define CSn/WEn/RDn signal timing				
hor_pw	define output horizontal sync plus width		RW	0x10	5
vert_pw	define output vertical sync plus width		RW	0x14	5
hor_act	define output horizontal active region		RW	0x18	11
vert_act	define output vertical active region		RW	0x1c	10
hor_bp	define output horizontal back porch (dot)		RW	0x20	9
vert_bp	define output vertical back porch		RW	0x24	6
line0_yaddr	define line0 Y base address and line0	0x140	RW	0x28	15
	attribute				
line0_uvaddr	define line0 UV base address	0x141	RW	0x2c	11
line1_yaddr	define line1 Y base address and line0	0x280	RW	0x30	15
	attribute				
line1_uvaddr	define line1 UV base address	0x280	RW	0x34	11
line2_yaddr	define line2 Y base address and line0	0x3c0	RW	0x38	15
	attribute				
line2_uvaddr	define line2 UV base address	0x3c1	RW	0x3c	11
line3_yaddr	define line3 Y base address and line0	0x500	RW	0x40	15
	attribute				
line3_uvaddr	define line3 UV base address	0x501	RW	0x44	11
start_x	define scalar x start coordinate	0x00	RW	0x48	6
start_y	define scalar y start coordinate	0x00	RW	0x4c	10
delta_x	define scalar x step	0x200	RW	0x50	10
delta_y	define scalar y step	0x200	RW	0x54	10
intr_mask	Interrupt mask register	0x0	RW	0x58	3

Rock-Chips Confidential

alpha_alx	Alpha region A left x point	0x0	RW	0x5c	10
alpha_aty	Alpha region A top y point	0x0	RW	0x60	10
alpha_arx	Alpha region A right x point	0x13f	RW	0x64	10
alpha_aby	Alpha region A bottom y point	0xef	RW	0x68	10
alpha_blx	Alpha region B left x point	0x0	RW	0x6c	10
alpha_bty	Alpha region B top y point	0x0	RW	0x70	10
alpha_brx	Alpha region B right x point	0x13f	RW	0x74	10
alpha_bby	Alpha region B bottom y point	0xef	RW	0x78	10
lcdc_sta	Lcd controller status register	0x100 0	R	0x7c	16
lcdc_buf	Lcd buffer adc	0x200 0	R	0x7c	16
25.2.2 Deta	4	I			

25.2.2 Detail Register Description

Icdc_	ctrl	LC	DC control	registe	r 0x00 RW 0x00 14
bits	Name		directio n	res et	description
15-14	reserved				
13	alpha _24	4b	r/w	0	Indicate rgb source in alpha buffer is 24bit or 16bit type
12	uvbufexc	h	r/w	0	Exchange the UV data buffer; this mode is useful when scalar enable and Y_mix mode not enable. This mode use in video decode optimize, otherwise keep it 0.
11-9	alpha		r/w	0	Select the alpha factor. Reference alpha description.
8	Y_mix		r/w	0	Set this bit when use the Y source data was mixed. This mode use in video decode optimize, otherwise keep it 0.
7	MCU		r/w	0	Select LCD interface as 8080 bus mode.
6	rgb24b		r/w	0	Indicate RGB source type. The RGB source data type is 24 bit, when this bit set 1, otherwise the RGB source data is 16 bit rgb565 format.
5	start_eve	en	r/w	0	The first field is even field if this bit set 1, the first field is odd field in default.
4	even_en		r/w	0	Even/Odd field mode enable.
3-2	rgb_dum y	m	r/w	0	Indicate RGB interface as parallel or series mode. 0: if external LCD panel use a parallel interface. 1: reserve. 2: if external LCD panel use a series interface as UPS501. 3: if external LCD panel use a series interface as
1	enable		r/w	0	UPS502. 0: disable LCDC RGB interface and reset all the state of LCDC. 1: enable LCDC when RGB interface mode select.
0	stop		r/w	0	Set 1 to stop LCDC at current frame complete when LCDC RGB interface mode is enabled.

mcu_	_ctrl	Alpha buffer base address & Mcu moc control register			0x6600	RW	0x04	14
bits	Name	directio	res	description				
		n	et					
15	reserve							
14-8	alpha_ba	se r/w	0x6 6	Set the alpha buffer s The address used as a was supposed align in	word (32bi	it) addr	ess. The	address

				only used the top 1024 word, so the bit14 was force as 1, the real address was calculated as alpha base *16
7	reserved			the real address was calculated as alpha_base *16.
6	alp_buf_en	r/w	0x0	 The alpha buffer use as a circuit buffer. There was a pointer used to access the buffer when alpha process. 0: reset the buffer pointer to the alpha buffer start address. 1: enable the alpha buffer. This bit must set to 1 before enable alpha process. You can clear this bit at the end of very frame to sync the buffer pointer.
5	LCD_RS	r/w	0	Determine the pad LCD_RS state in MCU interface buffer write mode.
4-2	reserved			
1	buff_start	W	0	<i>1: Start the write operation in MCU interface buffer write mode. This bit will clear automatic.</i> <i>0: no effect.</i>
0	bypass	r/w	1	 1: MCU interface bypass mode, in this mode, a host write to the 2048x32 ram region will bypass to the external bus, usually the external bus connect a LCD panel with MCU interface mode. Usually use this mode to setup the LCD panel. 0: buffer write mode, in this mode, all host write to the 2048x32 ram region will buffered in the ram. You may set the buff_start bit to start the write operation. Usually use this mode to send out the image data.

hor_	hor_period define output hor			tal dclk number	0x	RW	0x08	11
bits	Name	directio n	res et	description				
15-11	reserve		<u>,</u>					
10-0	hor_period	r/w	0x6 6	Horizontal total dclk numbe	er			

vert_p ait		fine output vert fine CSn/WEn/		l lines; reuse in mcu mode nal timing	RW	0x0c	10	
bits	Name	directio n	res et	description				
15-10	reserve							
9-0	vert_period	r/w	Ох6 6	output vertical total lines.				
9-7	CSTW	r/w		This field specifies the number of processor clock cycles from the falling edge of CSN to the falling edge of RDN or WRN. If this bit is set to 0x0, the processor uses a csrw value of 0x1.				
6-3	гwpw	r/w		This field controls the widtl clock cycles. This field mus		,	processor	
2-0	rwcs	r/w		This bit field specifies the cycles from the rising edge edge of CSN.	,			

hor_	pw	def	lefine output horizontal sync plus width				RW	0x10	5
bits	Name		directio res descri		description				

RK27XX Databook

A

		n	et	
15-5	reserve			
4-0	hor_pw	r/w	0x6 6	Horizontal sync plus width.

vert	pw	define output vert	ical sync	plus width	RW	0x14	5
bits	Name	directio	res	description			
		n	et	-			
15-5	reserve						
4-0	vert_pw	r/w	Ox6	Vertical sync plus width.			
	-		6				

hor_	act	define output hori	ne output horizontal active region			0x18	11
bits	Name	directio	reset	description			
		n					
15-11	reserve						
10-0	hor_act	r/w	0х66	Horizontal active region.			

vert	act	define output vert	ical activ	ve region RW 0x1c 10
bits	Name	directio	res	description
		n	et	
15-10	reserve			
9-0	vert_act	r/w	Ox6	Vertical active region.
			6	

hor_l	hor_bp define output ho		izontal b	ack porch (dclk)	RW	0x20	9
bits	Name	directio	res	description			
		n	et				
15-9	reserve		\mathbf{k}				
8-0	hor_bp	r/w	0x6 6	Horizontal back porch.			

vert	_bp	define output ver	tical back	porch	RW	0x24	6
bits	Name	directio n	res et	description			
15-9	reserve						
8-0	vert_bp	r/w	0x6 6	Vertical back porch.			

Example:

horizontal sync width is 2 dot cycles, horizontal back porch needs 8 dot cycles, and horizontal active is 320 pixels.

Vertical sync width is 3 lines, vertical porch is 6 lines and vertical active is 240 lines. The set the a hor_pw=2, vert_pw=3, hor_bp=10(2+8), vert_bp=9(3+6),

hor_act=331(10+(320+1)*dot_per_pixel), vert_act=249(9+240).

dot_per_pixel =1 if external lcd panel uses a 24/18bits parallel RGB interfaces. In this case, lcdc_ctrl rgb_dummy will be set as 2'b00.

dot_per_pixel =3 if external lcd panel uses a 8bits series RGB interfaces without dummy cycles. In this case, lcdc_ctrl rgb_dummy will be set as 2'b10.

dot_per_pixel =3 if external lcd panel uses a 8bits series RGB interfaces with dummy cycles. In this case, lcdc_ctrl rgb_dummy will be set as 2'b11.

Detail refer the coding example.

line	0_yaddr	define line0 Y b attribute	ase add	ress and line0	0x140	RW	0x28	15	
line	1_yaddr	define line1 Y b attribute	fine line1 Y base address and line0 tribute			RW	0x30	15	
line	2_yaddr	define line2 Y base address and line0 attribute			0x3c0	RW	0x38	15	
line	3_yaddr	define line3 Y b attribute	ase add	ddress and line0 0x500 RW		RW	0x40	15	
bits	Name	directio	reset	description					
15	reserve	n							
14	Alpha_er	n r/w	r/w O 1: Alpha enable is 0: disable alpha. There are to meth description.			a region.	Reference	e alpha	
13	Scale	r/w	0	1: enable scalar 0: disable scalar.			,		
12	gbr_orde	er r/w	0	0: rgb output as r8-g8-b8 1: rgb output as g8-b8-r8 This bit will use in delta LCD panel					
11	YUV_scr	r/w	0	0: image source is RGB format. 1: image source is YUV format.					
10:0	Y_base	r/w	0	Y source data or RGB so ram.		se addres	ts in the 20	48x32	

		def	ine line0 UV	base ad	dress	0x141	RW	0x2c	11
line0_u	uvaddr								
		defi	ine line1 UV	base ad	dress	0x280	RW	0x34	11
line1_	uvaddr								
		def	ine line2 UV	base ad	dress	0x3c1	RW	0x3c	11
line2_	uvaddr								
		defi	ine line3 UV	base ad	dress	0x501	RW	0x44	11
line3_	uvaddr								
bits	Name		directio	reset	description				
		Ť.	n						
15-11	reserve								
10-0	UV_base	2	<i>r/w O UV source data or RGB source data base address in the 2048x32 ram. If the source data is RGB format, UV_base address will set of Y_base+1.</i>						

start	_x	define scalar x sta	rt coordina	ate	0x00	RW	0x48	9
bits	Name	directio	reset	description				
		n						
15-9	reserve							
8-0	start_x	r/w	0	The 1/4 x offset of the firs first pixel after scale may The low 4bits was forced	between the			

start	_у	define scalar y sta	rt coordina	ate	0x00	RW	0x4c	9
bits	Name	directio	reset	description				
		n						
15-9	reserve							
8-0	start_y	r/w	0	The y offset of the first pixel in scale mode. This is means the first pixel after scale may between the first line and 2^{nd} line of the raw.				

