# Rockchip

# *RK3328*

# Technical Reference Manual Part1

**Revision 1.1** 

Mar. 2017

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Revision | History |
|----------|---------|
|----------|---------|

| Date       | Revision | Description     |
|------------|----------|-----------------|
| 2017-3-20  | 1.1      | Update          |
| 2017-02-06 | 1.0      | Initial Release |

# **Table of Content**

| Table of Content                              | 3    |
|-----------------------------------------------|------|
| Figure Index                                  | 8    |
| Table Index                                   | . 11 |
| NOTICE                                        | .12  |
| Chapter 1 System Overview                     | .13  |
| 1.1 Address Mapping                           | .13  |
| 1.2 System Boot                               | . 13 |
| 1.3 System Interrupt connection               | . 15 |
| 1.4 System DMA hardware request connection    | . 19 |
| Chapter 2 Clock & Reset Unit (CRU)            | .20  |
| 2.1 Overview                                  | . 20 |
| 2.2 Block Diagram                             |      |
| 2.3 System Reset Solution                     |      |
| 2.4 Function Description                      |      |
| 2.5 PLL Introduction                          |      |
| 2.6 Register Description                      |      |
| 2.7 Timing Diagram                            |      |
| 2.8 Application Notes                         |      |
| Chapter 3 General Register Files (GRF)1       |      |
|                                               |      |
| 3.1 Overview                                  |      |
| 3.2 Function Description 1                    |      |
| 3.3 GRF Register Description 1                |      |
| 3.4 DDR_GRF Register Description 2            |      |
| 3.5 USB2PHY_GRF Register Description2         |      |
| 3.6 USB3PHY_GRF Register Description2         |      |
| Chapter 4 Cortex-A532                         | 249  |
| 4.1 Overview                                  | 249  |
| 4.2 Block Diagram 2                           | 249  |
| 4.3 Function Description 2                    | 250  |
| Chapter 5 Embedded SRAM2                      | 251  |
| 5.1 Overview                                  | 251  |
| 5.2 Block Diagram                             |      |
| 5.3 Function Description                      |      |
| Chapter 6 Power Management Unit (PMU)2        |      |
|                                               |      |
| 6.1 Overview                                  |      |
| 6.2 Block Diagram                             |      |
| 6.3 Function Description                      |      |
| 6.4 Register Description                      |      |
| 6.5 Timing Diagram 2                          |      |
| 6.6 Application Note 2                        |      |
| Chapter 7 Generic Interrupt Controller (GIC)2 | 265  |
| 7.1 Overview                                  | 265  |

| 7.2 Block Diagram                        | 265 |
|------------------------------------------|-----|
| 7.3 Function Description                 |     |
| Chapter 8 DMA Controller (DMAC)          | 266 |
| 8.1 Overview                             |     |
| 8.2 Block Diagram                        |     |
| 8.3 Function Description                 |     |
| 8.4 Register Description                 |     |
| 8.5 Timing Diagram                       |     |
| 8.6 Interface Description                |     |
| 8.7 Application Notes                    |     |
| Chapter 9 Temperature Sensor ADC (TSADC) |     |
|                                          |     |
| 9.1 Overview                             |     |
| 9.2 Block Diagram                        |     |
| 9.3 Function Description                 |     |
| 9.4 Register description                 |     |
| 9.5 Application Notes                    |     |
| Chapter 10 SARADC                        | 307 |
| 10.1 Overview                            | 307 |
| 10.2 Block Diagram                       | 307 |
| 10.3 Function Description                | 307 |
| 10.4 Register description                |     |
| 10.5 Timing Diagram                      |     |
| 10.6 Application Notes                   |     |
| Chapter 11 System Debug                  |     |
|                                          |     |
| 11.1 Overview                            |     |
| 11.2 Block Diagram                       |     |
| 11.3 Function Description                |     |
| 11.4 Register Description                |     |
| 11.5 Interface Description               |     |
| Chapter 12 eFuse                         | 313 |
| 12.1 Overview                            | 313 |
| 12.2 Block Diagram                       | 313 |
| 12.3 Function Description                | 313 |
| 12.4 Register Description                | 314 |
| 12.5 Timing Diagram                      | 323 |
| 12.6 Application Notes                   | 324 |
| Chapter 13 WatchDog                      | 325 |
| 13.1 Overview                            | 325 |
| 13.2 Block Diagram                       |     |
| 13.2 Block Diagram                       |     |
| 13.4 Register Description                |     |
|                                          |     |
| 13.5 Application Notes                   |     |
| Chapter 14 Timer                         | 334 |
| 14.1 Overview                            | 334 |

| 14.2 Block Diagram                                  | 334   |
|-----------------------------------------------------|-------|
| 14.3 Function Description                           | 334   |
| 14.4 Register Description                           |       |
| 14.5 Application Notes                              |       |
| Chapter 15 Transport Stream Processing Module (TSP) | 338   |
| 15                                                  | 338   |
| 15.1 Overview                                       | 338   |
| 15.2 Block Diagram                                  | 338   |
| 15.3 Function Description                           | 339   |
| 15.4 Register Description                           |       |
| 15.5 Interface Description                          |       |
| 15.6 Application Notes                              |       |
| Chapter 16 Pulse Width Modulation (PWM)             | 394   |
| 16.1 Overview                                       | 394   |
| 16.2 Block Diagram                                  |       |
| 16.3 Function Description                           |       |
| 16.4 Register Description                           |       |
| 16.5 Interface Description                          |       |
| 16.6 Application Notes                              | 412   |
| Chapter 17 UART Interface                           | 414   |
| 17.1 Overview                                       | 414   |
| 17.2 Block Diagram                                  | 414   |
| 17.3 Function Description                           | 415   |
| 17.4 Register Description                           | 418   |
| 17.5 Interface Description                          | . 438 |
| 17.6 Application Notes                              | 439   |
| Chapter 18 GPIO                                     | 443   |
| 18.1 Overview                                       | 443   |
| 18.2 Block Diagram                                  | 443   |
| 18.3 Function Description                           | 443   |
| 18.4 Register Description                           | 445   |
| 18.5 Interface Description                          | 449   |
| 18.6 Application Notes                              | 450   |
| Chapter 19 I2C Interface                            | 451   |
| 19.1 Overview                                       | 451   |
| 19.2 Block Diagram                                  | 451   |
| 19.3 Function Description                           | 452   |
| 19.4 Register Description                           | 455   |
| 19.5 Interface Description                          | 465   |
| 19.6 Application Notes                              | 466   |
| Chapter 20 Serial Peripheral Interface (SPI)        | 469   |
| 20.1 Overview                                       | 469   |
| 20.2 Block Diagram                                  | 469   |
| 20.3 Function Description                           | 471   |

| 20.4 Register Description                                | 472 |
|----------------------------------------------------------|-----|
| 20.5 Interface Description                               | 483 |
| 20.6 Application Notes                                   | 483 |
| Chapter 21 SPDIF Transmitter                             |     |
| 21.1 Overview                                            |     |
| 21.2 Block Diagram                                       |     |
| 21.3 Function description                                |     |
| 21.4 Register description                                |     |
| 21.5 Interface description                               |     |
| 21.6 Application Notes                                   |     |
| Chapter 22 GMAC Ethernet Interface                       |     |
|                                                          |     |
| 22.1 Overview                                            |     |
| 22.2 Block Diagram                                       |     |
| 22.3 Function Description                                |     |
| 22.4 Register Description                                | 509 |
| 22.5 Interface Description                               | 560 |
| 22.6 Application Notes                                   | 562 |
| Chapter 23 Pulse Density Modulation Interface Controller |     |
| 23.1 Overview                                            |     |
| 23.2 Block Diagram                                       |     |
| 23.3 Function Description                                |     |
| 23.4 Register Description                                |     |
| 23.5 Interface Description                               |     |
| 23.6 Application Notes                                   |     |
| Chapter 24 Smart Card Reader (SCR)                       |     |
|                                                          |     |
| 24.1 Overview                                            |     |
| 24.2 Block Diagram                                       |     |
| 24.3 Function Description                                |     |
| 24.4 Register Description                                |     |
| 24.5 Interface Description                               |     |
| 24.6 Application Notes                                   |     |
| Chapter 25 I2S/PCM Controller                            | 615 |
| 25                                                       | 615 |
| 25.1 Overview                                            | 615 |
| 25.2 Block Diagram                                       | 616 |
| 25.3 Function description                                | 617 |
| 25.4 Register Description                                |     |
| 25.5 16.5 Interface description                          |     |
| 25.6 16.6 Application Notes                              |     |
| Chapter 26 Graphics Process Unit (GPU)                   |     |
|                                                          |     |
| 26.1 Overview                                            |     |
| 26.2 Block Diagram                                       |     |
| 26.3 Register Description                                |     |
| 26.4 Interface Description                               | 640 |

| 641 |
|-----|
| 641 |
| 641 |
| 641 |
| 642 |
| 644 |
|     |

# **Figure Index**

| Fig. 1-1 RK3328 Address Mapping                                   | 13  |
|-------------------------------------------------------------------|-----|
| Fig. 1-2 RK3328 boot procedure flow                               | 15  |
| Fig. 2-1 CRU Block Diagram                                        |     |
| Fig. 2-2 Reset Architecture Diagram                               |     |
| Fig. 2-3 PLL Block Diagram                                        | 22  |
| Fig. 2-4 Chip Power On Reset Timing Diagram                       | 123 |
| Fig. 4-1 Block Diagram                                            |     |
| Fig. 5-1 Embedded SRAM block diagram                              | 251 |
| Fig. 6-1 RK3328 Power Domain Partition                            |     |
| Fig. 7-1 Block Diagram                                            |     |
| Fig. 8-1 Block diagram of DMAC                                    |     |
| Fig. 8-2 DMAC operation states                                    | 268 |
| Fig. 8-3 DMAC request and acknowledge timing                      | 286 |
| Fig. 9-1 TS-ADC Controller Block Diagram                          | 295 |
| Fig. 9-2 the start flow to enable the sensor and adc              | 304 |
| Fig. 10-1 SAR-ADC block diagram                                   | 307 |
| Fig. 10-2 SAR-ADC timing diagram in single-sample conversion mode | 310 |
| Fig. 11-1 Debug system structure                                  | 311 |
| Fig. 11-2 DAP SWJ interface                                       | 312 |
| Fig. 11-3 SW-DP acknowledgement timing                            | 312 |
| Fig. 12-1 eFuse block diagram                                     | 313 |
| Fig. 12-2 efuse32×32 timing diagram in program mode               | 323 |
| Fig. 12-3 efuse32×32 timing diagram in read mode                  | 323 |
| Fig. 13-1 WDT block diagram                                       | 325 |
| Fig. 13-2 WDT Operation Flow                                      | 326 |
| Fig. 13-3 DCF work flow                                           | 330 |
| Fig. 14-1 Timer Block Diagram                                     | 334 |
| Fig. 14-2 Timer Usage Flow                                        | 335 |
| Fig. 14-3 Timing between timer_en and timer_clk                   | 337 |
| Fig. 15-1 TSP architecture                                        | 339 |
| Fig. 15-2 Sync/Valid Serial Mode with Msb-Lsb Bit Ordering        | 340 |
| Fig. 15-3 Sync/valid Parallel Mode                                | 340 |
| Fig. 15-4 Sync/Burst Parallel Mode                                | 340 |
| Fig. 15-5 Nosync/Valid Parallel Mode                              | 340 |
| Fig. 16-1 PWM Block Diagram                                       | 394 |
| Fig. 16-2 PWM Capture Mode                                        | 395 |
| Fig. 16-3 PWM Continuous Left-aligned Output Mode                 | 395 |
| Fig. 16-4 PWM Continuous Center-aligned Output Mode               | 396 |
| Fig. 16-5 PWM One-shot Center-aligned Output Mode                 | 396 |
| Fig. 17-1 UART Architecture                                       | 414 |
| Fig. 17-2 UART Serial protocol                                    | 415 |
| Fig. 17-3 IrDA 1.0                                                |     |
| Fig. 17-4 UART baud rate                                          |     |
| Fig. 17-5 UART Auto flow control block diagram                    | 417 |
| Fig. 17-6 UART AUTO RTS TIMING                                    | 418 |

| Fig. 17-7 UART AUTO CTS TIMING                                         |       |
|------------------------------------------------------------------------|-------|
| Fig. 17-8 UART none fifo mode                                          | . 439 |
| Fig. 17-9 UART fifo mode                                               |       |
| Fig. 17-10 UART clock generation                                       | .441  |
| Fig. 18-1 GPIO block diagram                                           | . 443 |
| Fig. 18-2 GPIO Interrupt RTL Block Diagram                             | . 445 |
| Fig. 19-1 I2C architecture                                             | .451  |
| Fig. 19-2 I2C DATA Validity                                            |       |
| Fig. 19-3 I2C Start and stop conditions                                | . 454 |
| Fig. 19-4 I2C Acknowledge                                              | .455  |
| Fig. 19-5 I2C byte transfer                                            |       |
| Fig. 19-6 I2C Flow chat for transmit only mode                         | . 466 |
| Fig. 19-7 I2C Flow chat for receive only mode                          | . 467 |
| Fig. 19-8 I2C Flow chat for mix mode                                   |       |
| Fig. 20-1 SPI Controller Block diagram                                 |       |
| Fig. 20-2 SPI Master and Slave Interconnection                         | .471  |
| Fig. 20-3 SPI Format (SCPH=0 SCPOL=0)                                  | . 472 |
| Fig. 20-4 SPI Format (SCPH=0 SCPOL=1)                                  | . 472 |
| Fig. 20-5 SPI Format (SCPH=1 SCPOL=0)                                  |       |
| Fig. 20-6 SPI Format (SCPH=1 SCPOL=1)                                  | . 472 |
| Fig. 20-7 SPI Master transfer flow diagram                             |       |
| Fig. 20-8 SPI Slave transfer flow diagram                              | . 485 |
| Fig.21-1 SPDIF transmitter Block Diagram                               |       |
| Fig.21-2 SPDIF Frame Format                                            |       |
| Fig.21-3 SPDIF Sub-frame Format                                        | . 488 |
| Fig.21-4 SPDIF Channel Coding                                          |       |
| Fig.21-5 SPDIF Preamble                                                |       |
| Fig.21-6 Format of Data-burst                                          |       |
| Fig.21-7 SPDIF transmitter operation flow chart                        |       |
| Fig.22-1 GMAC Architecture                                             |       |
| Fig.22-2 MAC Block Diagram                                             |       |
| Fig.22-3 RMII transmission bit ordering                                |       |
| Fig. 22-4 Start of MII and RMII transmission in 100-Mbps mode          |       |
| Fig. 22-5 End of MII and RMII Transmission in 100-Mbps Mode            |       |
| Fig. 22-6 Start of MII and RMII Transmission in 10-Mbps Mode           |       |
| Fig. 22-7 End of MII and RMII Transmission in 10-Mbps Mode             |       |
| Fig. 22-8 RMII receive bit ordering                                    |       |
| Fig. 22-9 MDIO frame structure                                         |       |
| Fig. 22-10 Descriptor Ring and Chain Structure                         |       |
| Fig. 22-11 Rx/Tx Descriptors definition                                |       |
| Fig. 22-12 RMII clock architecture when clock source from CRU          |       |
| Fig. 22-13 RMII clock architecture when clock source from external OSC |       |
| Fig. 22-14 RGMII clock architecture when clock source from CRU         |       |
| Fig. 22-15 Wake-Up Frame Filter Register                               |       |
| Fig.23-1 PDMC Block Diagram                                            |       |
| Fig.23-2 PDMC with Eight Mono MIC                                      |       |
| Fig.23-3 PDMC with Four Stereo MIC                                     | . 581 |

| Fig.23-4 PDMC interface diagram with external MIC581        |
|-------------------------------------------------------------|
| Fig.23-5 PDMC Clock Structure                               |
| Fig. 24-1 SCR Block Diagram                                 |
| Fig. 24-2 Activation, Cold Reset and ATR597                 |
| Fig. 24-3 Warm Reset and ATR                                |
| Fig. 24-4 Deactivation Sequence                             |
| Fig. 25-1 I2S/PCM controller (8 channel) Block Diagram      |
| Fig. 25-2 I2S transmitter-master & receiver-slave condition |
| Fig. 25-3 I2S transmitter-slave& receiver-master condition  |
| Fig. 25-4 I2S normal mode timing format                     |
| Fig. 25-5 I2S left justified mode timing format             |
| Fig. 25-6 I2S right justified mode timing format            |
| Fig. 25-7 PCM early mode timing format                      |
| Fig. 25-8 PCM late1 mode timing format619                   |
| Fig. 25-9 PCM late2 mode timing format                      |
| Fig. 25-10 PCM late3 mode timing format620                  |
| Fig. 25-11 I2S/PCM controller transmit operation flow chart |
| Fig. 25-12 I2S/PCM controller receive operation flow chart  |
| Fig. 26-1 GPU block diagram                                 |
| Fig. 26-2 GPU interrupt connection                          |
| Fig. 27-1 VDAC Block Diagram641                             |
| Fig. 27-2 VDAC Block Diagram645                             |

# **Table Index**

| Table 1-1 RK3328 Interrupt connection list                | 15  |
|-----------------------------------------------------------|-----|
| Table 1-2 RK3328 DMAC Hardware request connection list    | 19  |
| Table 6-1 RK3328 Power Domain and Voltage Domain Summary  | 253 |
| Table 8-1 DMAC Request Mapping Table                      |     |
| Table 8-2 DMAC boot interface                             |     |
| Table 8-3 Source size in CCRn                             | 292 |
| Table 8-4 DMAC Instruction sets                           | 292 |
| Table 8-5 DMAC instruction encoding                       |     |
| Table 11-1 SW-DP Interface Description                    | 312 |
| Table 15-1 TSP interface description                      |     |
| Table 16-1 PWM Interface Description                      | 412 |
| Table 17-1 UART Interface Description                     | 438 |
| Table 17-2 UART baud rate configuration                   |     |
| Table 18-1 GPIO interface description                     | 449 |
| Table 19-1 I2C Interface Description                      | 465 |
| Table 20-1 1SPI interface description                     | 483 |
| Table 21-1 SPDIF Interface Description                    |     |
| Table 21-2 Interface Between SPDIF And HDMI               | 499 |
| Table 22-1 GMACArchitecture                               |     |
| Table 22-2 M0 RMII Interface Description                  |     |
| Table 22-3 M0 RGMII Interface Description                 |     |
| Table 22-4 Receive Descriptor 0                           |     |
| Table 22-5 Receive Descriptor 1                           |     |
| Table 22-6 Receive Descriptor 2                           |     |
| Table 22-7 Receive Descriptor 3                           |     |
| Table 22-8 Transmit Descriptor 0                          |     |
| Table 22-9 Transmit Descriptor 1                          |     |
| Table 22-10 Transmit Descriptor 2                         |     |
| Table 22-11 Transmit Descriptor 3                         | 571 |
| Table 23-1 Relation between MCLK, ASP_CLK and sample rate |     |
| Table 23-2 PDMC Interface Description                     |     |
| Table 23-3 PDMC operation flow                            | 594 |
| Table 24-1 SCR Interface Description                      |     |
| Table 24-2 BAUDTUNE register                              |     |
| Table 25-1 I2S Interface Description                      |     |
| Table 25-2 Interface Between I2S1 and ACODEC              |     |
| Table 25-3 I2S Interface Between I2S2 and HDMI            | 635 |

## NOTICE

#### **Copyright © 2016, Fuzhou Rockchip Electronics Co., Ltd. All rights reserved.**

1. By using this document, you hereby unequivocally acknowledge that you have read and agreed to be bound by the contents of this notice.

2. Fuzhou Rockchip Electronics Co., Ltd. ("Rockchip") may make changes to any information in this document at any time without any prior notice. The information herein is subject to change without notice. Do not finalize a design with this information.

3. Information in this document is provided in connection with Rockchip products.

4. THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT ANY WARRANTY OR CONDITION OF ANY KIND, EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OR CONDITION WITH RESPECT TO MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR NON-INFRINGEMENT.ROCKCHIP DOES NOT ASSUME ANY RESPONSIBILITY AND LIABILITY FOR ITS USE NOR FOR ANY INFRINGEMENT OF PATENTS OR OTHER RIGHTS OF THE THIRD PARTIES WHICH MAY RESULT FROM ITS USE.

5. Rockchip products described in this document are not designed, intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility application.

6. Rockchip and Rockchip logo are trademarks or registered trademarks of Rockchip in China and other countries. All referenced brands, product names, service names and trademarks in this document are the property by their respective owners.

# **Chapter 1 System Overview**

# **1.1 Address Mapping**

RK3328 supports to boot from internal bootrom, which supports remap function by software programming. Remap is controlled by SGRF\_SOC\_CON2[10]. When remap is set to 1, the bootrom is mapped to address 0Xff080000 and internal memory is mapped to address 0Xfff00000.

|           |                    |            |                      |           |                       |            | After_REMAP           |
|-----------|--------------------|------------|----------------------|-----------|-----------------------|------------|-----------------------|
|           |                    |            |                      | FF70_0000 | USB3.0 OTG            |            | INT_RAM               |
|           |                    |            |                      |           | (1MB)                 | FFFF_0000/ | (2010)                |
| FF10 0000 | ,                  | FF3B_0000  | IEP                  | FF60_0000 | SDMMC_EXT             | FF09_0000  | BOOT_ROM              |
| FF19_0000 | I2C3               |            | (64K)                |           | (64K)                 |            | (20K)                 |
| FF18_0000 | (64K)              | FF3A_0000  | RGA                  | FF5F_0000 | Reserved              | FF08_0000  |                       |
|           | 12C2               | 5530 0000  | (64K)                |           | (64K)                 |            | Before_REMAP          |
| FF17_0000 | (64K)              | FF39_0000  | VIP                  | FF5E_0000 | USB_HOST_OHCI         |            | INT_RAM               |
|           | 12C1<br>(64K)      |            | (64K)                | FFFD 0000 | (64K)                 | 5500 0000  | (36K)                 |
| FF16_0000 | 12C0               | FF38_0000  | VOP                  | FF5D_0000 | USB_HOST_EHCI         | FF09_0000  | BOOT_ROM              |
|           | (64K)              | FF37_0000  | (64K)                | FF5C_0000 | (64K)                 | FF08_0000/ | (20K)                 |
| FF15_0000 | PMU                | _          | RKVDEC               | 1156_0000 | USB2_OTG              | FFFF_0000  |                       |
|           | (64K)              | FF36_0000  | (64K)                | FF58_0000 | (256K)                | FFFF_0000  | Reserved              |
| FF14_0000 | UART2              |            | VPU<br>(64K)         | _         | Reserved              |            | (64Kx125)             |
|           | (64K)              | FF35_0000  | H264 ENC             | FF56_0000 | (128K)                | FF82_0000  | GIC400                |
| FF13_0000 | UART1              |            | (64K)                | -         | GMAC1<br>(64K)        | FF81_0000  | (64K)                 |
| FF12 0000 | (64K)              | FF34_0000  | H265 ENC             | FF55_0000 |                       | FF81_0000  | CA53_DBG              |
| FF12_0000 | UART0              |            | (64K)                |           | GMAC0<br>(64K)        | FF80_0000  | (64K)                 |
| FF11_0000 | (64K)              | FF33_0000  | GPU                  | FF54_0000 | NANDC                 | FF80_0000  | Reserved              |
|           | GRF                | FE30 0000  | (192K)               |           | (64K)                 | FF7E_0000  | (128K)                |
| FF10_0000 | (64K)              | FF30_0000  | Reserved             | FF53_0000 | eMMC                  | _          | FIREWALL_CFG<br>(64K) |
|           | Reserved           | FF30 0000  | (448K)               | FF52_0000 | (64K)                 | FF7D_0000  |                       |
| FF0E_0000 | (128K)             | FF29_0000  | SARADC               |           | SDIO                  |            | FIREWALL_DDR<br>(64K) |
|           | SGRF               | FF28_0000  | (64K)                | FF51_0000 | (64K)                 | FF7C_0000  |                       |
| FF0D_0000 | (64K)              | 1120_0000  | OTP_NS               |           | SDMMC                 | _          | Reserved<br>(128K)    |
|           | DMAC_S<br>(64K)    | FF27_0000  | (64K)                | FF50_0000 | (64K)                 | FF7A_0000  | (120K)                |
| FF0C_0000 | EFUSE_S            | _          | EFUSE_NS             |           | Reserved              |            | Reserved              |
|           | (64K)              | FF26_0000  | (64K)                | FF48_0000 | (512K)                | FF79_C000  | (16K)                 |
| FF0B_0000 | OTP_S              | _          | TSADC                | 1140_0000 | USB3PHY_PIPE<br>(32K) |            | DDR GRF               |
|           | (64K)              | FF25_0000  | (64K)                | FF47_8000 | USB3PHY UTMI          | FF79_8000  | (16K)                 |
| FF0A_0000 | INT_MEM            |            | GPIO3<br>(64K)       |           | (32K)                 |            | DDR STDBY<br>(16K)    |
|           | (64K)              | FF24_0000  |                      | FF47_0000 | USB3PHY_GRF           | FF79_4000  | DDR Monitor           |
| FF09_0000 | BOOTROM            |            | GPIO2<br>(64K)       | _         | (64K)                 |            | (16K)                 |
| FF08_0000 | (64K)              | FF23_0000  | GPIO1                | FF46_0000 | USB2PHY_GRF           | FF79_0000  | DDR_uPCTL             |
| 1108_0000 | Reserved           |            | (64K)                |           | (64K)                 |            | (64K)                 |
| FF07_0000 | (64K)              | FF22_0000  | GPIO0                | FF45_0000 | CRU                   | FF78_0000  | Service_VPU           |
|           | CRYPTO             | FF21_0000  | (64K)                | FF44 0000 | (64K)                 |            | (32K)                 |
| FF06_0000 | (64K)<br>TSP       |            | SIM                  | FF44_0000 | HDMI PHY              | FF77_8000  | Service_VENC          |
|           | (64K)              | FF20_0000  | (64K)                |           | (64K)                 |            | (32K)                 |
| FF05_0000 | PDM                | -          | DMAC_NS              | FF43_0000 | VDAC PHY              | FF77_0000  | Service VIO           |
|           | (64K)              | FF1F_0000  | (64K)                | FF42_0000 | (64K)                 | FF76_0000  | (64K)                 |
| FF04_0000 | SPDIF              | _          | DCF                  |           | ACODEC PHY            | 1170_0000  | Service VDEC          |
| FF03 0000 | (64K)              | FF1E_0000  | (64K)                | FF41_0000 | (64K)                 | EE7E 0000  | (64K)                 |
| FF03_0000 | 12S2_2CH           |            | STIMER(2ch)<br>(64K) |           | DDRPHY                | FF75_0000  | Service SYS           |
| FF02_0000 | (6 <del>4</del> K) | FF1D_0000  |                      | FF40_0000 | (64K)<br>Reserved     | FF74_0000  | (64K)                 |
| FF02_0000 | I2S1_8CH           |            | TIMER(6ch)<br>(64K)  |           | (64K)                 |            | Service PERI          |
| FF01_0000 | (64K)              | FF1C_0000  | PWM                  | FF3F_0000 | HDCP2.2               | FF73_0000  | (64K)                 |
|           | 12S0_8CH           |            | (64K)                |           | (64K)                 |            | Service MSCH<br>(64K) |
| FF00_0000 | (64K)              | FF1B_0000  | WDT                  | FF3E_0000 | HDMI CTRL             | FF72_0000  |                       |
|           | DDR                | FF1 4 0000 | (64K)                |           | (128K)                |            | Service GPU<br>(64K)  |
|           | DDR<br>(4GB-16MB)  | FF1A_0000  | SPI                  | FF3C_0000 | HDCPMMU               | FF71_0000  | Service CORE          |
| 0000_0000 | (                  | FF19_0000  | (64K)                |           | (64K)                 | EE70 0000  | (64K)                 |
|           |                    | 1115_0000  |                      | FF3B_0000 |                       | FF70_0000  | . ,                   |