RK27XX Databook

means the first line, 0x200 means the second line.

delta	_x	define scalar x ste	ep		0x200	RW	0x50	10
bits	Name	directio	reset	description				
		n						
15-10	reserve							
9-0	delta_x	r/w	0	The scale factor in x direc	tion. 0x200 d	as factor	equate 1.	

delta	_у	define scalar y st	ep		0x200	RW	0x54	10
bits	Name	directio	reset	description				
		n						
15-10	reserve							
9-0	delta_x	r/w	0	The scale factor in y direc	ction. 0x200 c	is factor	equate 1.	
					-			

intr_	mask	Interrupt mas	k registe	r	0x0	RW	0x58	3
bits	Name	directio	reset	description				
15-4	reserve	n					/	
3	req_mod	e r/w	0	This bit set the DMA reque every line end if this bit set active at even line end.				
2	buff_intr	r/w	0	MCU mode buffer write in interrupt signal active 1 at				
1	vert_intr	r/w	0	Vertical interrupt mask bit VSYNC signal.	Vertical int	errupt b	oit is the rev	verse of
0	hor_intr	r/w	0	Horizontal interrupt mask end of every valid display horizontal back porch.				
				nonzoniai back porch.				

alpha	a_alx	Alpha region A	left x p	oint	0x0	RW	0x5c	10
bits	Name	directio	reset	description				
		n						
15-10	reserve							
9-0	alpha_alx	c r/w	0x00	There are two rectang	le specify the c	ılpha regio	on. Rectan	gle A and
				В.				
				Set the alpha regior	n A left x po	oint.		

alpha	a_aty Alp	oha region A	top y p	oint	0x0	RW	0x60	10
bits	Name	directio n	reset	description				
15-10	reserve							
9-0	alpha_aty	r/w	0x00	There are two rectangle sp B. Set the alpha region A		U	n. Rectang	le A and

alpha	a_arx	Alpha region A	A right x	point	0x0	RW	0x64	10
bits	Name	directio	reset	description				
		n						
15-10	reserve							
9-0	alpha_arx	k r/w	0x13f	<i>There are two rectangle sp</i> <i>B.</i> <i>Set the alpha region A</i>		1 0		ele A and

alpha	a_aby	Alpha region A bottom y point		y point	0x0	RW	0x68	10
bits	Name	directio	reset	description				

		n		
15-10	reserve			
9-0	alpha_aby	r/w	0xef	There are two rectangle specify the alpha region. Rectangle A and B.
				Set the alpha region A bottom y point. 0xef as 240.

alpha	a_blx /	lpha region B left x point			0x0	RW	0x6c	10
bits	Name	directio	reset	description				
		n						
15-10	reserve							
9-0	alpha_blx	r/w	0x00	There are two rectangle s B. Set the alpha region B			on. Rectang	gle A and

alpha	a_aty	Alpha region B top y point			0x0	RW	0x70	10
bits	Name	directio n	reset	description			$\mathbf{\mathbf{Y}}$	
15-10	reserve						¢.	
9-0	alpha_bty	y r/w	0x00	There are two rectangle B. Set the alpha region			n. Rectang	gle A and

In the N			3 right x	point 0x0 RW 0x74 10
bits N	Name	directio	reset	description
		n		
15-10 r	reserve			
9-0 é	alpha_brx	r/w	0x13f	There are two rectangle specify the alpha region. Rectangle A and B. Set the alpha region B right x point. 0x13f as 320.

alpha	a_aby	Alpha region B bottom			y point	0x0	RW	0x78	10
bits	Name		directio	reset	description				
			n						
15-10	reserve		\sim						
9-0	alpha_bb	уy	r/w	0xef	<i>There are two rectangle</i> <i>B.</i> <i>Set the alpha region</i>				-
					ber me alpha region		<i>, point.</i> 0	<i></i>	•

Icdc_	sta Lo	d controller	status re	egister	0x1000	R	0x7c	16
bits	Name	directio	reset	description				
		n						
15-13	reserve							
12	mcu_idle	r/w	0x0	Mcu interface in idle state	not in buffer	write sta	ate.	
11	vactive	r/w	0x0	Set 1indicate the RG	B interface	e in verti	ical active	region.
10	hactive	r/w	0x0	Set 1indicate the RG	B interface	in hori:	zontal acti	ve region.

25.3 LCD 10 MUX

	LCD P	IN MUX		
PIN DEFINE	18bit MCU	18bit RGB	16bit MCU	8bit RGB
LCD_D0	DB1	В3	DB0	DB0
LCD_D1	DB2	B4	DB1	DB1
LCD_D2	DB3	B5	DB2	DB2
LCD_D3	DB4	B6	DB3	DB3
LCD_D4	DB5	B7	DB4	DB4
LCD_D5	DB6	G2	DB5	DB5
LCD_D6	DB7	G3	DB6	DB6
LCD_D7	DB8	G4	DB7	DB7
LCD_D8	DB9	G5	DB8	
LCD_D9	DB10	G6	DB9	
LCD_D10	DB11	G7	DB10	
LCD_D11	DB13	R3	DB11	
LCD_D12	DB14	R4	DB12	
LCD_D13	DB15	R5	DB13	
LCD_D14	DB16	R6	DB14	
LCD_D15	DB17	R7	DB15	
LCD_D16	DB0	B2		
LCD_D17	DB12	R2		
PA7/LCD_VSYNC/MCU_CS	CS	VSYNC	CS	VSYNC
LCD_HSYNC/ MCU_WR	WR	HSYNC	WR	HSYNC
LCD_CLK/MCU_RS	RS	DOT_CLK	RS	DOT_CLK

Chapter 26 VIP (Video Input Processor)

26.1 Design Overview

Key Features

- Support CMOS type image sensor interface
- Support CCIR656 interface
- Support CCIR-656 YCbCr 4:2:2 raster video input for 8bit mode in 525/60 NTSC and 625/50 PAL video system
- Data input clock is 27MHz for CCIR656 and 24MHz/48MHz for sensor
- Provide YUV 4:2:2/4:2:0 output
- Support up to (2048×1536) resolution, 3M pixel
- Support YUYV/UYVY format input

26.2 Registers

• Registers Summary

Name	Offset	Size	Reset Value	Description
VIP_AHBR_CTRL	0x0000	w	0x0000001	AHB write control register
VIP_INT_MASK	0x0004	W	0x00000000	Interrupt Mask register
VIP_INT_STS	0x0008	W	0x00000000	Interrupt status register
VIP_STS	0x000C	W	0x00000000	VIP Status register
VIP_CTRL	0x0010	w	0x00000000	VIP control register
VIP_CAPTURE_F1S A_Y	0x0014	w	0xFFFFFFFF	Capture data frame 1 start address for Y
VIP_CAPTURE_F1S A_UV	0x0018	W	0xFFFFFFFF	Capture data frame 1 start address for UV
VIP_CAPTURE_F1S A_Cr	0x001C	w	0xFFFFFFFF	Capture data frame 1 start address for Cr
VIP_CAPTURE_F2S A_Y	0x0020	W	0xFFFFFFFF	Capture data frame 2 start address for Y
VIP_CAPTURE_F2S A_UV	0x0024	w	0xFFFFFFFF	Capture data frame 2 start address for UV
VIP_CAPTURE_F2S A_Cr	0x0028	w	0xFFFFFFFF	Capture data frame 2 start address for Cr
VIP_FB_SR	0x002C	w	0x0000000B	Frame buffer status register for capturing raw data
VIP_FS	0x0030	W	0x02D001E6	Frame data size register
VIP_CROP	0x0038	w	0x00000000	Cropping start upper left point to other little resolution
VIP_CRM	0x003C	W	0x00000000	Y/CB/CR color modification
VIP_RESET	0x0040	W	0x00000000	Capture engine reset
VIP_L_SFT	0x0044	W	0x00000000	Line shifter from first line

• Detail Register Description

VIP_AHBR_CTRL

Address: Operational Base + offset (0x00)

AHB write control register

Bit	Attr	Reset Value	Description
31:3	-	-	Reserved
2:0	RW	0x5	AHB Data Maximum Burst Length for Reading from H/W. This register will set the maximum length to transmit data to AHB bus. The actual data length to be

transmitted will be decided by H/W automatically. For example, if INCR8 is set, only 8 or 4 will be the actual length. The following is the meaning. 001: INCR 101: INCR8 111: INCR16
Other: unused

VIP_AHBR_MASK

Address: Operational Base + offset (0x04)

Interrupt Mask register

Bit	Attr	Reset Value	Description
31:3	-	-	Reserved
2	RW	0x0	Capture data line end happened interrupt enable 1: enable (for debug, just a cycle pulse)
1	RW	0x0	Capture frame loss happened interrupt enable.(only for 656 mode) 0: Disable 1: Enable
0	RW	0x0	Capture complete interrupt enable 0: Disable 1: Enable

VIP_INT_STS

Address: Operational Base + offset (0x08) Interrupt status register

	P	regiocol		
Bit	Attr	Reset Value	Description	
31:2	-	-	Reserved	
2	R	0x0	Capture data line end happened interrupt (Read Clear,	
			just a cycle pulse)(for debug)	
1	R	0x0	Capture frame loss happened interrupt. (Read Clear,	
			only for 656 mode)	
			0: No interrupt happen	
			1: Interrupt happen	
0	R	0x0	Capture complete interrupt (Read Clear)	
			0: No interrupt happen	
			1: Interrupt happen	

VIP_STS

Address: Operational Base + offset (0x0C) Status register

Bit	Attr	Reset Value	Description
31:1	-	-	Reserved
0	R	0x0	FIFO overflow, 1:active (Read Clear)

VIP_CTRL

Address: Operational Base + offset (0x10) VIP control register

Bit	Attr	Reset Value	Description			
31:11	-	-	Reserved			
10	RW	0x0	CCIR656 capture format 0: NTSC 1: PAL			
9	RW	0x0	Posedge/Negedge capture by pixel clock			