Fig. 1-1 RK3328 Address Mapping

# 1.2 System Boot

RK3328 provides system boot from off-chip devices such as SDMMC card, eMMC memory, serial nand or nor flash. When boot code is not ready in these devices, also provide system

code download into them by USB OTG interface. All of the boot code will be stored in internal bootrom. The following is the whole boot procedure for boot code, which will be stored in bootrom in advance.

The following features are supports.

- Support system boot from the following device:
  - Serial Nor Flash, 1bit data width
  - eMMC Interface, 8bits data with
  - SDMMC Card, 4bits data with
- Support system code download by USB OTG

Following figure shows RK3328 boot procedure flow.

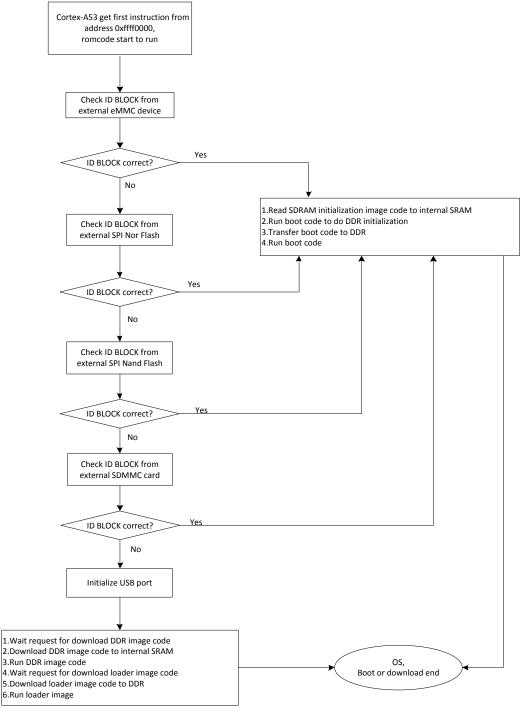



Fig. 1-2 RK3328 boot procedure flow

## **1.3 System Interrupt connection**

RK3328 provides an general interrupt controller(GIC) for CPU, which has 128 SPI (shared peripheral interrupts) interrupt sources and 3 PPI(Private peripheral interrupt) interrupt source and separately generates one nIRQ and one nFIQ to CPU. The triggered type for each interrupts is high level sensitive, not programmable. The detailed interrupt sources connection is in the following table. For detailed GIC setting, please refer to Chapter 9.

| IRQ Type | IRQ ID | Source(spi)           | Polarity   |
|----------|--------|-----------------------|------------|
|          | 32     | ( bus_dmac_irq)       | High level |
|          | 33     | bus_dmac_irq_abort    | High level |
|          | 34     | dfi_alert_err_intr    | High level |
|          | 35     | upctl_awpoison_intr   | High level |
|          | 36     | sdmmc_ext_int         | High level |
|          | 37     | vop_intr_ddr          | High level |
|          | 38     | sdmmc_ext_dectn_in    | High level |
|          | 39     | rkvdec_m_dec_irq      | High level |
|          | 40     | upctl_arpoison_intr   | High level |
|          | 41     | vpu_xintdec_irq       | High level |
|          | 42     | sdmmc_ext_detectn_irq | High level |
| SPI      | 43     | vpu_mmu_irq           | High level |
| 51       | 44     | sdmmc_int             | High level |
|          | 45     | sdio_int              | High level |
|          | 46     | emmc_int              | High level |
|          | 47     | otp_int_ns            | High level |
|          | 48     | host0_ehci_int        | High level |
|          | 49     | host0_ohci_int        | High level |
|          | 50     | host0_arb_int         | High level |
|          | 51     | otp_int_s             | High level |
|          | 52     | ddrmon_int            | High level |
|          | 53     | gmac2phy_int          | High level |
|          | 54     | gmac2phy_pmt_int      | High level |
|          | 55     | otg_int               | High level |

| Table 1-1 RK3328 | Interrupt connection list |
|------------------|---------------------------|

| IRQ Type | IRQ ID | Source(spi)     | Polarity   |
|----------|--------|-----------------|------------|
|          | 56     | gmac2io_int     | High level |
|          | 57     | gmac2io_pmt_int | High level |
|          | 58     | i2s0_8ch_intr   | High level |
|          | 59     | i2s1_8ch_intr   | High level |
|          | 60     | i2s2_2ch_intr   | High level |
|          | 61     | spdif_8ch_intr  | High level |
|          | 62     | crypto_int      | High level |
|          | 63     | iep_intr        | High level |
|          | 64     | vop_intr        | High level |
|          | 65     | rga_intr        | High level |
|          | 66     | hdcp_intr       | High level |
|          | 67     | hdmi_intr       | High level |
|          | 68     | rki2c0_int      | High level |
|          | 69     | rki2c1_int      | High level |
|          | 70     | rki2c2_int      | High level |
|          | 71     | rki2c3_int      | High level |
|          | 72     | wdt_intr        | High level |
|          | 73     | stimer_intr0    | High level |
|          | 74     | stimer_intr1    | High level |
|          | 75     | timer_intr0     | High level |
|          | 76     | timer_intr1     | High level |
|          | 77     | timer_intr2     | High level |
|          | 78     | timer_intr3     | High level |
|          | 79     | timer_intr4     | High level |
|          | 80     | timer_intr5     | High level |
|          | 81     | spi0_intr       | High level |
|          | 82     | rkpwm_int       | High level |
|          | 83     | gpio0_intr      | High level |
|          | 84     | gpio1_intr      | High level |
|          | 85     | gpio2_intr      | High level |

| IRQ Type | IRQ ID | Source(spi)                       | Polarity   |
|----------|--------|-----------------------------------|------------|
|          | 86     | gpio3_intr                        | High level |
|          | 87     | uart0_intr                        | High level |
|          | 88     | uart1_intr                        | High level |
|          | 89     | uart2_intr                        | High level |
|          | 90     | tsadc_int                         | High level |
|          | 91     | usbphy_otg_bvalid_irq             | High level |
|          | 92     | usbphy_otg_id_irq                 | High level |
|          | 93     | usbphy_otg_linestate_irq          | High level |
|          | 94     | usbphy_host_linestate_irq         | High level |
|          | 95     | sdmmc_detectn_irq                 | High level |
|          | 96     | cif_intr                          | High level |
|          | 97     | sdmmc_dectn_in_flt                | High level |
|          | 98     | usb3otg_host_legacy_smi_interrupt | High level |
|          | 99     | usb3otg_int                       | High level |
|          | 100    | usb3otg_host_sys_err              | High level |
|          | 101    | usb3otg_pme_generation            | High level |
|          | 102    | macphy_int                        | High level |
|          | 103    | hdmi_intr_wakeup                  | High level |
|          | 104    | tsp_int                           | High level |
|          | 105    | sim_int                           | High level |
|          | 106    | rkvdec_m_mmu_irq                  | High level |
|          | 107    | usb3phy_bvalid_irq                | High level |
|          | 108    | usb3phy_id_irq                    | High level |
|          | 109    | usb3phy_linestate_irq             | High level |
|          | 110    | usb3phy_rxdet_irq                 | High level |
|          | 111    | efuse_int                         | High level |
|          | 112    | saradc_int                        | High level |
|          | 113    | tsp_int_mmu                       | High level |
|          | 114    | pdm_int                           | High level |
|          | 115    | hdmiphy_irq                       | High level |

| IRQ Type | IRQ ID | Source(spi)         | Polarity   |
|----------|--------|---------------------|------------|
|          | 116    | dcf_done_int        | High level |
|          | 117    | dcf_error_int       | High level |
|          | 118    | pmu_int             | High level |
|          | 119    | irq_gpu_gpmmu       | High level |
|          | 120    | irq_gpu_pp0         | High level |
|          | 121    | irq_gpu_ppmmu0      | High level |
|          | 122    | irq_gpu_gp          | High level |
|          | 123    | irq_gpu_pp1         | High level |
|          | 124    | irq_gpu_ppmmu1      | High level |
|          | 125    | irq_gpu_pp          | High level |
|          | 126    | irq_gpu_pmu         | High level |
|          | 127    | rkvenc_h265_int     | High level |
|          | 128    | rkvenc_h265_mmu_int | High level |
|          | 129    | rkvenc_h264_enc_int | High level |
|          | 130    | rkvenc_h264_mmu_int | High level |
|          | 131    | Reserved            | High level |
|          | 132    | npmuirq[0]          | High level |
|          | 133    | npmuirq[1]          | High level |
|          | 134    | npmuirq[2]          | High level |
|          | 135    | npmuirq[3]          | High level |
|          | 136    | nvcpumntirq[0]      | High level |
|          | 137    | nvcpumntirq[1]      | High level |
|          | 138    | nvcpumntirq[2]      | High level |
|          | 139    | nvcpumntirq[3]      | High level |
|          | 140    | ncommirq[0]         | High level |
|          | 141    | ncommirq[1]         | High level |
|          | 142    | ncommirq[2]         | High level |
|          | 143    | ncommirq[3]         | High level |
|          | 144    | naxierrirq          | High level |

# **1.4 System DMA hardware request connection**

RK3328 provides one DMA controller inside the system. The trigger type for each of them is high level, not programmable. For detailed descriptions of DMAC, please refer to Chapter 8.

| Req Number | Source      | Polarity   |
|------------|-------------|------------|
| 0          | I2S2_2ch tx | High level |
| 1          | I2S2_2ch rx | High level |
| 2          | Uart0 tx    | High level |
| 3          | Uart0 rx    | High level |
| 4          | Uart1 tx    | High level |
| 5          | Uart1 rx    | High level |
| 6          | Uart2 tx    | High level |
| 7          | Uart2 rx    | High level |
| 8          | SPI tx      | High level |
| 9          | SPI rx      | High level |
| 10         | SPDIF       | High level |
| 11         | I2S0_8ch tx | High level |
| 12         | I2S0_8ch rx | High level |
| 13         | pwm_tx      | High level |
| 14         | I2S1_8ch_tx | High level |
| 15         | I2S1_8ch_rx | High level |
| 16         | pdm         | High level |

Table 1-2 RK3328 DMAC Hardware request connection list

# Chapter 2 Clock & Reset Unit (CRU)

## 2.1 Overview

The CRU is an APB slave module that is designed for generating all of the internal and system clocks, resets of chip. CRU generates system clocks from PLL output clock or external clock source, and generates system reset from external power-on-reset, watchdog timer reset or software reset.

CRU supports the following features:

- Compliance to the AMBA APB interface
- Embedded 5 PLLs
- Flexible selection of clock source
- Supports the respective gating of all clocks
- Supports the respective software reset of all modules

# 2.2 Block Diagram

CRU comprises with:

- PLL
- Register configuration unit
- Clock generate unit
- Reset generate unit

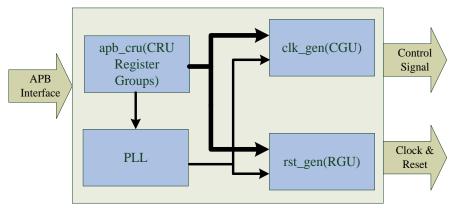



Fig. 2-1 CRU Block Diagram

# 2.3 System Reset Solution

The following diagram shows reset architecture.



Fig. 2-2 Reset Architecture Diagram

Reset source of each reset signal includes hardware reset(NPOR), SoC watch dog reset(soc\_wdt\_rstn), SoC tsadc reset(soc\_tsadc\_rstn), software reset request(xxx\_softrstn\_req), global software reset1(glb\_srstn\_1), global software reset2(glb\_srstn\_2).