			0: Positive edge
			1: Negative edge
8	RW	0x0	Ping-Pong mode enable
			0: Continuous mode
			1: Ping-Pong mode
			Note1: Bit5 priority > Bit8
			Note2: Only both Bit5 and Bit8 be set to 0 can enable
			continuous mode
7	RW	0x0	Field capture for ccir format
			0: Field 0 start
			1: Field 1 start
6	RW	0x0	422 output enable
			0: 420 output (write to memory)
			1: 422 output (write to memory)
5	RW	0x0	One frame stop enable
			0: continuous mode or ping-pong mode
			1: one frame complete stop
4	-	-	reserved
3	RW	0x0	Input data order, Y or UV first
			0: UYVY
			1: YUYV
2	RW	0x0	Sensor_or_656
			0: 656
			1: sensor
1	RW	0x0	Href_sentive
			0: High active
			1: Low active
0	RW	0x0	Enable capturing (set and clear by host)
			To set this bit to enable capturing, and clear it by
			host to disable capturing. (set and clear by host)
			0: Disable
			1: Enable

VIP_CAPTURE_F1SA_Y

Address: Operational Base + offset (0x14)

Capture raw data frame 1 start address for Y

Bit	Attr	Reset Value	Description
31:0	RW	0x0	Capture Frame 1 Starting Address Register for Y

VIP_CAPTURE_F1SA_UV

Address: Operational Base + offset (0x18)

Captur	Capture raw data frame 1 start address for UV				
Bit	Attr	Reset Value	Description		
31:0	RW	0x0	Capture Frame 1 Starting Address Register for UV		

VIP_CAPTURE_F1SA_Cr (No use)

Address: Operational Base + offset (0x1C) Capture raw data frame 1 start address for Cr

Bit	Attr	Reset Value	Description
31:0	RW	0x0	Capture Frame 1 Starting Address Register for Cr

VIP_CAPTURE_F2SA_Y

Address: Operational Base + offset (0x20)

Capture raw data frame 1 start address for Y

Bit Attr Reset Value Description

31:0 RW 0x0 Capture Frame 2 Starting Address Register for Y

VIP_CAPTURE_F2SA_UV

Address: Operational Base + offset (0x24) Capture raw data frame 1 start address for UV

Bit	Attr	Reset Value	Description
31:0	RW	0x0	Capture Frame 2 Starting Address Register for UV

VIP_CAPTURE_F2SA_Cr (No use)

Address: Operational Base + offset (0x28)

Capture raw data frame 1 start address for Cr

Bit	Attr	Reset Value	Description
31:0	RW	0x0	Capture Frame 2 Starting Address Register for Cr

VIP_FB_SR

Address: Operational Base + offset (0x2C) Frame buffer status register for capturing raw data

Bit	Attr	Reset Value	Description
31:16	-	-	Reserved
15: 8	RW	0x0	Frame number. Complete VIP number
7:4	-	-	Reserved
3	R	0x0	Indicate the latest used Frame buffer number, for example, if Bit0 and Bit1 are both 1 and Bit3 is 1, means that Frame 2 is capture finally. 0: Frame 1 1: Frame 2
2	RW	0x0	Indicate Frame loss (set by H/w and clear by HOST) 0: No frame loss 1: Frame loss occurred
1	RW	1x0	Status bit to indicate current status of frame 2 (set by H/W and clear by HOST) 0: data not ready 1: data ready Note: After reading this register, HOST shall assign new buffer addresses to "Capture Raw Frame 1/2 Starting Address Register for Y/Cb/Cr" and clear the status register for H/W capturing next frame to keep Ping-Pong mode enable.
0	RW	1×0	Status bit to indicate current status of frame 1 (set by H/W and clear by HOST) 0: data not ready 1: data ready Note: After reading this register, HOST shall assign new buffer addresses to "Capture Raw Frame 1/2 Starting Address Register for Y/Cb/Cr" and clear the status register for H/W capturing next frame to keep Ping-Pong mode enable.

VIP_FS

Address: Operational Base + offset (0x30) Frame data size register

Bit	Attr	Reset Value	Description
31:16	RW	0x0	Pixel number per line width up to 2048
15:0	RW	0x0	Line numbers per frame Height up to 1536

VIP_CROP

Address: Operational Base + offset (0x38)

Cropping start upper left point to other little resolution

Bit	Attr	Reset Value	Description
31:26	-	-	Reserved.
25:16	RW	0x0	The X-coordinate of the cropping start point at up-left corner
15:10	-	-	Reserved.
9:0	RW	0x0	The Y-coordinate of the cropping start point at up-left corner

VIP_CRM

Address: Operational Base + offset (0x3C) Y/CB/CR color modification

Bit	Attr	Reset Value	Description
31:27	-	-	Reserved.
26	RW	0x0	Y direction, 0-decrease 1-increase
25	RW	0x0	Cb direction, 0-decrease 1-increase.
24	RW	0x0	Cr direction, 0-decrease 1-increase
23:16	RW	0x0	Y value
15:8	RW	0x0	Cb value
7:0	RW	0x0	Cr value

VIP_RESET

Address: Operational Base + offset (0x40) Capture engine reset

Bit	Attr	Reset Value	Description
31:0	RW	0x0	Capture Engine Reset (Refer to reset flow of video input processor) Value: 0x76543210 to reset

VIP_L_SFT

Address: Operational Base + offset (0x44) Line Shifter from first line

Bit	Attr	Reset Value	Description
31:4	-	+	Reserved.
3:0	RW	0x0	Line shifter from first line, it is used in non-standard ccir656 input (not precisely 480/576 active line). Set this register can cut the lines at the first of both fields. Valid value: 0~15

26.3 Application Description

This chapter is used to illustrate the operational behavior of how VIP module works. VIP module receive the ccir656 or sensor signal from external devices and translate it into YUV422/420 data, separate the data to Y and UV data, then store them to different Memory via AHB bus separately.

26.3.1 Hardware reset

When RESETN pin is set to low, it will cause everything including both Video Input Processor and AHB master modules to be reset to default state immediately.

26.3.2 Software reset

While configuring 0x40 register with 0x76543210, VIP will be software reset after 200 cycles of AHB.

26.3.3 Initial configuration

After HW/SW reset, Host must initially configure VIP by control registers via AHB bus. The configurations include external devices, frame data start address, frame size, output format....etc. VIP module can work in three modes: one frame stop mode < ping-pong mode < continuous mode.

26.3.4 One frame stop mode (Only frame 1 can be used in this mode)

Setup VIP_CAPTURE_F1SA_<Y, UV> as start memory of the continuous memory, configure register 0x10 to set working mode \cdot output data format...etc, configure register 0x38 to set crop start point and configure register 0x30 to set you whole frame size. Before trigger VIP to start capture, frame1 buffer status in register 0x2c (bit 0) must be clear to 1'b0. Then configure register 0x10 (bit0) to start one frame stop mode. After one frame captured, VIP will automatic stop. After capturing, the image Y, UV data will be stored at main memory location defined by VIP_CAPTURE_F1SA_U.V separately

26.3.5 Ping-Pong mode

Setup VIP_CAPTURE_F1SA_<Y, UV>, and VIP_CAPTURE_F2SA_<Y, UV>. configure register 0x10 to set working mode \cdot output data format...etc, configure register 0x38 to set crop start point and configure register 0x30 to set you whole frame size. Before trigger VIP to start capture, frame1 & frame2 buffer status in register 0x2c (bit 1:0) must be clear to 2'b00. Then configure register 0x10 (bit0) to start ping-pong mode. After one frame(F1) captured, VIP will start to capture the next frame(F2) automatically, and host must assign new address pointer of frame1 and clear the frame1 status, thus VIP will capture the third frame automatically(by F1 address pointer) without any stop and so on for the following frames. But if host did not update the frame buffer pointer and status, the VIP will stop after both 2 frame buffer (F1 & F2) are at data ready state (bit [1:0] of register 0x2c is 2'b11).

26.3.6 Continuous mode

Setup VIP_CAPTURE_F1SA_<Y, UV>, and VIP_CAPTURE_F2SA_<Y, UV>. configure register 0x10 to set working mode \cdot output data format...etc, configure register 0x38 to set crop start point and configure register 0x30 to set you whole frame size. Before trigger VIP to start capture, frame1 & frame2 buffer status in register 0x2c (bit 1:0) must be clear to 2'b00. Then configure register 0x10 (bit0) to start continuous mode. If you setup register 0x4 to be value 0x1 you will get a complete interrupt from VIP after every frame end. After capturing, you just only display these frames by VIP. If bus isn't busy, you can directly rewrite register after interrupt. S/W must rewrite memory start address registers before blanking-line end. So you can control continuous mode directly. Some time it is too late to rewrite Y/UV start address; new frame will put a cover over last memory block. VIP can't detect this status.

Note that the continuous mode will use both F1 & F2 pointer just like in ping-pong mode, but the difference between continuous mode and ping-pong mode is that continuous mode will never stop the VIP unless host disable VIP directly even the F1 & F2 status are both in data ready state.

Chapter 27 NAND Flash Controller

27.1 Design Overview

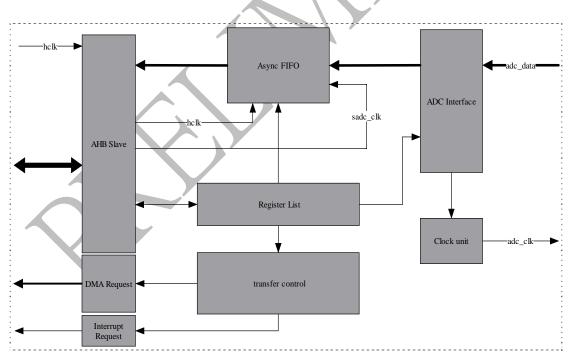
27.1.1 Overview

NAND FLASH is an important device to store data. It is popular with electronic product. NAND Controller Can be good in transfer data between Host System and FLASH. Hardware ECC Can Correct Error at any position in one Code-Word. NAND Flash Timing can be configured by Host directly or by Internal DMA transfer.

27.1.2 Key features

- Support AHB 2.0 Slave Interface
- Support Internal DMA transfer and Host Transfer
- Support 2k Page and 4k Page by two configure
- Support 8 bit Flash interface
- Support Hardware ECC
- Support 4 Flash Device
- Support FF code auto correct Process

For detail information about NAND FLASH controller, pleaser refer RK27xx NAND Flash Controller.pdf.


Chapter 28 High-Speed ADC Interface

28.1 Design Overview

HS-ADC Interface Unit is interface unit of connected the High Speed AD Converter to AMBA AHB bus. That implement bus speed convert at low speed AD Converter bus to high speed AHB bus. HS-ADC Interface Unit fetch the bus data by the AD converter and store that to asynchronous FIFO after the AD clock is active when OS configure completion by DMA and HS-ADC Interface Unit. The HS-ADC Interface Unit generates the DMA request signal When data length of the asynchronous FIFO over then almost full level or almost empty level.

Key features

- Support the burst transfers and that type include SINGLE, INCR4, INCR8, INCR16.
- Support HS-ADC Interface Unit Enable and Disable. Notice that controller register can be modified when HS-ADC Interface Unit Disabled.
- Support 8-bit/10-bit data bus by the AD converter.
- Support the most significant bit negation.
- Support store to high 8-bit/10-bit or low 8-bit/10-bit at a haft word width. Sample the 8-bit data by the AD converter store to high 8-bit is between the data[15] to data[8] by a haft word width. And that have sign extend if store to low 8-bit/10-bit by a haft word width.
- Support DMA transfers mode and that generate DMA request from the event of almost full or almost empty in the asynchronous FIFO. The almost full/almost empty level can be configuration.

28.2 Architecture

28.3 Register

Register summary

Name	Offset	Size	Reset Value	Description
HSADC_DATA	0x00	w		data register

HSADC_CTRL	0x04	w	0x0000_0000	control register
HSADC_IER	0x08	w	0x0000_0000	interrupt enable/mask register
HSADC_ISR	0x0c	w	0x0000_0000	interrupt status register

Detail Register Description

HSADC_CTRL

Address: Operational Base + offset(0x04) The controls register of A/D Converter.

Bit	Access	Reset Value	Description
31:28			Reserved
27:24	R/W	0	Define almost full trigger level: 0x0~"0xf" - configure valid range (Notes: 1 level indicate 4 entries data in the async FIFO. and this configure range mapping to 64 - 124 entries data in the async FIFO.)
23:20			Reserved
19:16	R/W	0	Define almost empty trigger level: 0x0~"0xf" - configure valid range (Notes: 1 level indicate 4 entries data in the async FIFO. and this configure range mapping to 0 - 60 entries data in the async FIFO.)
15:6			Reserved
5	R/W	0	DMA request mode: 1 - almost full generate DMA request signal (Notes: this mode generate DMA request signal from almost full condition and cancel DMA request signal from almost empty condition. so you need configure two level by almost full level and almost empty level) 0 - almost empty generate DMA request signal (Notes: this mode generate DMA request signal from almost empty condition and that only once DMA request.)
4	R/W	0	control the most significant bit negation: "1" - negation "0" - not negation
3	R/W	0	fetch the bus data by AD converter and that store to high 8-bit/10-bit or low 8-bit/10-bit at a haft word width before push to Async FIFO : "1" - store to high 8-bit/10-bit "0" - store to low 8-bit/10-bit (Notes: have sign extend if that configure of store to low 8-bit/10-bit)
2	R/W	0	The data bus width of AD converter : "1" - 10-bit "0" - 8-bit
1	R/W	0	the clock of AD converter and that clock supply to AD converter. Sample 8.192Mhz use to DAB clock : "1" - clock negation "0" - clock not negation
0	R/W	0	HS-ADC Interface Unit Enable Bit: "1" - enable (Notes: will return 1 when the hardware started transfer)

	"0" - disable (Notes: other bit can be modify on the hardware return 0)

HSADC_IER

Address: Operational Base + offset(0x08) The interrupt enable control register of A/D Converter.

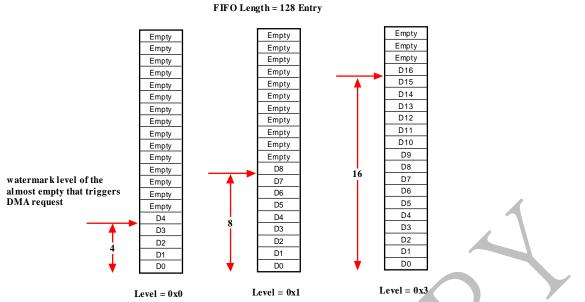
Bit	Access	Reset value	Description
31:2			
1	R/W	0	Interrupt enable/mask bit for enable/disable the empty interrupt flag of Async FIFO "1" - enable "0" - disable
0	R/W	0	Interrupt enable/mask bit for enable/disable the full interrupt flag of Async FIFO "1" - enable "0" - disable

HSADC_ISR

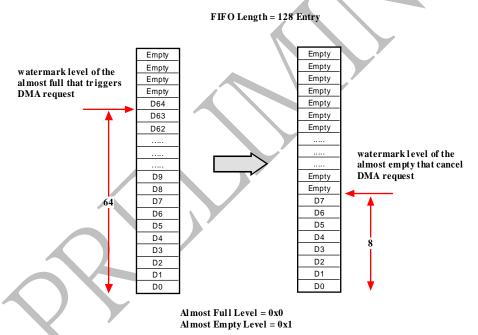
Address: Operational Base + offset(0x0C) The interrupt statuses register of A/D Converter.

Bit	Access	Reset value	Description
31:2			
1	RW	0	Async FIFO empty interrupt flag. "1(R)" - This bit will be set to "1" when Async FIFO empty status and that only to read operation. "0(W)" - Write "0" to bit for clear the interrupt flag and that only to wrtie operation.
0	RW	0	Async FIFO full interrupt flag. "1(R)" - This bit will be set to "1" when Async FIFO full status and that only to read operation. "0(W)" - Write "0" to bit for clear the interrupt flag and that only to wrtie operation.

HSADC_DATA


Address: Operational Base + offset(0x00) The data register of A/D Converter.

Bit	Access	Reset value	Description					
31:0	R		the data of async FIFO for the DMA read.					


28.4 Application Notes

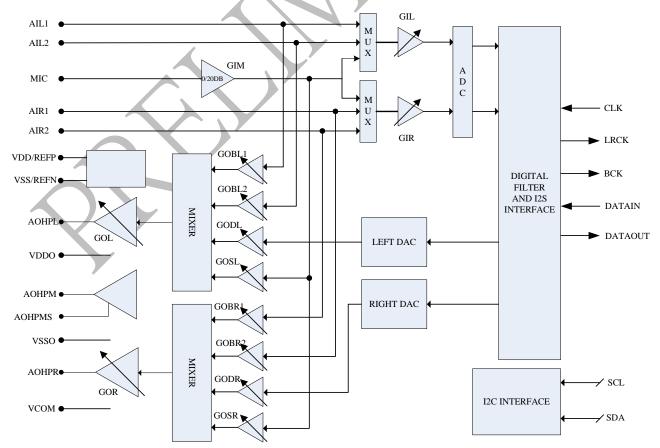
The following sections will describe the operation of DMA request and DMA transfers:

Almost empty triggers a DMA request by DMA request mode

The DMA request signal will generate from a watermark level triggers when store to FIFO data over the watermark level of almost empty and that watermark level can be configuration to HSADC_CTRL[19:16] by controls register . This DMA request mod doesn't care the watermark level of almost full. As show in figure 10 that sample to watermark level configuration.

Almost full triggers a DMA request by DMA request mode

The DMA request signal will generate from a watermark level triggers when store to FIFO data over the watermark level of almost full and at this DMA request mode that continue generates request signal when the number of FIFO data great then watermark level of almost empty. This DMA request mode need configuration double watermark level and that is watermark level of almost empty at the HSADC_CTRL[19:16] and watermark level of almost full at the HSADC_CTRL[27:24]. As show in figure 11 that sample to watermark level configuration.


Chapter 29 Audio codec

29.1 Design Overview

Audio codec in RK27xx is containing a stereo codec (ADC +DAC) and additional analog functions offering an ideal mixed signal front end for high quality audio applications. Audio codec receive or transmit audio data stream from I2S module, controlled by I2C module.

29.2 Feature

- 24bit audio codec with MIC/line input and headphone driver.
- Single +3.3V (from 2.7V to 3.6V) power supply for the analog part.
- High SNR performance: 95DB for DAC to headphone 85DB from line input to ADC
- THD: 0.06% @33mW/160hm for DAC to headphone output path
- High level output power @3.3V: 40mW on 160hm load
 - 20mW on 320hm load
- Separate power-down modes for ADC and DAC (shutdown mode, stand-by mode)
- Reduction of audible glitches systems:
 - Pop reduction system Soft mute mode
- 12MHz or 16.9344MHz operation.

29.3 BLOCK DIAGRAM

29.4 Function register

29.4.1 Registers Summary

Register Name	Function	Address	Reset value
AICR	Audio Interface Control	(REG_ADD, 00000)	h0C
CR1	Control Register 1	(REG_ADD, 00001)	hA8
CR2	Control Register 2	(REG_ADD, 00010)	h78
CCR1	Control Clock Register 1	(REG_ADD, 00011)	h00
CCR2	Control Clock Register 2	(REG_ADD, 00100)	h00
PMR1	Power Mode Register 1	(REG_ADD, 00101)	hFF
PMR2	Power Mode Register 2	(REG_ADD, 00110)	h03
CRR	Control Ramp Register	(REG_ADD, 00111)	h51
ICR	Interrupt Control Register	(REG_ADD, 01000)	h3F
IFR	Interrupt Flag Register	(REG_ADD, 01001)	h00
CGR1	Control Gain Register 1	(REG_ADD, 01010)	h00
CGR2	Control Gain Register 2	(REG_ADD, 01011)	h04
CGR3	Control Gain Register 3	(REG_ADD, 01100)	h04
CGR4	Control Gain Register 4	(REG_ADD, 01101)	h04
CGR5	Control Gain Register 5	(REG_ADD, 01110)	h04
CGR6	Control Gain Register 6	(REG_ADD, 01111)	h04
CGR7	Control Gain Register 7	(REG_ADD, 10000)	h04
CGR8	Control Gain Register 8	(REG_ADD, 10001)	h0A
CGR9	Control Gain Register 9	(REG_ADD, 10010)	h0A
CGR10	Control Gain Register 10	(REG_ADD, 10011)	h00