The 'xxx' of resetn\_xxx and xxx\_softrstn\_req is the module name.

soc\_wdt\_rstn is the reset from watch-dog IP in the SoC.

glb\_srstn\_1 and glb\_srstn\_2 are the global software reset by programming CRU register. When writing register CRU\_GLB\_SRST\_FST\_VALUE as 0xfdb9, glb\_srstn\_1 will be asserted, and when writing register CRU\_GLB\_SRST\_SND\_VALUE as 0xeca8, glb\_srstn\_2 will be asserted. The two software resets will be self-cleared by hardware. glb\_srstn\_1 will reset the all logic, and glb\_srstn\_2 will reset the all logic except GRF and all GPIOs.

# **2.4 Function Description**

There are 5 PLLs in the chip: ARM PLL, NEW PLL, DDR PLL, CODEC PLL and GENERAL PLL, and it supports only one crystal oscillator: 24MHz. Each PLL can only receive 24MHz oscillator.

These 5 PLLs all can be set to slow mode or deep slow mode, directly output selectable 24MHz. When power on or changing PLL setting, we must force PLL into slow mode to ensure output stable clock.

To maximize the flexibility, some of clocks can select divider source from 5 PLLs. (Note: It's recommended to use NEW PLL instead of ARM PLL as arm clock source, because NEW PLL is near to ARM. And it's jitter is better than ARM PLL).

To provide some specific frequency, another solution is integrated: fractional divider. In order to guarantee the performance for divided clock, there is some usage limit, we can only get low frequency and divider factor must be larger than 20.

All clocks can be software gated and all resets can be software generated.

# **2.5 PLL Introduction**

## 2.5.1 Overview

The chip uses 3.2GHz PLL for all the PLLs. The 3.2GHz PLL is a general purpose, highperformance PLL-based clock generator. The PLL is a multi-function, general purpose frequency synthesizer. Ultra-wide input and output ranges along with best-in-class jitter

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

performance allow the PLL to be used for almost any clocking application. With excellent supply noise immunity, the PLL is ideal for use in noisy mixed signal SoC environments. By combining ultra-low jitter output clocks into a low power, low area, widely programmable design, we can greatly simplify an SoC by enabling a single macro to be used for all clocking applications in the system.

3.2GHz PLL supports the following features:

- Input frequency range: 1MHz to 800MHz (Integer Mode) and 10MHz to 800MHz (Fractional Mode)
- Output Frequency Range: 16MHz to 3.2GHz
- 24 bit fractional accuracy, and fractional mode jitter performance to nearly match integer mode performance.
- 4:1 VCO frequency range allows PLL to be optimized for minimum jitter or minimum power.
- Isolated analog supply (1.8V) allows for excellent supply rejection in noisy SoC applications.
- Lock Detect Signal indicates when frequency lock has been achieved.

## 2.5.2 Block diagram

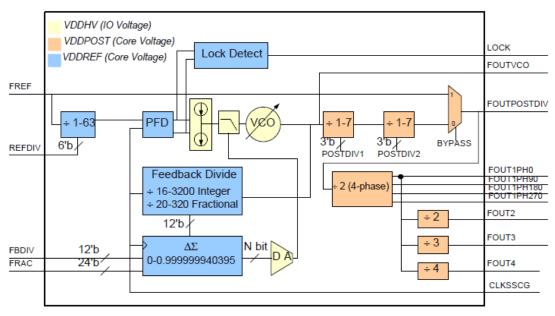



Fig. 2-3 PLL Block Diagram

## How to calculate the PLL

The Fractional PLL output frequency can be calculated using some simple formulas. These formulas also embedded within the Fractional PLL Verilog model:

If DSMPD = 1 (DSM is disabled, "integer mode")

FOUTVCO = FREF / REFDIV \* FBDIV

FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2

If DSMPD = 0 (DSM is enabled, "fractional mode")

FOUTVCO = FREF / REFDIV \* (FBDIV + FRAC / 224)

FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2

Where:

FOUTVCO = Fractional PLL non-divided output frequency

FOUTPOSTDIV = Fractional PLL divided output frequency (output of second post divider) FREF = Fractional PLL input reference frequency

REFDIV = Fractional PLL input reference clock divider

FVCO = Frequency of internal VCO

FBDIV = Integer value programmed into feedback divide

FRAC = Fractional value programmed into DSM

### **Changing the PLL Programming**

In most cases the PLL programming can be changed on-the-fly and the PLL will simply slew to the new frequency. However, certain changes have the potential to cause glitches on the PLL output clocks. These changes include:

- Switching into or out of BYPASS mode may cause a glitch on FOUTPOSTDIV
- Changing POSTDIV1 or POSTDIV2 may cause a short pulse with width equal to as little as one VCO period on FOUTPOSTDIV
- Changing POSTDIV could cause a shortened pulse on FOUT1PH\* or FOUT2/3/4
- Asserting PD or FOUTPOSTDIVPD may cause a glitch on FOUTPOSTDIV

# 2.6 Register Description

## 2.6.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

| Name          | Offset | Size | Reset Value | Description                  |
|---------------|--------|------|-------------|------------------------------|
| CRU_APLL_CON0 | 0x0000 | W    | 0x00003064  | APLL configuration register0 |
| CRU_APLL_CON1 | 0x0004 | W    | 0x00001041  | APLL configuration register1 |
| CRU_APLL_CON2 | 0x0008 | W    | 0x00000001  | APLL configuration register2 |
| CRU_APLL_CON3 | 0x000c | w    | 0x00000007  | APLL configuration register3 |
| CRU_APLL_CON4 | 0x0010 | W    | 0x00007f00  | APLL configuration register4 |
| CRU_DPLL_CON0 | 0x0020 | W    | 0x00001096  | DPLL configuration register0 |
| CRU_DPLL_CON1 | 0x0024 | W    | 0x00001042  | DPLL configuration register1 |
| CRU_DPLL_CON2 | 0x0028 | W    | 0x00000001  | DPLL configuration register2 |
| CRU_DPLL_CON3 | 0x002c | W    | 0x00000007  | DPLL configuration register3 |
| CRU_DPLL_CON4 | 0x0030 | W    | 0x00007f00  | DPLL configuration register4 |
| CRU_CPLL_CON0 | 0x0040 | W    | 0x000020c8  | CPLL configuration register0 |
| CRU_CPLL_CON1 | 0x0044 | W    | 0x00001043  | CPLL configuration register1 |
| CRU_CPLL_CON2 | 0x0048 | W    | 0x00000001  | CPLL configuration register2 |
| CRU_CPLL_CON3 | 0x004c | W    | 0x00000007  | CPLL configuration register3 |
| CRU_CPLL_CON4 | 0x0050 | W    | 0x00007f00  | CPLL configuration register4 |
| CRU_GPLL_CON0 | 0×0060 | w    | 0x00001051  | GPLL configuration register0 |

## 2.6.2 Registers Summary

| Name                   | Offset | Size | Reset Value | Description                                 |
|------------------------|--------|------|-------------|---------------------------------------------|
| CRU_GPLL_CON1          | 0x0064 | W    | 0x00000042  | GPLL configuration register1                |
| CRU_GPLL_CON2          | 0x0068 | w    | 0x00eb84f8  | GPLL configuration register2                |
| CRU_GPLL_CON3          | 0x006c | W    | 0x00000007  | GPLL configuration register3                |
| CRU_GPLL_CON4          | 0x0070 | W    | 0x00007f00  | GPLL configuration register4                |
| CRU_CRU_MODE           | 0x0080 | W    | 0x00000000  | CRU_MODE                                    |
| CRU_CRU_MISC           | 0x0084 | W    | 0x0000a000  | CRU_MISC                                    |
| CRU_CRU_GLB_CNT_TH     | 0x0090 | W    | 0x3a980064  | CRU_GLB_CNT_TH                              |
| CRU_GLB_RST_ST         | 0x0094 | W    | 0x00000000  | GLB_RST_ST                                  |
| CRU_GLB_SRST_SND_VALUE | 0x0098 | W    | 0x00000000  | GLB_SRST_SND_VALUE                          |
| CRU_GLB_SRST_FST_VALUE | 0x009c | W    | 0x00000000  | GLB_SRST_FST_VALUE                          |
| CRU_NPLL_CON0          | 0x00a0 | w    | 0x00003064  | NPLL configuration register0                |
| CRU_NPLL_CON1          | 0x00a4 | W    | 0x00001041  | NPLL configuration register1                |
| CRU_NPLL_CON2          | 0x00a8 | W    | 0x00000001  | NPLL configuration register2                |
| CRU_NPLL_CON3          | 0x00ac | W    | 0x00000007  | NPLL configuration register3                |
| CRU_NPLL_CON4          | 0x00b0 | W    | 0x00007f00  | NPLL configuration register4                |
| CRU_CLKSEL_CON0        | 0x0100 | W    | 0x00000300  | Internal clock select and divide register0  |
| CRU_CLKSEL_CON1        | 0x0104 | W    | 0x00001113  | Internal clock select and divide register1  |
| CRU_CLKSEL_CON2        | 0x0108 | W    | 0x0000003   | Internal clock select and divide register2  |
| CRU_CLKSEL_CON3        | 0x010c | W    | 0x00000000  | Internal clock select and divide register3  |
| CRU_CLKSEL_CON4        | 0x0110 | W    | 0x00000780  | Internal clock select and divide register4  |
| CRU_CLKSEL_CON5        | 0x0114 | W    | 0x00008000  | Internal clock select and divide register5  |
| CRU_CLKSEL_CON6        | 0x0118 | W    | 0x0000000f  | Internal clock select and divide register6  |
| CRU_CLKSEL_CON7        | 0x011c | W    | 0x0bb8ea60  | Internal clock select and divide register7  |
| CRU_CLKSEL_CON8        | 0x0120 | W    | 0x0000000f  | Internal clock select and divide register8  |
| CRU_CLKSEL_CON9        | 0x0124 | W    | 0x0bb8ea60  | Internal clock select and divide register9  |
| CRU_CLKSEL_CON10       | 0x0128 | W    | 0x0000000f  | Internal clock select and divide register10 |
| CRU_CLKSEL_CON11       | 0x012c | W    | 0x0bb8ea60  | Internal clock select and divide register11 |
| CRU_CLKSEL_CON12       | 0x0130 | W    | 0x0000000f  | Internal clock select and divide register12 |
| CRU_CLKSEL_CON13       | 0x0134 | W    | 0x0bb8ea60  | Internal clock select and divide register13 |

| Name             | Offset | Size | Reset Value | Description                                 |
|------------------|--------|------|-------------|---------------------------------------------|
| CRU_CLKSEL_CON14 | 0x0138 | W    | 0x00000007  | Internal clock select and divide register14 |
| CRU_CLKSEL_CON15 | 0x013c | W    | 0x0bb8ea60  | Internal clock select and divide register15 |
| CRU_CLKSEL_CON16 | 0x0140 | W    | 0x00000007  | Internal clock select and divide register16 |
| CRU_CLKSEL_CON17 | 0x0144 | W    | 0x0bb8ea60  | Internal clock select and divide register17 |
| CRU_CLKSEL_CON18 | 0x0148 | W    | 0x00000007  | Internal clock select and divide register18 |
| CRU_CLKSEL_CON19 | 0x014c | W    | 0x0bb8ea60  | Internal clock select and divide register19 |
| CRU_CLKSEL_CON20 | 0x0150 | W    | 0x00008f04  | Internal clock select and divide register20 |
| CRU_CLKSEL_CON21 | 0x0154 | W    | 0x00000400  | Internal clock select and divide register21 |
| CRU_CLKSEL_CON22 | 0x0158 | W    | 0x000001e0  | Internal clock select and divide register22 |
| CRU_CLKSEL_CON23 | 0x015c | W    | 0x000001e0  | Internal clock select and divide register23 |
| CRU_CLKSEL_CON24 | 0x0160 | W    | 0x00000707  | Internal clock select and divide register24 |
| CRU_CLKSEL_CON25 | 0x0164 | w    | 0x00000242  | Internal clock select and divide register25 |
| CRU_CLKSEL_CON26 | 0x0168 | W    | 0x0000000f  | Internal clock select and divide register26 |
| CRU_CLKSEL_CON27 | 0x016c | W    | 0x00000705  | Internal clock select and divide register27 |
| CRU_CLKSEL_CON28 | 0x0170 | W    | 0x00000042  | Internal clock select and divide register28 |
| CRU_CLKSEL_CON29 | 0x0174 | W    | 0x00000022  | Internal clock select and divide register29 |
| CRU_CLKSEL_CON30 | 0x0178 | W    | 0x00000003  | Internal clock select and divide register30 |
| CRU_CLKSEL_CON31 | 0x017c | W    | 0x00000001  | Internal clock select and divide register31 |
| CRU_CLKSEL_CON32 | 0x0180 | W    | 0x00000001  | Internal clock select and divide register32 |
| CRU_CLKSEL_CON33 | 0x0184 | W    | 0x0000030b  | Internal clock select and divide register33 |
| CRU_CLKSEL_CON34 | 0x0188 | W    | 0x00000707  | Internal clock select and divide register34 |
| CRU_CLKSEL_CON35 | 0x018c | w    | 0x00000707  | Internal clock select and divide register35 |
| CRU_CLKSEL_CON36 | 0x0190 | w    | 0x00004242  | Internal clock select and divide register36 |
| CRU_CLKSEL_CON37 | 0x0194 | w    | 0x00000242  | Internal clock select and divide register37 |
| CRU_CLKSEL_CON38 | 0x0198 | w    | 0x0000c2dc  | Internal clock select and divide register38 |
| CRU_CLKSEL_CON39 | 0x019c | w    | 0x00000001  | Internal clock select and divide register39 |
| CRU_CLKSEL_CON40 | 0x01a0 | w    | 0x00003113  | Internal clock select and divide register40 |
| CRU_CLKSEL_CON41 | 0x01a4 | w    | 0x0bb8ea60  | Internal clock select and divide register41 |
| CRU_CLKSEL_CON42 | 0x01a8 | W    | 0x0000013   | Internal clock select and divide register42 |