29.4.2 Detail Register Description

AICR: Audio Interface Control Register

R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
-	-	-	-	DAC_SERIAL	ADC_SERIAL	DAC_I2S	ADC_I2S

Bit 3: DAC_SERIAL: Selection of the DAC digital serial audio interface Read/Write

0= Parallel interface

1= Serial interface

Bit 2: ADC_SERIAL: Selection of the ADC digital serial audio interface Read/Write 0= Parallel interface

1= Serial interface

- Bit 1: DAC_I2S: Working mode of the DAC digital serial audio interface Read/Write 0= DSP mode 1= I2S mode
- Bit 0: ADC_I2S: Working mode of the ADC digital serial audio interface Read/Write 0= DSP mode

R/W-1	
SB_MI	CBIAS MONO DAC_MUTE HP_DIS DACSEL BYPASS1 BYPASS2 SIDETONE
Bit 7:	SB_MICBIAS : Microphone biasing buffer power-down Read/Write 0= active 1= power-down
Bit 6:	MONO: Stereo-to-mono conversion for DAC path Read/Write 0= stereo 1= mono
Bit 5:	<pre>DAC_MUTE: DAC soft mute mode Read/Write 0= mute inactive, digital input signal transmitted to the DAC 1= puts the DAC in soft mute mode</pre>
Bit 4:	 HP_DIS: HeadPhone output signal disabled Read/Write 0= Signal applied to headphone outputs 1= no signal on headphone outputs, acts as a mute signal
Bit 3:	DACSEL: Mixer input selection Read/Write 0= DAC output ignored in input of the mixer 1= DAC output selected as an input of the mixer
Bit 2:	BYPASS1: Mixer input selection (line 1) Read/Write 0= Bypass path ignored in input of the mixer 1= Bypass path selected as an input of the mixer
Bit 1:	BYPASS2: Mixer input selection (line 2) Read/Write 0= Bypass path ignored in input of the mixer 1= Bypass path selected as an input of the mixer
Bit 0:	SIDETONE: Mixer input selection Read/Write 0= Sidetone path ignored in input of the mixer 1= Sidetone path selected as an input of the mixer

CR2: Control Register 2

R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
DAC_DEE	DAC_ADW	DAC_ADW	ADC_ADW	ADC_ADW	ADC_HPF	INSEL1	INSELO
MP	L1	LO	L1	LO-			

Bit 7: **DAC_DEEMP**: DAC De-emphasize filter enable Read/Write 0= inactive

1= enables the deemphasis filter

- Bit 6-3: **DAC_ADWL[1:0]**, **ADC_ADWL[1:0]**: Audio Data Word Length: for respectively DAC and ADC paths Read/Write:
- Bit 2: ADC_HPF: ADC High Pass Filter enable

Read/Write: 0= inactive 1= enables the ADC High Pass Filter

Bit 1-0: **INSEL[1:0]**: selection of the signal converted by the

- ADC Read/Write:
- 00 = Line 1 input
- 01 = Line 2 input
- 10 = Microphone input
- 11 = Mixer output

CCR1: Control Clock Register 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
-	-	-	-	CRYSTAL3	CRYSTAL2	CRYSTAL1	CRYSTALO						
Re	Bit 3-0: CRYSTAL[3:0] : Selection of the MCLK frequency Read/Write The sampling frequency value is given in the FREQ[3:0] table												
CRYSTAL[3:0] Master Clock Frequency													
0000		12 MH	Z										
0001		16.934	4 MHZ										

CCR2: Control Clock Register 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DFREQ3	DFREQ2	DFREQ1	DFREQ0	AFREQ3	AFREQ2	AFREQ1	AFREQ0

Bit 7-4: DFREQ[3:0]: Selection of the DAC sampling rate

(Fs) Read/Write

The sampling frequency value is given in the FREQ[3:0] table

Bit 3-0: **AFREQ[3:0]**: Selection of the ADC sampling rate

(Fs) Read/Write

The sampling frequency value is given in the FREQ[3:0] table

FREQ[3:0]	Sampling Rate (Fs)
0000	96kHz
0001	48kHz
0010	44.1kHz
0011	32kHz
0100	24kHz
0101	22.05kHz
0110	16kHz
0111	12kHz
1000	11.025kHz
1001	9.6kHz
1010	8kHz
1011	8kHz
1100	8kHz
1101	8kHz
1110	8kHz
1111	8kHz

							1	
PMR1	: Pc	wer Mode	e Register	1				
R/W-	1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
SB_D/	AC	SB_OUT	SB_MIX	SB_ADC	SB_IN1	SB_IN2	SB_MIC	SB_IND
Bit 7:	Re 0=	B_DAC : DA ead/Write = active = power-do		lown mode				
Bit 6:	Re 0=	_OUT : Out ad/Write active power-dov		power-dov	vn mode		J	4
Bit 5:	Re 0=	_ MIX : Mix ad/Write active power-dov		e output sta	age power-	down		4
Bit 4:	Re 0=	_ADC: AD ad/Write active power-dov		own mode			5	
Bit 3:	Re 0=	_ IN1 : Line ad/Write active power-dov		onditioning) circuitry p	bower-down	n mode	
Bit 2:	Re 0=	_ IN2 : Line ad/Write active power-dov		onditioning	ı circuitry p	oower-down	n mode	
Bit 1:	Re 0=	_MIC: Mic ad/Write active power-dov		iput condit	ioning circu	uitry power	-down moo	de
Bit 0:	Re 0=	_IND: Mix ad/Write active	()	circuitry po	ower-down	mode		

1= power-down

PMR2: Power Mode Register 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
LRGI	RLGI	LRGOD	RLGOD	GIM	SB_MC	SB	SB_SLEEP

Bit 7-6: LRGI, RLGI: PGATM input gain coupling

Read/Write

- 00: Left and right channels gains are independent, respectively given by GIL and GIR
- 10: Left and right channels gain is given by GIL
- 01: Left and right channels gain is given by GIR
- 11: Left and right channels gain is given by GIL

Bit 5-4: LRGOD, RLGOD: DAC mixing gain coupling

Read/Write

- 00: Left and right channels gains are independent, respectively given by GODL and GODR
- 10: Left and right channels gain is given by GODL

- 01: Left and right channels gain is given by GODR 11: Left and right channels gain is given by GODL
- Bit 3: GIM: Microphone amplifier gain control Read/Write 0 = 0 dB gain1=20 dB gain
- SB_MC: Output Stage common mode buffer power-down Bit 2: Read/Write 0 = active (capacitor less headphone output configuration) 1 = power-down (line output configuration)
- SB: complete power-down mode Bit 1: Read/Write 0= normal mode (active) 1= complete power-down
- Bit 0 **SB_SLEEP:** sleep mode Read/Write 0= normal mode (active) 1 = sleep mode

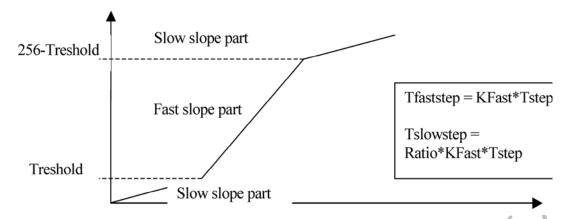
CRR: Control Ramp Register

R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
-	RATIO1	RATIOO	KFAST2	KFAST1	KFASTO	TRESH1	TRESHO

Bit 6-5: RATIO[1:0]: ratio between fast and slow steps Read/Write:

00: Ratio =1 01: Ratio = 10: Ratio = 4 (default) 11: Ratio = 8

Bit 4-2: KFAST[2:0]: factor for step time in fast slope part Read/Write:


000: KFast =1	001: KFast = 2
010: KFast = 4	011: KFast = 8
100: KFast =16 (default)	101: KFast = 32

Bit 1 - Bit 0: TRESH[1:0]: threshold between fast and slow slope parts Read/Write: 00: Threshold = 0

- 10: Threshold = 64
- 01: Threshold = 32 (default)
- 11: Threshold = 128

Tstep duration = 31.25us

Fs (kHz)	Tstep	Tstep
	(ratio)	(us)
8	0.25/Fs	31.25
9.	0.3/Fs	31.25
11.025	0.345/Fs	31.25
12	0.375/Fs	31.25
16	0.5/Fs	31.25
22.05	0.69/Fs	31.25
24	0.75/Fs	31.25
32	1/F	31.25
44.1	1.38/Fs	31.25
48	1.5/Fs	31.25
96	3/F	31.25

Step time on fast part: KFast*Tstep Step time on slow part: Ratio*KFast*Tstep

Ramp Time duration: 224ms (default)

```
Tramp = KFast*Tstep*(256-2*Thresh) + R*KFast*Tstep*2*Thresh
```

Note:

When TRESH="11", the counter stays 2*Tslowstep on 127 at the middle of the falling and 2*Tslowstep on 128 at the middle of the rising.

ICR: Interrupt Control Register

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
INT_FOR	INT_FOR	JACK_MA	CCMC_M	RUD_MAS	RDD_MAS	GUD_MAS	GDD_MAS
M[1]	M[0]	SK	ASK	к	К	К	К

Bit 7-6: **INT_FORM[1:0]**: Waveform and polarity of the IRQ signal

Read/Write

- 00: The generated IRQ is a high level
- 01: The generated IRQ is a low level
- 10: The generated IRQ is a high level pulse with an 8 MC_CLK cycles duration when using 8-bit parallel control interface or 8 MCLK cycles duration when using I2C control interface
- 11: The generated IRQ is a low level pulse with an 8 MC_CLK cycles duration when using 8-bit parallel control interface or 8 MCLK cycles duration when using I2C control interface

Bit 5: JACK_MASK: Mask for the JACK_EVENT flag

Read/Write

- 0: interrupt enabled
- 1: interrupt masked (no IRQ generation)
- Bit 4: CCMC_MASK: Mask for the CCMC flag Read/Write 0: interrupt enabled 1: interrupt masked (no IRQ generation)
- Bit 3: **RUD_MASK**: Mask for the RAMP_UP_DONE flag Read/Write 0: interrupt enabled 1: interrupt masked (no IRQ generation)
- Bit 2: **RDD_MASK**: Mask for the RAMP_DOWN_DONE flag Read/Write 0: interrupt enabled
 - 1: interrupt masked (no IRQ generation)

- Bit 1: **GUD_MASK**: Mask for the GAIN_UP_DONE flag Read/Write 0: interrupt enabled 1: interrupt masked (no IRQ generation)
- Bit 0: **GDD_MASK**: Mask for the GAIN_DOWN_DONE flag Read/Write 0: interrupt enabled 1: interrupt masked (no IRQ generation)

Notes:

- When an interrupt is masked, the event do not generates any change on the IRQ signal, but the corresponding flag value is set to `1' in the IFR register.
- When the IRQ signal is active on level, the IRQ signal is set to the inactive level while the bits IFR[5:0] & (!ICR[5:0]) equals '0'.
- When the IRQ signal is a pulse, the IRQ signal is set to the inactive state until a new non-masked event occurs in IFR[5:0] or until a masked event is unmasked.
- If the 8-bit parallel control interface is selected, MC_CLK must not be stopped in order to propagate IRQ signal.

IFR: Interrupt Flag Register

R/W-0	R-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
-	JACK		ССМС		RAMP_DOWN_		
		EVENT		DONE	DONE	DONE	DONE

- Bit 6: JACK: Output Jack plug detection status
 - Read
 - 0 = no jack

1 = output jack present

Bit 5: JACK_EVENT: Event on output Jack plug detection status

Read

0 = no event 1 = event detected (due to JACK flag change to `0' or `1')

Write

1 = Reset of the flag

Bit 4: CCMC: Output short circuit detection status – Reserved for future use Read

0 = inactive

1 = indicates that a short circuit has been detected by the output stage.

Bit 3: **RAMP_UP_DONE**: End of output stage ramp up flag

Read

1 = the ramp-up sequence is completed (output stage is active).

Write

1 = Reset of the flag

Bit 2: RAMP_DOWN_DONE: End of output stage ramp down flag

Read

1 = the ramp-down sequence is completed (output stage in stand-by mode). Write

1 = Reset of the flag

Bit 1: GAIN_UP_DONE: End of mute gain up sequence flag

Read

 $1\,$ = the mute sequence is completed, the DAC input signal is transmitted to the DAC path.

Write

1 = Reset of the flag

Bit 0: **GAIN_DOWN_DONE**: End of mute gain down sequence flag

Read

1 = the mute sequence is completed, a 0 DC signal is transmitted to the DAC path.

Write

1 = Reset of the flag

CGR1: Control Gain Register n°1

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GODR3 | GODR2 | GODR1 | GODRO | GODL3 | GODL2 | GODL1 | GODLO |

- Bit 7-4: **GODR[3:0]**: DAC mixing right channel gain programming value Read/Write
- Bit 3-0: **GODL[3:0]**: DAC mixing left channel gain programming value Read/Write

CGR2: Control Gain Register n°2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
LRGOB1	RLGOB1	-	GOBL14	GOBL13	GOBL12	GOBL11	GOBL10

Bit 7-6: LRGOB1, RLGOB1: Line 1 mixing gain coupling

Read/Write

00: Left and right channels gains are independent, respectively given by GOBL1 and GOBR1

- 10: Left and right channels gain is given by GOBL1
- 01: Left and right channels gain is given by GOBR1
- 11: Left and right channels gain is given by GOBL1
- Bit 4-0: **GOBL1[4:0]**: Line 1 mixing left channel gain programming value Read/Write

CGR3: Control Gain Register n°3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
			GOBR14	GOBR13	GOBR12	GOBR11	GOBR10

Bit 4-0: **GOBR1[4:0]**: Line 1 mixing right channel gain programming value Read/Write

CGR4: Control Gain Register nº 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
LRGOB2	RLGOB2		GOBL24	GOBL23	GOBL22	GOBL21	GOBL20

- Bit 7-6: LRGOB2, RLGOB2: Line 2 mixing gain coupling Read/Write
 - 00: Left and right channels gains are independent, respectively given by GOBL2 and GOBR2
 - 10: Left and right channels gain is given by GOBL2
 - 01: Left and right channels gain is given by GOBR2
 - 11: Left and right channels gain is given by GOBL2
- Bit 4-0: **GOBL2[4:0]**: Line 2 mixing left channel gain programming value Read/Write

CGR5: Control Gain Register n°5

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
			GOBR24	GOBR23	GOBR22	GOBR21	GOBR20

Bit 4-0: **GOBR2[4:0]**: Line 2 mixing right channel gain programming value Read/Write

CGR6: Co	ontrol Gair	Register	n°6							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0			
LRGOS	RLGOS		GOSL4	GOSL3	GOSL2	GOSL1	GOSL0			
	LRGOS , RL ead/Write	.GOS: Mici	rophone mi	xing gain c	oupling					
0	0: Left and and GOS		nels gains a	are indepei	ndent, resp	pectively gi	iven by GOSL			
1	0: Left and	right chan	nels gain is	given by (GOSL					
0	1: Left and	right chan	nels gain is	given by (GOSR					
1	1: Left and	right chan	nels gain is	given by (GOSL					
Bit 4-0:	GOSL[4:0 Read/Writ		one mixing	left chann	el gain pro	ogramming	value			
CGR7: Co	ontrol Gair	Register	n°7							
R/W-0	/-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-0									
			GOSR4	GOSR3	GOSR2	GOSR1	GOSRO			
Bit 4-0:	GOSR[4:0]	: Microph	one mixing	right chan	nel gain pr	ogrammin	g value			

Bit 4-0: **GOSR[4:0]**: Microphone mixing right channel gain programming value Read/Write

CGR8: Control Gain Register n°8

R/W-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-1 R/W-0 LRGO RLGO GOL4 GOL3 GOL2 GOL1 GOL0			-	-				
<u>R/W-0</u> R/W-0 R/W-0 R/W-1 R/W-0 R/W-1 R/W-0	LRGO	RLGO		GOL4	GOL3	GOL2	GOL1	GOLO
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-I	R/W-0	R/W-1	R/W-0

Bit 7-6: LRGO, RLGO: Output stages gain coupling

Read/Write

00: Left and right channels gains are independent, respectively given by GOL and $\ensuremath{\mathsf{GOR}}$

10: Left and right channels gain is given by GOL

01: Left and right channels gain is given by GOR

11: Left and right channels gain is given by GOL

29.5 Application note

29.5.1 Power-on and power-off modes

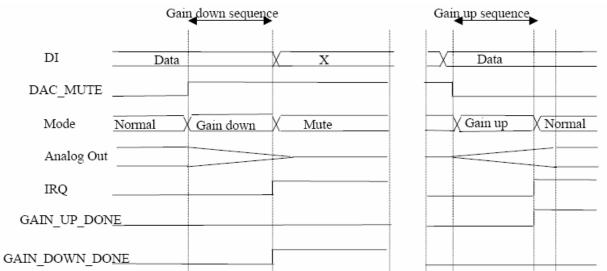
When the power supply ramps up, audio codec enters the power-on mode. During the reset, the codec is put in stand-by in order to reduce audible pops.

The codec doesn't handle the power supply ramp down on its own. The application has to turn the codec in complete stand-by mode before the power supply starts to ramp down.

29.5.2 Asynchronous reset

The reset input signal is asynchronous and is twice resynchronized on the internal clock domain to prevent erroneous reset due to glitches.. The reset minimum duration is one MCLK cycle.

Except during the power-up mode, do not perform reset in order to avoid audible pops. Resetting the codec during normal operating mode will turn instantaneously the codec in stand-by mode. This will lead to generate a large audible pop.


29.5.3 Soft mute mode

A soft mute is implemented in order to reduce audible parasites when the DAC enters or leaves the mute mode. It is controlled by the DAC_MUTE register bit.

Setting DAC_MUTE to `1'puts the DAC in mute mode. The codec decreases progressively the gain in the digital part (DWL block) from 0dB to $-\infty$. When the gain down sequence is completed, the signal in output of the DAC is equal to 0 whatever the value of the digital input data is. The codec then generates an IRQ and set GAIN_DOWN_DONE register bit to `1'.

During soft mute mode, the DAC is still converting but the output final voltages (AOL, AOR) are equal to VREF/2.

In the opposite, when DAC_MUTE is set to '0', the DAC leaves the mute mode by increasing progressively the gain in the digital part from $-\infty$ to 0dB. When the gain up sequence is completed, the DAC returns in normal mode. The codec then generates an IRQ and set GAIN_UP_DONE register bit to '1'.

The duration of gain down and gain up sequences are nearly independent of Fs as shown below:

Fs(kHz)	Time(ms)	Fs(kHz)	Time(ms)	Fs(kHz)	Time(ms)
96	17.72	24	17.25	11.025	17.73
48	17.72	22.05	17.73	9.6	17.98
44.1	17.73	16	17.25	8	17.25
32	17.96	12	17.25		

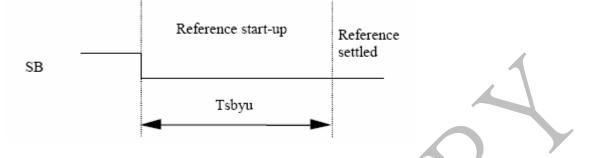
Do not change the value of DAC_MUTE while the effect of the previous change is not reached (working not guaranteed).

Do not enter in stand-by mode while the gain sequence is not completed (working not guaranteed).

29.5.4 Power-down and sleep modes

Twelve stand-by inputs allow putting independently the different parts of codec in power-down mode.