| Name              | Offset | Size | Reset Value | Description                                 |
|-------------------|--------|------|-------------|---------------------------------------------|
| CRU_CLKSEL_CON43  | 0x01ac | W    | 0x0000003   | Internal clock select and divide register43 |
| CRU_CLKSEL_CON44  | 0x01b0 | w    | 0x00000042  | Internal clock select and divide register44 |
| CRU_CLKSEL_CON45  | 0x01b4 | W    | 0x0000001f  | Internal clock select and divide register45 |
| CRU_CLKSEL_CON46  | 0x01b8 | W    | 0x00000000  | Internal clock select and divide register46 |
| CRU_CLKSEL_CON47  | 0x01bc | W    | 0x00000000  | Internal clock select and divide register47 |
| CRU_CLKSEL_CON48  | 0x01c0 | w    | 0x00004201  | Internal clock select and divide register48 |
| CRU_CLKSEL_CON49  | 0x01c4 | w    | 0x00000042  | Internal clock select and divide register49 |
| CRU_CLKSEL_CON50  | 0x01c8 | W    | 0x00000042  | Internal clock select and divide register50 |
| CRU_CLKSEL_CON51  | 0x01cc | W    | 0x00000203  | Internal clock select and divide register51 |
| CRU_CLKSEL_CON52  | 0x01d0 | W    | 0x0000021e  | Internal clock select and divide register52 |
| CRU_CLKGATE_CON0  | 0x0200 | W    | 0x00000000  | Internal clock gating register0             |
| CRU_CLKGATE_CON1  | 0x0204 | w    | 0x00000000  | Internal clock gating register1             |
| CRU_CLKGATE_CON2  | 0x0208 | W    | 0x00000000  | Internal clock gating register2             |
| CRU_CLKGATE_CON3  | 0x020c | w    | 0x00000000  | Internal clock gating register3             |
| CRU_CLKGATE_CON4  | 0x0210 | W    | 0x00000000  | Internal clock gating register4             |
| CRU_CLKGATE_CON5  | 0x0214 | w    | 0x00000000  | Internal clock gating register5             |
| CRU_CLKGATE_CON6  | 0x0218 | w    | 0x00000000  | Internal clock gating register6             |
| CRU_CLKGATE_CON7  | 0x021c | w    | 0x00000000  | Internal clock gating register7             |
| CRU_CLKGATE_CON8  | 0x0220 | W    | 0x00000000  | Internal clock gating register8             |
| CRU_CLKGATE_CON9  | 0x0224 | W    | 0x00000000  | Internal clock gating register9             |
| CRU_CLKGATE_CON10 | 0x0228 | w    | 0x00000000  | Internal clock gating register10            |
| CRU_CLKGATE_CON11 | 0x022c | W    | 0x00000000  | Internal clock gating register11            |
| CRU_CLKGATE_CON12 | 0x0230 | W    | 0x00000000  | Internal clock gating register12            |
| CRU_CLKGATE_CON13 | 0x0234 | W    | 0x00000000  | Internal clock gating register13            |
| CRU_CLKGATE_CON14 | 0x0238 | W    | 0x00000000  | Internal clock gating register14            |
| CRU_CLKGATE_CON15 | 0x023c | w    | 0×00000000  | Internal clock gating register15            |
| CRU_CLKGATE_CON16 | 0x0240 | w    | 0×00000000  | Internal clock gating register16            |
| CRU_CLKGATE_CON17 | 0x0244 | w    | 0×00000000  | Internal clock gating register17            |
| CRU_CLKGATE_CON18 | 0x0248 | w    | 0x00000000  | Internal clock gating register18            |

| Name              | Offset | Size | Reset Value | Description                          |
|-------------------|--------|------|-------------|--------------------------------------|
| CRU_CLKGATE_CON19 | 0x024c | w    | 0x00000000  | Internal clock gating register19     |
| CRU_CLKGATE_CON20 | 0x0250 | W    | 0x00000000  | Internal clock gating register20     |
| CRU_CLKGATE_CON21 | 0x0254 | W    | 0x00000000  | Internal clock gating register21     |
| CRU_CLKGATE_CON22 | 0x0258 | W    | 0x00000000  | Internal clock gating register22     |
| CRU_CLKGATE_CON23 | 0x025c | W    | 0x00000000  | Internal clock gating register23     |
| CRU_CLKGATE_CON24 | 0x0260 | W    | 0x00000000  | Internal clock gating register24     |
| CRU_CLKGATE_CON25 | 0x0264 | W    | 0x00000000  | Internal clock gating register25     |
| CRU_CLKGATE_CON26 | 0x0268 | W    | 0x00000000  | Internal clock gating register26     |
| CRU_CLKGATE_CON27 | 0x026c | W    | 0x00000000  | Internal clock gating register27     |
| CRU_CLKGATE_CON28 | 0x0270 | W    | 0x00000000  | Internal clock gating register28     |
| CRU_SSGTBL0_3     | 0x0280 | W    | 0x00000000  | SSMOD external wave table register0  |
| CRU_SSGTBL4_7     | 0x0284 | W    | 0x00000000  | SSMOD external wave table register1  |
| CRU_SSGTBL8_11    | 0x0288 | W    | 0x00000000  | SSMOD external wave table register2  |
| CRU_SSGTBL12_15   | 0x028c | W    | 0x00000000  | SSMOD external wave table register3  |
| CRU_SSGTBL16_19   | 0x0290 | W    | 0x00000000  | SSMOD external wave table register4  |
| CRU_SSGTBL20_23   | 0x0294 | W    | 0x00000000  | SSMOD external wave table register5  |
| CRU_SSGTBL24_27   | 0x0298 | W    | 0x00000000  | SSMOD external wave table register6  |
| CRU_SSGTBL28_31   | 0x029c | W    | 0x00000000  | SSMOD external wave table register7  |
| CRU_SSGTBL32_35   | 0x02a0 | W    | 0x00000000  | SSMOD external wave table register8  |
| CRU_SSGTBL36_39   | 0x02a4 | W    | 0x00000000  | SSMOD external wave table register9  |
| CRU_SSGTBL40_43   | 0x02a8 | W    | 0x00000000  | SSMOD external wave table register10 |
| CRU_SSGTBL44_47   | 0x02ac | W    | 0x00000000  | SSMOD external wave table register11 |
| CRU_SSGTBL48_51   | 0x02b0 | W    | 0x00000000  | SSMOD external wave table register12 |
| CRU_SSGTBL52_55   | 0x02b4 | w    | 0x00000000  | SSMOD external wave table register13 |
| CRU_SSGTBL56_59   | 0x02b8 | W    | 0x00000000  | SSMOD external wave table register14 |
| CRU_SSGTBL60_63   | 0x02bc | W    | 0x00000000  | SSMOD external wave table register15 |
| CRU_SSGTBL64_67   | 0x02c0 | W    | 0x00000000  | SSMOD external wave table register16 |
| CRU_SSGTBL68_71   | 0x02c4 | W    | 0x00000000  | SSMOD external wave table register17 |
| CRU_SSGTBL72_75   | 0x02c8 | W    | 0x00000000  | SSMOD external wave table register18 |

| Name               | Offset | Size | Reset Value | Description                                |
|--------------------|--------|------|-------------|--------------------------------------------|
| CRU_SSGTBL76_79    | 0x02cc | W    | 0x00000000  | SSMOD external wave table register19       |
| CRU_SSGTBL80_83    | 0x02d0 | W    | 0x00000000  | SSMOD external wave table register20       |
| CRU_SSGTBL84_87    | 0x02d4 | W    | 0x00000000  | SSMOD external wave table register21       |
| CRU_SSGTBL88_91    | 0x02d8 | W    | 0x00000000  | SSMOD external wave table register22       |
| CRU_SSGTBL92_95    | 0x02dc | W    | 0x00000000  | SSMOD external wave table register23       |
| CRU_SSGTBL96_99    | 0x02e0 | W    | 0x00000000  | SSMOD external wave table register24       |
| CRU_SSGTBL100_103  | 0x02e4 | W    | 0x00000000  | SSMOD external wave table register25       |
| CRU_SSGTBL104_107  | 0x02e8 | W    | 0x00000000  | SSMOD external wave table register26       |
| CRU_SSGTBL108_111  | 0x02ec | W    | 0x00000000  | SSMOD external wave table register27       |
| CRU_SSGTBL112_115  | 0x02f0 | W    | 0x00000000  | SSMOD external wave table register28       |
| CRU_SSGTBL116_119  | 0x02f4 | W    | 0x00000000  | SSMOD external wave table register29       |
| CRU_SSGTBL120_123  | 0x02f8 | W    | 0x00000000  | SSMOD external wave table register30       |
| CRU_SSGTBL124_127  | 0x02fc | W    | 0x00000000  | SSMOD external wave table register31       |
| CRU_SOFTRST_CON0   | 0x0300 | W    | 0x00000000  | Internal software reset control register0  |
| CRU_SOFTRST_CON1   | 0x0304 | W    | 0x00000000  | Internal software reset control register1  |
| CRU_SOFTRST_CON2   | 0x0308 | W    | 0x00000000  | Internal software reset control register2  |
| CRU_SOFTRST_CON3   | 0x030c | W    | 0x00000000  | Internal software reset control register3  |
| CRU_SOFTRST_CON4   | 0x0310 | W    | 0x00000000  | Internal software reset control register4  |
| CRU_SOFTRST_CON5   | 0x0314 | W    | 0x00000000  | Internal software reset control register5  |
| CRU_SOFTRST_CON6   | 0x0318 | W    | 0x00000000  | Internal software reset control register6  |
| CRU_SOFTRST_CON7   | 0x031c | W    | 0x00000000  | Internal software reset control register7  |
| CRU_SOFTRST_CON8   | 0x0320 | W    | 0x00000000  | Internal software reset control register8  |
| CRU_SOFTRST_CON9   | 0x0324 | W    | 0x00000000  | Internal software reset control register9  |
| CRU_SOFTRST_CON10  | 0x0328 | W    | 0x00000000  | Internal software reset control register10 |
| CRU_SOFTRST_CON11  | 0x032c | W    | 0x00000000  | Internal software reset control register11 |
| CRU_CRU_SDMMC_CON0 | 0x0380 | W    | 0x00000004  | sdmmc control0                             |
| CRU_CRU_SDMMC_CON1 | 0x0384 | W    | 0x00000000  | sdmmc control1                             |
| CRU_CRU_SDIO_CON0  | 0x0388 | W    | 0x00000004  | SDIO control0                              |
| CRU_CRU_SDIO_CON1  | 0x038c | W    | 0x00000000  | SDIO control1                              |

| Name                   | Offset | Size | Reset Value | Description        |
|------------------------|--------|------|-------------|--------------------|
| CRU_CRU_EMMC_CON0      | 0x0390 | W    | 0x00000004  | EMMC control0      |
| CRU_CRU_EMMC_CON1      | 0x0394 | W    | 0x00000000  | EMMC control1      |
| CRU_CRU_SDMMC_EXT_CON0 | 0x0398 | W    | 0x00000004  | SDMMC_EXT control0 |
| CRU_CRU_SDMMC_EXT_CON1 | 0x039c | W    | 0x00000000  | SDMMC_EXT control1 |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 2.6.3 Detail Register Description

#### CRU\_APLL\_CON0

Address: Operational Base + offset (0x0000)

APLL configuration register0

| Bit   | Attr | Reset Value | Description                                                  |
|-------|------|-------------|--------------------------------------------------------------|
|       |      |             | write_mask                                                   |
| 21.16 | wo   | 0x0000      | write mask bits                                              |
| 31:16 | WO   | 0x0000      | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |             | When every bit LOW, don't care the writing corresponding bit |
|       |      |             | bypass                                                       |
| 15    | RW   | 0x0         | PLL Bypass. FREF bypasses PLL to FOUTPOSTDIV                 |
| 13    | R VV | UXU         | 1'b0: no bypass                                              |
|       |      |             | 1'b1: bypass                                                 |
|       |      | 0x3         | postdiv1                                                     |
| 14:12 | RW   |             | First Post Divide Value                                      |
|       |      |             | (1-7)                                                        |
|       |      |             | fbdiv                                                        |
|       |      |             | Feedback Divide Value                                        |
| 11:0  | RW   | 0x064       | "Valid divider settings are:                                 |
| 11.0  | R VV | 0x064       | [16, 3200] in integer mode                                   |
|       |      |             | [20, 320] in fractional mode                                 |
|       |      |             | Tips: no plus one operation                                  |

#### CRU\_APLL\_CON1

Address: Operational Base + offset (0x0004) APLL configuration register1

| Bit   | Attr | Reset Value | Description                                                  |
|-------|------|-------------|--------------------------------------------------------------|
|       |      | 0x0000      | write_mask                                                   |
| 31.16 | wo   |             | write mask bits                                              |
| 51.10 | **0  |             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |             | When every bit LOW, don't care the writing corresponding bit |

| Bit | Attr | <b>Reset Value</b> | Description                                                      |
|-----|------|--------------------|------------------------------------------------------------------|
|     |      |                    | pllpdsel                                                         |
|     |      |                    | PLL global power down source selection                           |
| 15  | RW   | 0x0                | "If pllpdsel == 1, PLL can be power down only by pllpd1,         |
|     |      |                    | otherwise pll is power down when any one of refdiv/fbdiv/fracdiv |
|     |      |                    | is changed or pllpd0 is asserted.                                |
|     |      |                    | pllpd1                                                           |
| 14  | RW   | 0x0                | PLL global power down request                                    |
| 14  | RVV  | 0.00               | 1'b0: no power down                                              |
|     |      |                    | 1'b2: power down                                                 |
|     |      |                    | pllpd0                                                           |
| 10  |      | 0.40               | PLL global power down request                                    |
| 13  | RW   | 0x0                | 1'b0: no power down                                              |
|     |      |                    | 1'b1: power down                                                 |
|     |      |                    | dsmpd                                                            |
| 12  | RW   | 0x1                | PLL delta sigma modulator enable                                 |
|     |      |                    | " 1'b0: modulator is enable, 1'b1: modulator is disabled         |
| 11  | RO   | 0x0                | reserved                                                         |
|     |      | 0×0                | pll_lock                                                         |
| 10  |      |                    | PLL lock status                                                  |
| 10  | RO   |                    | 1'b0: unlock                                                     |
|     |      |                    | 1'b1: lock                                                       |
| 9   | RO   | 0x0                | reserved                                                         |
|     |      |                    | postdiv2                                                         |
| 8:6 | RW   | 0x1                | Second Post Divide Value                                         |
|     |      |                    | (1-7)                                                            |
|     |      |                    | refdiv                                                           |
| 5:0 | RW   | 0x01               | Reference Clock Divide Value                                     |
|     |      |                    | (1-63)                                                           |

## CRU\_APLL\_CON2

Address: Operational Base + offset (0x0008)

APLL configuration register2

| Bit   | Attr | <b>Reset Value</b> | Description                                      |
|-------|------|--------------------|--------------------------------------------------|
| 31:28 | RO   | 0x0                | reserved                                         |
|       |      |                    | fout4phasepd                                     |
| 77    |      | 0.40               | "Power down 4-phase clocks and 2X, 3X, 4X clocks |
| 27    | RW   | 0×0                | 1'b0: no power down                              |
|       |      |                    | 1'b1: power down                                 |
|       |      |                    | foutvcopd                                        |
| 26    |      |                    | Power down buffered VCO clock                    |
| 26    | RW   |                    | 1'b0: no power down                              |
|       |      |                    | 1'b1: power down                                 |

| Bit  | Attr | Reset Value | Description                                                                                                            |
|------|------|-------------|------------------------------------------------------------------------------------------------------------------------|
| 25   | RW   | 0x0         | foutpostdivpd<br>Power down all outputs except for buffered VCO clock<br>1'b0: no power down                           |
| 24   | RW   | 0×0         | 1'b1: power down<br>dacpd<br>Power down quantization noise cancellation DAC<br>1'b0: no power down<br>1'b1: power down |
| 23:0 | RW   | 0×000001    | fracdiv<br>Fractional part of feedback divide<br>(fraction = FRAC/2 <sup>2</sup> 4)                                    |

## CRU\_APLL\_CON3

Address: Operational Base + offset (0x000c) APLL configuration register3

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:13 | RO   | 0x0                | reserved                                                                                                                                                    |
| 12:8  | wo   | 0×00               | ssmod_spread<br>spread amplitude<br>% = 0.1 * SPREAD[4:0]                                                                                                   |
| 7:4   | wo   | 0x0                | ssmod_divval<br>Divider required to set the modulation frequency<br>Divider required to set the modulation frequency                                        |
| 3     | wo   | 0×0                | ssmod_downspread<br>Selects center spread or downs pread<br>1'b0: down spread<br>1'b1: center spread                                                        |
| 2     | wo   | 0×1                | ssmod_reset<br>Reset modulator state<br>1'b0: no reset<br>1'b1: reset                                                                                       |
| 1     | WO   | 0×1                | ssmod_disable_sscg<br>Bypass SSMOD by module<br>1'b0: no bypass<br>1'b1: bypass                                                                             |
| 0     | wo   | 0×1                | ssmod_bp<br>Bypass SSMOD by integration<br>1'b0: no bypass<br>1'b1: bypass                                                                                  |

#### CRU\_APLL\_CON4

Address: Operational Base + offset (0x0010) APLL configuration register4

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | vv0  | 00000              | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | ssmod_ext_maxaddr                                            |
| 15:8  | WO   | 0x7f               | External wave table data inputs                              |
|       |      |                    | (0-255)                                                      |
| 7:1   | RO   | 0x0                | reserved                                                     |
|       |      |                    | ssmod_sel_ext_wave                                           |
| 0     | wo   | /O 0x0             | select external wave                                         |
| 0     | WU   |                    | 1'b0: no select ext_wave                                     |
|       |      |                    | 1'b1: select ext_wave                                        |

#### CRU\_DPLL\_CON0

Address: Operational Base + offset (0x0020) DPLL configuration register0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15    | RW   | 0x0                | bypass<br>PLL Bypass. FREF bypasses PLL to FOUTPOSTDIV<br>1'b0: no bypass<br>1'b1: bypass                                                                   |
| 14:12 | RW   | 0x1                | postdiv1<br>First Post Divide Value<br>(1-7)                                                                                                                |
| 11:0  | RW   | 0x096              | fbdiv<br>Feedback Divide Value<br>"Valid divider settings are:<br>[16, 3200] in integer mode<br>[20, 320] in fractional mode<br>Tips: no plus one operation |

## CRU\_DPLL\_CON1

Address: Operational Base + offset (0x0024) DPLL configuration register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                      |
|-------|------|--------------------|------------------------------------------------------------------|
|       |      |                    | write_mask                                                       |
| 31:16 | wo   |                    | write mask bits                                                  |
| 51:10 | WU   | 0x0000             | "When every bit HIGH, enable the writing corresponding bit       |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit     |
|       |      |                    | pllpdsel                                                         |
|       |      |                    | PLL global power down source selection                           |
| 15    | RW   | 0x0                | "If pllpdsel == 1, PLL can be power down only by pllpd1,         |
|       |      |                    | otherwise pll is power down when any one of refdiv/fbdiv/fracdiv |
|       |      |                    | is changed or pllpd0 is asserted.                                |
|       |      |                    | pllpd1                                                           |
| 14    | RW   | 0.40               | PLL global power down request                                    |
| 14    | RVV  | 0x0                | 1'b0: no power down                                              |
|       |      |                    | 1'b2: power down                                                 |
|       |      | W 0×0              | pllpd0                                                           |
| 13    | עע   |                    | PLL global power down request                                    |
| 12    | RVV  |                    | 1'b0: no power down                                              |
|       |      |                    | 1'b1: power down                                                 |
|       |      |                    | dsmpd                                                            |
| 12    | RW   | 0x1                | PLL delta sigma modulator enable                                 |
|       |      |                    | " 1'b0: modulator is enable, 1'b1: modulator is disabled         |
| 11    | RO   | 0x0                | reserved                                                         |
|       |      |                    | pll_lock                                                         |
| 10    | RO   | 0x0                | PLL lock status                                                  |
| 10    | кU   | 0.00               | 1'b0: unlock                                                     |
|       |      |                    | 1'b1: lock                                                       |
| 9     | RO   | 0x0                | reserved                                                         |
|       |      |                    | postdiv2                                                         |
| 8:6   | RW   | 0x1                | Second Post Divide Value                                         |
|       |      |                    | (1-7)                                                            |
|       |      |                    | refdiv                                                           |
| 5:0   | RW   | 0x02               | Reference Clock Divide Value                                     |
|       |      |                    | (1-63)                                                           |

## CRU\_DPLL\_CON2

Address: Operational Base + offset (0x0028) DPLL configuration register2

| Bit   | Attr | <b>Reset Value</b> | Description                                      |
|-------|------|--------------------|--------------------------------------------------|
| 31:28 | RO   | 0x0                | reserved                                         |
|       |      |                    | fout4phasepd                                     |
| 27    |      |                    | "Power down 4-phase clocks and 2X, 3X, 4X clocks |
| 27    | RW   |                    | 1'b0: no power down                              |
|       |      |                    | 1'b1: power down                                 |

| Bit  | Attr | <b>Reset Value</b> | Description                                          |
|------|------|--------------------|------------------------------------------------------|
|      |      |                    | foutvcopd                                            |
| 26   | RW   | 0x0                | Power down buffered VCO clock                        |
| 20   | r vv | 0.00               | 1'b0: no power down                                  |
|      |      |                    | 1'b1: power down                                     |
|      |      |                    | foutpostdivpd                                        |
| 25   | RW   | 0×0                | Power down all outputs except for buffered VCO clock |
| 25   | ĸvv  |                    | 1'b0: no power down                                  |
|      |      |                    | 1'b1: power down                                     |
|      |      | V 0x0              | dacpd                                                |
| 24   | RW   |                    | Power down quantization noise cancellation DAC       |
| 24   | ĸvv  |                    | 1'b0: no power down                                  |
|      |      |                    | 1'b1: power down                                     |
|      |      |                    | fracdiv                                              |
| 23:0 | RW   | 0x000001           | Fractional part of feedback divide                   |
|      |      |                    | $(fraction = FRAC/2^{2})$                            |

#### CRU\_DPLL\_CON3

Address: Operational Base + offset (0x002c) DPLL configuration register3

| Bit   |      | Reset Value |                                                              |
|-------|------|-------------|--------------------------------------------------------------|
|       | 77UU | Reset value |                                                              |
| 31:16 |      | 0×0000      | write_mask                                                   |
|       | WO   |             | write mask bits                                              |
|       |      |             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |             | When every bit LOW, don't care the writing corresponding bit |
| 15:13 | RO   | 0x0         | reserved                                                     |
|       | WO   | 0×00        | ssmod_spread                                                 |
| 12:8  |      |             | spread amplitude                                             |
|       |      |             | % = 0.1 * SPREAD[4:0]                                        |
|       | wo   | 0×0         | ssmod_divval                                                 |
| 7:4   |      |             | Divider required to set the modulation frequency             |
|       |      |             | Divider required to set the modulation frequency             |
|       | wo   | 0x0         | ssmod_downspread                                             |
| 2     |      |             | Selects center spread or downs pread                         |
| 3     |      |             | 1'b0: down spread                                            |
|       |      |             | 1'b1: center spread                                          |
|       | wo   | 0x1         | ssmod_reset                                                  |
| 2     |      |             | Reset modulator state                                        |
| 2     |      |             | 1'b0: no reset                                               |
|       |      |             | 1'b1: reset                                                  |
|       | WO   |             | ssmod_disable_sscg                                           |
| 4     |      |             | Bypass SSMOD by module                                       |
| 1     |      |             | 1'b0: no bypass                                              |
|       |      |             | 1'b1: bypass                                                 |

| Bit | Attr | <b>Reset Value</b> | Description                                                                |
|-----|------|--------------------|----------------------------------------------------------------------------|
| 0   | wo   |                    | ssmod_bp<br>Bypass SSMOD by integration<br>1'b0: no bypass<br>1'b1: bypass |

## CRU\_DPLL\_CON4

Address: Operational Base + offset (0x0030) DPLL configuration register4

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
| 31:16 | wo   |                    | write_mask                                                   |
|       |      |                    | write mask bits                                              |
|       |      |                    | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:8  | WO   | 0x7f               | ssmod_ext_maxaddr                                            |
|       |      |                    | External wave table data inputs                              |
|       |      |                    | (0-255)                                                      |
| 7:1   | RO   | 0x0                | reserved                                                     |
|       | wo   |                    | ssmod_sel_ext_wave                                           |
| 0     |      |                    | select external wave                                         |
|       |      |                    | 1'b0: no select ext_wave                                     |
|       |      |                    | 1'b1: select ext_wave                                        |

## CRU\_CPLL\_CON0

Address: Operational Base + offset (0x0040) CPLL configuration register0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15    | RW   | 0x0                | bypass<br>PLL Bypass. FREF bypasses PLL to FOUTPOSTDIV<br>1'b0: no bypass<br>1'b1: bypass                                                                   |
| 14:12 | RW   | 0x2                | postdiv1<br>First Post Divide Value<br>(1-7)                                                                                                                |
| 11:0  | RW   | 0x0c8              | fbdiv<br>Feedback Divide Value<br>"Valid divider settings are:<br>[16, 3200] in integer mode<br>[20, 320] in fractional mode<br>Tips: no plus one operation |