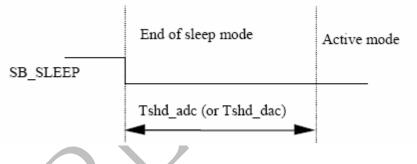
Different working modes are sum-up in the following table (non exhaustive table):


Mode	SB	SB SLEEP	SB DAC	SB MIX	SB OUT	SB MC	SB ADC	SB MIC	SB	SB IN1	SB IN2	SB IND	INSEL	DACSEL	BYPASS1	BYPASS2	SIDETONE	HP DIS	DAC MUTE
Reset mode (complete power-down mode)	1	1	1	1	1	0	1	1	1	1	1	1	0	1	0	0	0	0	1
Complete power-down mode	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sleep mode	0	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Record mode, Line input 1	0	0	Х	Х	Х	Х	0	Х	Х	0	Х	Х	0	Х	Х	Х	X	Х	Х
Record mode, Line input 2	0	0	Х	Х	Х	Х	0	Х	Х	Х	0	Х	1	Х	Х	X	Х	Х	Х
Record mode, Microphone	0	0	v	v	v	v	0	0	Х	v	v	v	2	v	X	V	v	v	v
input	0	0	Х	Х	Х	Х	0	0	л	Х	Х	Х	2	Х	л	Х	X	х	Х
Record mode, Mixer output	0	0	Х	0	0	Х	0	Х	Х	Х	Х	0	3	X	Х	Х	Х	X	X
Playback mode, DAC to 16	0	0	0	0	0	0	Х	Х	Х	Х	Х	X	X	1	0	0	0	0	0
Ohm headphone out														X					
Playback mode, DAC to 10	0	0	0	0	1	х	х	х	х	х	x	X	X	1				1	0
kOhm line out	Ŭ	0	Ū	0	1	21		21						·	0	0	0	1	Ū
Playback mode, Line1 to 16	0	0	Х	0	0	0	Х	Х	Х	0	Х	X	Х	0				0	Х
Ohm headphone out															1	0	0		
Playback mode, Line1 to 10	0	0	Х	0	1	х	x	x	X	0	X	X	х	0				1	Х
kOhm line out															1	0	0		
Playback mode, Line2 to 16	0	0	Х	0	0	0	Х	Х	X	X	0	Х	Х	0				0	Х
Ohm headphone out								_							0	1	0		
Playback mode, Line2 to 10	0	0	X	0	1	х	х	X	X	X	0	Х	Х	0	0	1	0	1	Х
kOhm line out Playback mode, MIC to 16	0	0	X	0	0	0	X	0	X	X	x	Х	X	0	0	1	0	0	X
Ohm headphone out	0	0	Λ	0	0	0	Λ	0	Λ	Λ	Λ	Λ	Λ	0	0	0	1	0	Λ
Playback mode, MIC to 10							_								U	U	1		
kOhm line out	0	0	Х	0	1	Х	Х	0	Х	Х	Х	Х	Х	0	0	0	1	1	Х
Playback mode, all inputs	0	0	0	0	0	0	Х	0	Х	0	0	Х	Х	1				0	0
mixed to 16 Ohm headphone															1	1	1		
out																			
Playback mode, all inputs	0	0	0	0	1	Х	Х	0	Х	0	0	Х	Х	1				1	0
mixed to 10 kOhm line out															1	1	1		
Playback mode, all inputs	0	0	0	0	0	0	0	0	Х	0	0	Х	0	1				0	0
mixed to 16 Ohm headphone													1		1	1	1		
out, record line or mic input													2						
Playback mode, all inputs	0	0	0	0	1	Х	0	0	Х	0	0	Х	0	1				1	0
mixed to 10 kOhm line out,													1		1	1	1		
record line or mic input	0	0	0	0	0	0	0	0	Х	0	0		2					0	0
Playback mode, all inputs mixed to 16 Ohm headphone	0	0	0	0	0	0	U	0	А	0	0	0	3	1	1	1	1	0	0
out, record mixer output												U	э	1	1	1	1		
Playback mode, all inputs	0	0	0	0	1	Х	0	0	Х	0	0							1	0
mixed to 10 kOhm line out,	0	0	0	0	1	Δ	0	0	Λ	0	0	0	3	1	1	1	1	1	0
record mixer output												0	5	1	1	1	1		
"Default mode"	0	0	0	0	0	0	0	1	1	0	1	1	0	1	0	0	0	0	0

29.5.5 Complete stand-by mode

This codec (including all functions i.e. ADC path, DAC path and references) is put in stand-by mode when the SB register bit equals `1'.

During the complete power-down mode, the power consumption is reduced to a minimum.


When SB is set to '0', codec leaves the complete power-down mode; it is necessary to wait some time before the Codec references settle. This time is equal to Tsbyu.

29.5.6 Sleep mode

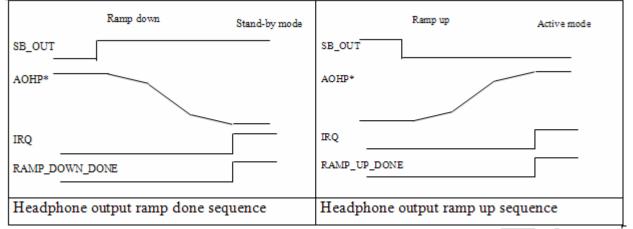
When SB_SLEEP is set to '1', shCODlp-100.01-HD enters in sleep mode. The logical part and the analog functions - except the voltage and biasing references - enter in power-down mode. So, the power consumption is reduced without penalizing the start-up time.

When SB_SLEEP falls, shCODlp-100.01-HD leaves the corresponding stand-by mode; it is necessary to wait some time before the Codec reaches the normal mode. Depending on SB- DAC, SB_OUT, SB_MC, SD_ADC, SB_MIC, SB_IN1, SB_IN2 and SB_IND, this time is either called Tshd_adc for the ADC path or Tshd_dac for the DAC path.

29.5.7 Starting and stopping sequences (pop reduction)

Due to the large number of stand-by combinations and to be the most flexible, the handling of the sequencement from one working mode to another is let to the application. To help the SoC designer and the software designer in this task, some specific sequences are automatically performed by shCODlp-100.01-HD and an interrupt mechanism (IRQ signal and associated registers) warns the application when these sequences end.

The main idea of this section is to describe the sequences to perform to minimize the audible pop to the minimum for the headphone output.

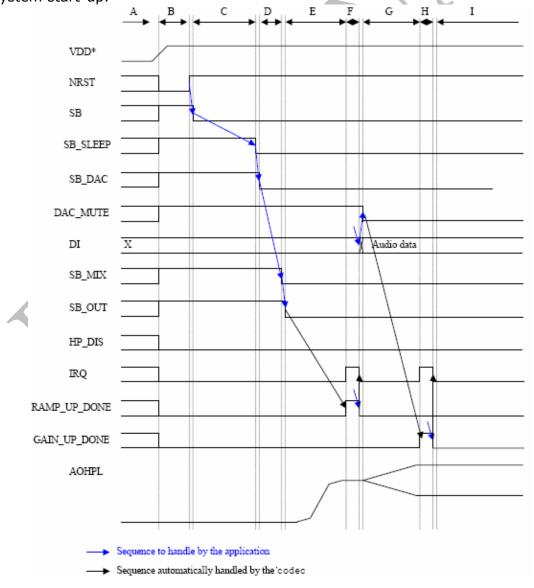

Note that the following sequences do not perform audible glitch reduction on the line output. The stage connected to the line output has to handle the pop reduction system

For Headphone stage ramping system, An internal mechanism is used to reduce output glitches when the headphone stage enters or leaves the power-down mode.

When the SB_OUT is set to '1', the headphone output voltages (AOHPL, AOHPR, and AOHPM) are slowly decreased in the same time from VDDA/2 down to 0. The output ramp waveform is programmable thanks to the CRR register (see CRR: Control Ramp Register).

When the SB_OUT is set to '0', the headphone output voltages (AOHPL, AOHPR, and AOHPM) are slowly increased in the same time from 0 to VDDA/2.

An interrupt request is sent when the ramp completes.



Do not change the level of SB_OUT as long as the sequence due to the previous change is not completed (working not guaranteed).

In order to prevent audible glitch, it is required to power-down the output stage (SB_OUT=1) before changing the type of output load (capacitor less load/capacitor coupled load) with SB_MC.

From power-on to DAC playback mode sequence

The intent of the following sequence is to prevent for large audible glitches due to the system start-up.

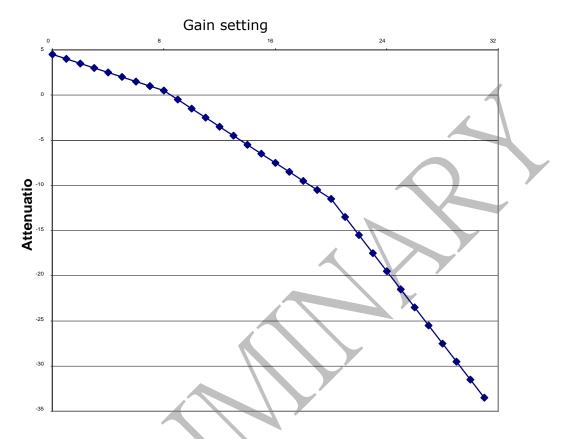
- A, Initial state: the power supply is off.
- B, Power supply ramp up: the application drives NRST to '0'.
- C, Starting of codec reference: the application turns the Codec on sleep mode (SB register bit).
- D: After waiting the Tsbyu duration (for example, on event generated by a timer at the application level), the application turns on the Codec DAC (SB_SLEEP and SB_DAC register bits)
- E, Ramp up cycle: after waiting 1 ms (TBC), the application turns on the mixer and the headphone output stages.
- F, IRQ generation: once the ramp up cycle completes, the Codec sets the RAMP_UP_DONEflag to '1' and generates an interrupt.
- G, IRQ handling and gain up cycle: the application handles the interrupt and resets the RAMP_UP_DONE flag by writing '1' on it and releases the mute of the DAC (DAC_MUTE register bit). In the same time, the application sends valid audio data to the Codec DAC.
- H, IRQ generation: once the gain up cycle completes, the Codec sets the GAIN_UP_DONE flagto '1' and generates an interrupt.
- I, IRQ handling and active mode: the application handles the interrupt and resets theGAIN_UP_DONE flag by writing '1' on. The Codec DAC is now fully activated.

The sequence from C to I can be used to switch from the complete stand-by mode to the active mode.

The sequence from D to I can be used to switch from the sleep mode to the active mode.

29.5.8 Requirements on mixer and PGATM inputs selection and

power-down modes


The following rules must be respected in order not to damage performances and to keep the functionality:

- If SB_IN1 is set to 1, INSEL must be different of `00' and BYPASS1 must be equal to 0.
- If SB_IN2 is set to 1, INSEL must be different of `01' and BYPASS2 must be equal to 0.
- If SB_MIC is set to 1, INSEL must be different of `10' and SIDETONE must be equal to 0.
- If SB_IND is set to 1, INSEL must be different of `11'.
- If SB_DAC is set to 1, DACSEL must be equal to 0.

29.5.9 Programmable attenuation

PGAT

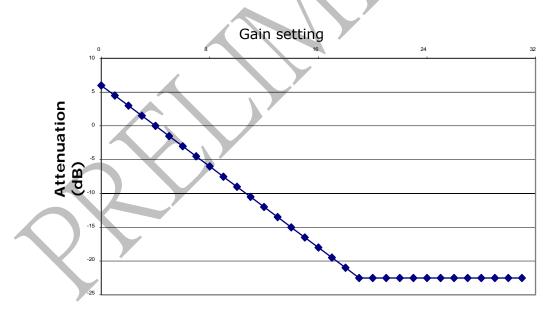
The attenuation of PGAT may be programmed independently for the both channels through the registers bits GOL[4:0] and GOR[4:0]. The value of the gain is programmable from +4.5 to -33.5dB with a variable pitch as below:

The	gain and	output le	evels are	obtained	according	to the following	table:

GO[4]	GO[3]	GO[2]	GO[1]	[0]0	Decimal decoded value	Gain Valu e	Maximal PGAT input amplitude (Vpp	Maximal PGAT output amplitude (Vpp
0	Ċ	Ċ	0	G		(dB)	single-ended)	single-ended)
0	0	0	0	0	0	+4.5	0.425*VREF	0.71*VREF
0	0	0	0	1	1	+	0.451*VREF	0.71*VREF
0	0	1	1	1	7	+	0.637*VREF	0.71*VREF
0	1	0	0	0	8	+0.5	0.675*VREF	0.71*VREF
0	71	0	0	1	9	-0.5	0.757*VREF	0.71*VREF
1	0	0	1	1	19	-10.5	0.85*VREF	0.251*VREF
1	0	1	0	0	20	-11.5	0.85*VREF	0.225*VREF
1	0	1	0	1	21	-13.5	0.85*VREF	0.178*VREF
1	1	1	1	0	30	-31.5	0.85*VREF	0.023*VREF
1	1	1	1	1	31	-33.5	0.85*VREF	0.017*VREF

DAC path

The attenuation of DAC path may be programmed independently for both channels through the pins GODL[3:0] and GODR[3:0]. The value of the gain is programmable from 0 to -22.5dB with a constant pitch as below.


GOD[3]	GOD[2]	GOD[1]	GOD[0]	Decima I decode d	Gain Value (dB)	Output amplitude (*) (Vpp single-ended)
0	0	0	0	0	0	0.85*VREF
0	0	0	1	1	-1.5	0.715*VREF
0	0	1	0	2	-	0.602* VREF
0	0	1	1	3	-4.5	0.506*VREF
х	у	Z	t	i	-1.5*i	0.85/{10^(1.5*i/20)}*VRE
1	1	1	1	15	-22.5	0.064*VREF
(*)		put of	Mixor	for m	avimal	amplitude 0.85*V/PEE (V/n

(*) At output of Mixer, for maximal amplitude 0.85*VREF (Vpp single-ended) at input of

Mixer on DAC path, and no signal on Bypass path

Bypass path, sidetone path

The attenuation of analog bypass and sidetone paths may be programmed independently for both channels through the pins GOBL1[4:0], GOBR1[4:0]; GOBL2[4:0], GOBR2[4:0]; GOSL[4:0] and GOSR[4:0]. The value of the gain is programmable from +6 to -22.5dB with a constant pitch as below.

G*[4]	G*[3]	G*[2]	G*[1]	G*[0]	Decimal decoded value	Gain Value (dB)	Maximal input amplitude (Vpp single-ended) Note (1)	Maximal output amplitude (Vpp single-ended) Note (2)
0	0	0	0	0	0	+6	0.425*VREF	0.85*VREF
0	0	0	0	1	1	+4.5	0.506*VREF	0.85*VREF
0	0	1	0	0	4	+0	0.85*VREF	0.85*VREF
0	0	1	0	1	5	-1.5	0.85*VREF	0.715*VREF

Rockchip Electronic

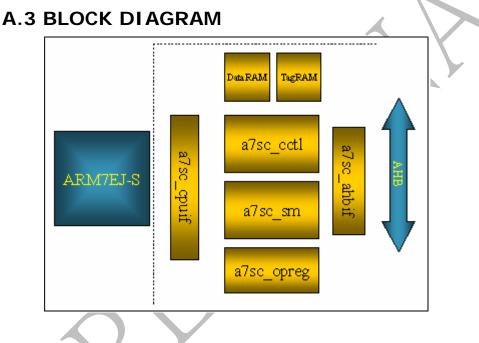
х	У	Z	t	u	i	6-1.5*i	0.85*VREF	If i ≥4 0.85/{10^((6-
								1.5*i)/20)}*VREF
1	0	0	1	1	19	-22.5	0.85*VREF	0.064*VREF
						-22.5	0.85*VREF	0.064*VREF
1	1	1	1	1	31	-22.5	0.85*VREF	0.064*VREF

Note (1): at input of Mixer on analog Bypass or sidetone path, with no signal on DAC path Note (2): at output of Mixer, with no signal on DAC path.

Appendix A – ARM7EJ-S Cache Controller

A.1 DESCRIPTION

The ARM7EJ-S cache controller is to provide a performance enhancement solution to ARM7EJ-S


A.2 FEATURES

- ARM7EJ-S Interface.
 - AMBA AHB 2.0 compatible interface.
- Unified ICACHE and DCACH
 - 2-Way, Configurable Cache Size 4KB/8KB/16KB/32KB
 - Write-through cache

Pseudo-random replacement

- Invalidate Single/Way
- Cache Lockdown

Performance counter (cache hit/miss)

A.4 FUNCTION REGISTERS

A.4.1 Registers Summary:

Name	Offset	Reset Value	Access	Description
DevID	0x00	0x09500250	R/W	Some read only fields might be different in different configuration. Refer to the Detail register description for the detail.
CacheOp	0x04	0x00000000	R/W	
CacheLKDN	0x08	0x00000000	R/W	Cache Lock Down Register
MemMapA	0x10	0x00000000	R/W	
MemMapB	0x14	0x00000000	R/W	
MemMapC	0x18	0x0000000	R/W	
MemMapD	0x1C	0x0000000	R/W	
PFCNTRA_CTRL	0x20			

PFCNTRA	0x24		
PFCNTRB_CTRL	0x28		
PFCNTRA	0x2C		

A.4.2 Detail Register Description:

DevID

Basic device status/info register

Bit #	Access	Reset	Description
31	R/W	1'b0	Global Cache Enable
30:28	RO	3'b0	Reserved
27:16	RO	8h11	Design revision. Reset value depends on the deign revision.
15:10	RO	6'b0	Reserved
9:8	RO	2'b10	Configurable Cache Size
7:5	RO	3'b010	2-Way associative
4	RO	1'b1	8-word cache line size
3:0	RO	4'b0	Reserved

CacheOp

Control cache operations

Bit #	Access	Reset	Description			
31:2	R/W		Look-up address for cache op.			
1:0	R/W	2'b00	Cache Opcode. 2'b00:Nop, 2'b01:Invalidate Single Entry, 2'b10: Invalidate Way, 2'b11:Reserved. The Opcode filed is automatically cleared to 2'b00 after the invalidate process is complete.			

CacheLKDN

Cache Lock-down controll

Cache		JUNITON	
Bit #	Access	Reset	Description
31:2	R		Reserved
1:0	R/W	2'b00	Lock way selection. 2'b00: No lock, 2'b01:Lock Way0,
			2'10:Lock Way1, 2'b11: Reserved

PFCNTR_CTRLA/B

Performance counter registers

Bit #	Access	Reset	Description
		Reset	
31:8	R		Reserved
7:4	R/W	4'b0	Count event. Below lists the countable events:
			"0": Cycle Counts: Counts every clock
			"1": Inst Counts: Counts instruction access
			"2": Cacheable Inst Counts: Counts cacheable instruction
			"3": Inst Hit Counts: Counts cache hit instructions
			"4": RESERVED
			"5": Data Counts: Counts data access
			"6": Data Write Counts: Counts data write access
			"7": Cacheable Data Counts: Counts cacheable data
			access
			"8": Data Read Hit Counts: Counts cache hit of data
			access
			"9" RESERVED
3:1	RO	3'b0	Reserved
0	R/W	1'b0	CNTR Enable. Set "1" to enable counterA/B to start count
			the specified event.

MemMap A/B/C/D

Setup region for uncacheable area

The base must be aligned to 32MB boundary. The region size must be 32MB/64MB/128MB

Bit #	Access	Reset	Description
31:25	R/W	7'b0	Memory map base
7:0	R/W	8'b0	Map Mask(Size)
			8b0000_0000: Invalid setup
			8b1111_1110: 32MB
			8b1111_1100: 64MB
			8b1111_1000: 128MB
			Others: Reserved

PFCNTRA/B

Perform	nance Cour	nter Value		
Bit #	Access	Reset	Description	
31:0	R/W	32'b0	Counter value	

A.4.2 configurable cache size

Use CACHESIZE to set Cache Size: 4KB (00), 8KB (01), 16KB(10), 16KB(11)

A.5 OPERATIONS

Cache operations

Invalidate Cache Entry

Users could invalidate specified cache entry via *CacheOp* register. Set OpCode in bit[1:0] with 2'b01, and fill the specified address in bit[31:2], the cache controller search the matched address in Tag ram and set the entry as invalidate. The user must poll the bit[1:0] in *CacheOp* register to be 2'b00 to make sure the invalidate process is complete.

Invalidate Cache Way

Users could also invalidate whole cache way by setting bit[1:0] in *CacheOp* register to 2'b10, and fill the specified way in bit[31]. The cache controller then invalidates all the entries in the specified way. Users MUST poll the bit[1:0] in *CacheOp* register to be 2'b00 to make sure the invalidate process is complete.

Cache lock-down

User could set the bit[1:0] in *CacheLKDN* register to select the way to lock. When one way is set to be lock, all cache update is going to another way. For example, if the way0 is set to be locked, all following cache refill is going to way1. The content in way0 will not be replaced until lock is cleared.

Cache Enable/Disable

Set the bit31 in *DevID* register 1'b1/1'b0 to enable/disable the cache controller.

Memory Mapping Setup

The ARM7EJ cache controller provides 4 memory map registers for users to setup uncacheable memory regions. The uncacheable area can be set from 32MB (1x32MB) to 512MB (4x128MB). All accesses from ARM7EJ located within the setup area are uncachable and read or write directly to AHB bus. Users can use these registers to setup the peripheral I/O mapping in system to ensure all I/O access are not cached. All region must be 32MB aligned.

Performance Counter

The ARM7EJ cache controller provides two optional performance counters for user to evaluate the cache efficiency. The counter counts the specified event when the counter is enabled. Two counters can work independently. Due to the design nature, for some events, like data counts, the counter value will be increased while the user access the register. These counters are implanted optionally, please contact Rockchips for the availability.