#### CRU\_CPLL\_CON1

Address: Operational Base + offset (0x0044) CPLL configuration register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                             |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | WO   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit                                                             |
| 15    | RW   | 0×0                | pllpdsel<br>PLL global power down source selection<br>"If pllpdsel == 1, PLL can be power down only by pllpd1,<br>otherwise pll is power down when any one of refdiv/fbdiv/fracdiv<br>is changed or pllpd0 is asserted. |
| 14    | RW   | 0×0                | pllpd1<br>PLL global power down request<br>1'b0: no power down<br>1'b2: power down                                                                                                                                      |
| 13    | RW   | 0x0                | pllpd0<br>PLL global power down request<br>1'b0: no power down<br>1'b1: power down                                                                                                                                      |
| 12    | RW   | 0x1                | dsmpd<br>PLL delta sigma modulator enable<br>" 1'b0: modulator is enable, 1'b1: modulator is disabled                                                                                                                   |
| 11    | RO   | 0x0                | reserved                                                                                                                                                                                                                |
| 10    | RO   | 0×0                | pll_lock<br>PLL lock status<br>1'b0: unlock<br>1'b1: lock                                                                                                                                                               |
| 9     | RO   | 0x0                | reserved                                                                                                                                                                                                                |
| 8:6   | RW   | 0x1                | postdiv2<br>Second Post Divide Value<br>(1-7)                                                                                                                                                                           |
| 5:0   | RW   | 0x03               | refdiv<br>Reference Clock Divide Value<br>(1-63)                                                                                                                                                                        |

## CRU\_CPLL\_CON2

Address: Operational Base + offset (0x0048) CPLL configuration register2

| Bit   | Attr | <b>Reset Value</b> | Description |
|-------|------|--------------------|-------------|
| 31:28 | RO   | 0x0                | reserved    |

| Bit  | Attr | <b>Reset Value</b> | Description                                          |
|------|------|--------------------|------------------------------------------------------|
|      |      |                    | fout4phasepd                                         |
| 27   | RW   | 0x0                | "Power down 4-phase clocks and 2X, 3X, 4X clocks     |
| 27   | RVV  | UXU                | 1'b0: no power down                                  |
|      |      |                    | 1'b1: power down                                     |
|      |      |                    | foutvcopd                                            |
| 26   | RW   | 0x0                | Power down buffered VCO clock                        |
| 20   | R VV | 0.00               | 1'b0: no power down                                  |
|      |      |                    | 1'b1: power down                                     |
|      |      | 0×0                | foutpostdivpd                                        |
| 25   | RW   |                    | Power down all outputs except for buffered VCO clock |
| 25   |      |                    | 1'b0: no power down                                  |
|      |      |                    | 1'b1: power down                                     |
|      |      | N 0x0              | dacpd                                                |
| 24   | RW   |                    | Power down quantization noise cancellation DAC       |
| 24   |      |                    | 1'b0: no power down                                  |
|      |      |                    | 1'b1: power down                                     |
|      |      |                    | fracdiv                                              |
| 23:0 | RW   | V 0x000001         | Fractional part of feedback divide                   |
|      |      |                    | $(fraction = FRAC/2^{24})$                           |

# CRU\_CPLL\_CON3

Address: Operational Base + offset (0x004c)

CPLL configuration register3

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51110 |      |                    | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:13 | RO   | 0x0                | reserved                                                     |
|       |      |                    | ssmod_spread                                                 |
| 12:8  | WO   | 0x00               | spread amplitude                                             |
|       |      |                    | % = 0.1 * SPREAD[4:0]                                        |
|       | WO   | 0x0                | ssmod_divval                                                 |
| 7:4   |      |                    | Divider required to set the modulation frequency             |
|       |      |                    | Divider required to set the modulation frequency             |
|       |      | O 0x0              | ssmod_downspread                                             |
| 3     | wo   |                    | Selects center spread or downs pread                         |
| 2     | WU   |                    | 1'b0: down spread                                            |
|       |      |                    | 1'b1: center spread                                          |
|       |      | /O 0x1             | ssmod_reset                                                  |
| 2     | WO   |                    | Reset modulator state                                        |
| Z     | WÜ   |                    | 1'b0: no reset                                               |
|       |      |                    | 1'b1: reset                                                  |

| Bit | Attr | <b>Reset Value</b> | Description                 |
|-----|------|--------------------|-----------------------------|
|     |      |                    | ssmod_disable_sscg          |
| 1   | wo   | 0x1                | Bypass SSMOD by module      |
| T   | WU   |                    | 1'b0: no bypass             |
|     |      |                    | 1'b1: bypass                |
|     |      |                    | ssmod_bp                    |
| 0   | wo   |                    | Bypass SSMOD by integration |
| 0   | WO   |                    | 1'b0: no bypass             |
|     |      |                    | 1'b1: bypass                |

# CRU\_CPLL\_CON4

Address: Operational Base + offset (0x0050) CPLL configuration register4

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:8  | wo   | 0x7f               | ssmod_ext_maxaddr<br>External wave table data inputs<br>(0-255)                                                                                             |
| 7:1   | RO   | 0x0                | reserved                                                                                                                                                    |
| 0     | wo   | 0x0                | ssmod_sel_ext_wave<br>select external wave<br>1'b0: no select ext_wave<br>1'b1: select ext_wave                                                             |

# CRU\_GPLL\_CON0

Address: Operational Base + offset (0x0060) GPLL configuration register0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15    | RW   | 0x0                | bypass<br>PLL Bypass. FREF bypasses PLL to FOUTPOSTDIV<br>1'b0: no bypass<br>1'b1: bypass                                                                   |
| 14:12 | RW   | 0x1                | postdiv1<br>First Post Divide Value<br>(1-7)                                                                                                                |

| Bit  | Attr | <b>Reset Value</b> | Description                  |
|------|------|--------------------|------------------------------|
|      |      | 0x051              | fbdiv                        |
|      | RW   |                    | Feedback Divide Value        |
| 11:0 |      |                    | "Valid divider settings are: |
| 11.0 |      |                    | [16, 3200] in integer mode   |
|      |      |                    | [20, 320] in fractional mode |
|      |      |                    | Tips: no plus one operation  |

## CRU\_GPLL\_CON1

Address: Operational Base + offset (0x0064) GPLL configuration register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                      |
|-------|------|--------------------|------------------------------------------------------------------|
|       |      |                    | write_mask                                                       |
| 31:16 | wo   | 0x0000             | write mask bits                                                  |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit       |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit     |
|       |      |                    | pllpdsel                                                         |
|       |      |                    | PLL global power down source selection                           |
| 15    | RW   | 0x0                | "If pllpdsel == 1, PLL can be power down only by pllpd1,         |
|       |      |                    | otherwise pll is power down when any one of refdiv/fbdiv/fracdiv |
|       |      |                    | is changed or pllpd0 is asserted.                                |
|       |      |                    | pllpd1                                                           |
| 14    | RW   | 0x0                | PLL global power down request                                    |
| 14    | r vv | 0.00               | 1'b0: no power down                                              |
|       |      |                    | 1'b2: power down                                                 |
|       |      | V 0x0              | pllpd0                                                           |
| 13    | RW   |                    | PLL global power down request                                    |
| 12    |      |                    | 1'b0: no power down                                              |
|       |      |                    | 1'b1: power down                                                 |
|       |      | 0x0                | dsmpd                                                            |
| 12    | RW   |                    | PLL delta sigma modulator enable                                 |
|       |      |                    | " 1'b0: modulator is enable, 1'b1: modulator is disabled         |
| 11    | RO   | 0x0                | reserved                                                         |
|       |      |                    | pll_lock                                                         |
| 10    | RO   | 0x0                | PLL lock status                                                  |
| 10    | NO   | 0,0                | 1'b0: unlock                                                     |
|       |      |                    | 1'b1: lock                                                       |
| 9     | RO   | 0x0                | reserved                                                         |
|       |      |                    | postdiv2                                                         |
| 8:6   | RW   | 0x1                | Second Post Divide Value                                         |
|       |      |                    | (1-7)                                                            |
|       |      |                    | refdiv                                                           |
| 5:0   | RW   | 0x02               | Reference Clock Divide Value                                     |
|       |      |                    | (1-63)                                                           |

# CRU\_GPLL\_CON2

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

Address: Operational Base + offset (0x0068) GPLL configuration register?

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
| 31:28 | RO   | 0x0                | reserved                                             |
|       |      |                    | fout4phasepd                                         |
| 27    | RW   | 0x0                | "Power down 4-phase clocks and 2X, 3X, 4X clocks     |
| 27    | ĸw   | 0.00               | 1'b0: no power down                                  |
|       |      |                    | 1'b1: power down                                     |
|       |      |                    | foutvcopd                                            |
| 26    | RW   | 0x0                | Power down buffered VCO clock                        |
| 20    | ĸw   | 0.00               | 1'b0: no power down                                  |
|       |      |                    | 1'b1: power down                                     |
|       |      | 0x0                | foutpostdivpd                                        |
| 25    | RW   |                    | Power down all outputs except for buffered VCO clock |
| 25    | ĸw   |                    | 1'b0: no power down                                  |
|       |      |                    | 1'b1: power down                                     |
|       |      |                    | dacpd                                                |
| 24    | RW   | 0x0                | Power down quantization noise cancellation DAC       |
| 24    |      | V UXU              | 1'b0: no power down                                  |
|       |      |                    | 1'b1: power down                                     |
|       |      |                    | fracdiv                                              |
| 23:0  | RW   | / 0xeb84f8         | Fractional part of feedback divide                   |
|       |      |                    | (fraction = FRAC/2^24)                               |

# CRU\_GPLL\_CON3

Address: Operational Base + offset (0x006c) GPLL configuration register3

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:13 | RO   | 0x0                | reserved                                                                                                                                                    |
| 12:8  | wo   | 0x00               | ssmod_spread<br>spread amplitude<br>% = 0.1 * SPREAD[4:0]                                                                                                   |
| 7:4   | wo   | 0×0                | ssmod_divval<br>Divider required to set the modulation frequency<br>Divider required to set the modulation frequency                                        |
| 3     | wo   | 0x0                | ssmod_downspread<br>Selects center spread or downs pread<br>1'b0: down spread<br>1'b1: center spread                                                        |

| Bit | Attr | Reset Value | Description                 |
|-----|------|-------------|-----------------------------|
|     |      |             | ssmod_reset                 |
| 2   | wo   | 0x1         | Reset modulator state       |
| Z   | WO   | UXI         | 1'b0: no reset              |
|     |      |             | 1'b1: reset                 |
|     |      |             | ssmod_disable_sscg          |
| 1   | wo   |             | Bypass SSMOD by module      |
| 1   | WO   |             | 1'b0: no bypass             |
|     |      |             | 1'b1: bypass                |
|     |      |             | ssmod_bp                    |
|     | wo   |             | Bypass SSMOD by integration |
| 0   | WU   |             | 1'b0: no bypass             |
|     |      |             | 1'b1: bypass                |

# CRU\_GPLL\_CON4

Address: Operational Base + offset (0x0070) GPLL configuration register4

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                     |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit     |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit                                    |
| 15:8  | WO   | 0x7f               | ssmod_ext_maxaddr<br>External wave table data inputs<br>(0-255)                                 |
| 7:1   | RO   | 0x0                | reserved                                                                                        |
| 0     | WO   | 0x0                | ssmod_sel_ext_wave<br>select external wave<br>1'b0: no select ext_wave<br>1'b1: select ext_wave |

# CRU\_CRU\_MODE

Address: Operational Base + offset (0x0080)

CRU\_MODE

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | WO   | 0x0000             | write mask bits                                              |
| 51.10 | vvO  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:13 | RO   | 0x0                | reserved                                                     |
|       |      |                    | gpll_work_mode                                               |
|       |      |                    | PLL work mode select                                         |
| 12    | RW   | 0x0                | 1'b0: Slow mode, clock from external 24MHz/26MHz OSC         |
|       |      |                    | (default)                                                    |
|       |      |                    | 1'b1: Normal mode, clock from PLL output                     |
| 11:9  | RO   | 0x0                | reserved                                                     |

| Bit | Attr | <b>Reset Value</b> | Description                                          |
|-----|------|--------------------|------------------------------------------------------|
|     |      |                    | cpll_work_mode                                       |
|     |      |                    | PLL work mode select                                 |
| 8   | RW   | 0x0                | 1'b0: Slow mode, clock from external 24MHz/26MHz OSC |
|     |      |                    | (default)                                            |
|     |      |                    | 1'b1: Normal mode, clock from PLL output             |
| 7:5 | RO   | 0x0                | reserved                                             |
|     |      |                    | dpll_work_mode                                       |
|     |      |                    | PLL work mode select                                 |
| 4   | RW   | 0x0                | 1'b0: Slow mode, clock from external 24MHz/26MHz OSC |
|     |      |                    | (default)                                            |
|     |      |                    | 1'b1: Normal mode, clock from PLL output             |
| 3:2 | RO   | 0x0                | reserved                                             |
|     |      |                    | npll_work_mode                                       |
|     |      |                    | PLL work mode select                                 |
| 1   | RW   | 0x0                | 1'b0: Slow mode, clock from external 24MHz/26MHz OSC |
|     |      |                    | (default)                                            |
|     |      |                    | 1'b1: Normal mode, clock from PLL output             |
|     |      |                    | apll_work_mode                                       |
|     |      |                    | PLL work mode select                                 |
| 0   | RW   | 0x0                | 1'b0: Slow mode, clock from external 24MHz/26MHz OSC |
|     |      |                    | (default)                                            |
|     |      |                    | 1'b1: Normal mode, clock from PLL output             |

# CRU\_CRU\_MISC

Address: Operational Base + offset (0x0084) CRU\_MISC

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                             |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit                                                             |
| 15    | RW   | 0×1                | usb480m_24m_sel<br>USB PHY select<br>1'b1: when using USB480M as clock source, clock source freq is<br>set to 24Mhz.<br>1'b0: when using USB480M as clock source, clock source freq is<br>set to USBPHY480M output.     |
| 14    | RO   | 0x0                | reserved                                                                                                                                                                                                                |
| 13    | RW   | 0x1                | hdmiphy_24m_sel<br>HDMI PHY select<br>1'b1: when using HDMIPHY as clock source, clock source freq is<br>set to 24Mhz.<br>1'b0: when using HDMIPHY as clock source, clock source freq is<br>set to HDMIPHY pixel output. |

| Bit  | Attr | Reset Value | Description                                                   |
|------|------|-------------|---------------------------------------------------------------|
|      |      |             | testclk_sel                                                   |
|      |      |             | Test clock out select                                         |
|      |      |             | 5'd00: clk_wifi                                               |
|      |      |             | 5'd01: clk_hdmi_cec                                           |
|      |      |             | 5'd02: clk_core                                               |
|      |      |             | 5'd03: clk_ddrphy                                             |
|      |      |             | 5'd04: aclk_rkvdec                                            |
|      |      |             | 5'd05: aclk_rkvenc                                            |
|      |      |             | 5'd06: aclk_vpu                                               |
|      |      |             | 5'd07: aclk_rga                                               |
|      |      |             | 5'd08: aclk_vio                                               |
|      |      |             | 5'd09: aclk_vop                                               |
|      |      |             | 5'd10: aclk_gpu                                               |
| 12:8 | RW   | 0x00        | 5'd11: aclk_bus                                               |
|      |      |             | 5'd12: aclk_peri                                              |
|      |      |             | 5'd13: aclk_gmac                                              |
|      |      |             | 5'd14: dclk_vop                                               |
|      |      |             | 5'd15: clk_pdm                                                |
|      |      |             | 5'd16: clk_rga                                                |
|      |      |             | 5'd17: clk_vdec_core                                          |
|      |      |             | 5'd18: clk_venc_core                                          |
|      |      |             | 5'd19: clk_tsp                                                |
|      |      |             | 5'd20: clk_ddrphy1x                                           |
|      |      |             | 5'd21: usb3otg_pipe3_pclk                                     |
|      |      |             | 5'd22: otp_ips_osc_out                                        |
|      |      |             | 5'd23: clk_24m                                                |
|      |      |             | default: buf_clk_wifi                                         |
| 7:3  | RO   | 0x0         | reserved                                                      |
|      |      |             | core_wrst_wfien                                               |
| 2    | RW   | 0×0         | CPU warm reset by wfi enable                                  |
| 2    |      | 0x0         | 1'b1: cpu warm reset is valid when only when wfi is asserted. |
|      |      |             | 1'b0: cpu warm reset is not                                   |
|      |      |             | core_srst_wfien                                               |
| 1    | RW   | 0x0         | CPU wfi reset enable                                          |
| T    |      | 0.00        | 1'b1: cpu reseted when wfi and softrst0[4] are both asserted. |
|      |      |             | 1'b0: cpu reseted only by softrst0[4]                         |
|      |      |             | warmrst_en                                                    |
| 0    | D\\/ |             | CPU warm reset enable                                         |
| 0    | RW   | V 0x0       | 1'b1: enable cpu warm reset.                                  |
|      |      |             | 1'b0: disable cpu warm reset.                                 |

# CRU\_GLB\_CNT\_TH

Address: Operational Base + offset (0x0090) CRU\_GLB\_CNT\_TH

| Bit   | Attr | Reset Value | Description                                 |
|-------|------|-------------|---------------------------------------------|
| 31:16 |      | 0x3a98      | pll_lockperiod                              |
| 51.10 | K VV | 0X3890      | Measured in OSC clock cycles.               |
|       | RW   | 0x0         | wdt_glb_srst_ctrl                           |
| 1 5   |      |             | watch_dog trigger global soft reset select  |
| 15    |      |             | 1'b0: watch_dog trigger second global reset |
|       |      |             | 1'b1: watch_dog trigger first global reset  |
|       | RW   | 0x0         | tsadc_glb_srst_ctrl                         |
| 14    |      |             | TSADC trigger global soft reset select      |
| 14    |      |             | 1'b0: tsadc trigger second global reset     |
|       |      |             | 1'b1: tsadc trigger first global reset      |
|       |      |             | global_reset_counter_threshold              |
| 31:0  | RW   | 0x064       | Global soft reset counter threshold         |
|       |      |             | Global soft reset counter threshold         |

# CRU\_GLB\_RST\_ST

Address: Operational Base + offset (0x0094)

| GLB_ | _RST_ | ST |
|------|-------|----|
|------|-------|----|

| Bit  | Attr | Reset<br>Value | Description                                                    |
|------|------|----------------|----------------------------------------------------------------|
| 31:6 | RO   | 0x0            | reserved                                                       |
|      |      |                | snd_glb_tsadc_rst_st                                           |
|      |      |                | sencond global TSADC triggered reset flag                      |
| 5    | W1C  | 0x0            | 1'b0: last hot reset is not sencond global TSADC triggered     |
|      |      |                | reset                                                          |
|      |      |                | 1'b1: last hot reset is sencond global TSADC triggered reset   |
|      |      |                | fst_glb_tsadc_rst_st                                           |
| 4    | W1C  | 0x0            | first global TSADC triggered reset flag                        |
| Ţ    | WIC  | 0.00           | 1'b0: last hot reset is not first global TSADC triggered reset |
|      |      |                | 1'b1: last hot reset is first global TSADC triggered reset     |
|      |      |                | snd_glb_wdt_rst_st                                             |
| 3    | W1C  | 0x0            | sencond global WDT triggered reset flag                        |
| 5    |      |                | 1'b0: last hot reset is not sencond global WDT triggered reset |
|      |      |                | 1'b1: last hot reset is sencond global WDT triggered reset     |
|      |      |                | fst_glb_wdt_rst_st                                             |
| 2    | W1C  | C 0x0          | first global WDT triggered reset flag                          |
| -    |      |                | 1'b0: last hot reset is not first global WDT triggered reset   |
|      |      |                | 1'b1: last hot reset is first global WDT triggered reset       |
|      |      |                | snd_glb_rst_st                                                 |
| 1    | W1C  | 0x0            | second global rst flag                                         |
| _    |      |                | 1'b0: last hot reset is not sencond global reset               |
|      |      |                | 1'b1: last hot reset is sencond global reset                   |
|      |      |                | fst_glb_rst_st                                                 |
| 0    | W1C  | 0x0            | first global rst flag                                          |
| -    |      |                | 1'b0: last hot reset is not first global reset                 |
|      |      |                | 1'b1: last hot reset is first global reset                     |

### CRU\_GLB\_SRST\_SND\_VALUE

Address: Operational Base + offset (0x0098)

GLB\_SRST\_SND\_VALUE

| Bit   | Attr | <b>Reset Value</b> | Description                                   |
|-------|------|--------------------|-----------------------------------------------|
| 31:16 | RO   | 0x0                | reserved                                      |
|       |      |                    | GLB_SRST_SND_VALUE                            |
| 15:0  | RW   | 0x0000             | The second global software reset config value |
|       |      |                    | The second global software reset config value |

#### CRU\_GLB\_SRST\_FST\_VALUE

Address: Operational Base + offset (0x009c)

GLB\_SRST\_FST\_VALUE

| Bit   | Attr | <b>Reset Value</b> | Description                                  |
|-------|------|--------------------|----------------------------------------------|
| 31:16 | RO   | 0x0                | reserved                                     |
|       |      |                    | GLB_SRST_FST_VALUE                           |
| 15:0  | RW   | 0x0000             | The first global software reset config value |
|       |      |                    | The first global software reset config value |

#### CRU\_NPLL\_CON0

Address: Operational Base + offset (0x00a0) NPLL configuration register0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15    | RW   | 0x0                | bypass<br>PLL Bypass. FREF bypasses PLL to FOUTPOSTDIV<br>1'b0: no bypass<br>1'b1: bypass                                                                   |
| 14:12 | RW   | 0x3                | postdiv1<br>First Post Divide Value<br>(1-7)                                                                                                                |
| 11:0  | RW   | 0x064              | fbdiv<br>Feedback Divide Value<br>"Valid divider settings are:<br>[16, 3200] in integer mode<br>[20, 320] in fractional mode<br>Tips: no plus one operation |

### CRU\_NPLL\_CON1

Address: Operational Base + offset (0x00a4) NPLL configuration register1

| Bit   | Attr | Reset Value | Description                                                      |
|-------|------|-------------|------------------------------------------------------------------|
|       |      |             | write_mask                                                       |
| 31:16 | wo   | 0x0000      | write mask bits                                                  |
| 51.10 | vv0  | 00000       | "When every bit HIGH, enable the writing corresponding bit       |
|       |      |             | When every bit LOW, don't care the writing corresponding bit     |
|       |      |             | pllpdsel                                                         |
|       |      |             | PLL global power down source selection                           |
| 15    | RW   | 0x0         | "If pllpdsel == 1, PLL can be power down only by pllpd1,         |
|       |      |             | otherwise pll is power down when any one of refdiv/fbdiv/fracdiv |
|       |      |             | is changed or pllpd0 is asserted.                                |
|       |      |             | pllpd1                                                           |
| 14    | RW   | 0x0         | PLL global power down request                                    |
| 14    | ĸw   | UXU         | 1'b0: no power down                                              |
|       |      |             | 1'b2: power down                                                 |
|       | RW   | 0×0         | pllpd0                                                           |
| 13    |      |             | PLL global power down request                                    |
| 12    | r vv |             | 1'b0: no power down                                              |
|       |      |             | 1'b1: power down                                                 |
|       |      |             | dsmpd                                                            |
| 12    | RW   | 0x1         | PLL delta sigma modulator enable                                 |
|       |      |             | " 1'b0: modulator is enable, 1'b1: modulator is disabled         |
| 11    | RO   | 0x0         | reserved                                                         |
|       |      |             | pll_lock                                                         |
| 10    | RO   | 0.20        | PLL lock status                                                  |
| 10    | кU   | RO 0x0      | 1'b0: unlock                                                     |
|       |      |             | 1'b1: lock                                                       |
| 9     | RO   | 0x0         | reserved                                                         |
|       |      |             | postdiv2                                                         |
| 8:6   | RW   | / 0x1       | Second Post Divide Value                                         |
|       |      |             | (1-7)                                                            |
|       |      |             | refdiv                                                           |
| 5:0   | RW   | 0x01        | Reference Clock Divide Value                                     |
|       |      |             | (1-63)                                                           |

# CRU\_NPLL\_CON2

Address: Operational Base + offset (0x00a8) NPLL configuration register2

| Bit   | Attr | <b>Reset Value</b> | Description                                      |  |  |
|-------|------|--------------------|--------------------------------------------------|--|--|
| 31:28 | RO   | 0x0                | reserved                                         |  |  |
|       | RW   |                    | fout4phasepd                                     |  |  |
| 27    |      |                    | "Power down 4-phase clocks and 2X, 3X, 4X clocks |  |  |
| 27    |      |                    | 1'b0: no power down                              |  |  |
|       |      |                    | 1'b1: power down                                 |  |  |

| Bit  | Attr | <b>Reset Value</b> | Description                                          |  |
|------|------|--------------------|------------------------------------------------------|--|
|      |      |                    | foutvcopd                                            |  |
| 26   | RW   | 0x0                | Power down buffered VCO clock                        |  |
| 20   | ĸvv  | 0.00               | 1'b0: no power down                                  |  |
|      |      |                    | 1'b1: power down                                     |  |
|      |      |                    | foutpostdivpd                                        |  |
| 25   | DW   | 0.40               | Power down all outputs except for buffered VCO clock |  |
| 25   | RW   | 0×0                | 1'b0: no power down                                  |  |
|      |      |                    | 1'b1: power down                                     |  |
|      |      |                    | dacpd                                                |  |
| 24   |      | 0.40               | Power down quantization noise cancellation DAC       |  |
| 24   | RVV  | RW 0×0             | 1'b0: no power down                                  |  |
|      |      |                    | 1'b1: power down                                     |  |
|      |      |                    | fracdiv                                              |  |
| 23:0 | RW   | 0x000001           | Fractional part of feedback divide                   |  |
|      |      |                    | (fraction = FRAC/2 <sup>2</sup> 4)                   |  |

# CRU\_NPLL\_CON3

| Address: Operational Base + offset (0x00ac) |
|---------------------------------------------|
| NPLL configuration register3                |

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | WO   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:13 | RO   | 0x0                | reserved                                                     |
|       |      |                    | ssmod_spread                                                 |
| 12:8  | RW   | 0x00               | spread amplitude                                             |
|       |      |                    | % = 0.1 * SPREAD[4:0]                                        |
|       |      |                    | ssmod_divval                                                 |
| 7:4   | RW   | 0×0                | Divider required to set the modulation frequency             |
|       |      |                    | Divider required to set the modulation frequency             |
|       |      |                    | ssmod_downspread                                             |
| 3     | RW   | 0x0                | Selects center spread or downs pread                         |
| 5     |      |                    | 1'b0: down spread                                            |
|       |      |                    | 1'b1: center spread                                          |
|       |      |                    | ssmod_reset                                                  |
| 2     | RW   | 0×1                | Reset modulator state                                        |
| 2     |      | 0.71               | 1'b0: no reset                                               |
|       |      |                    | 1'b1: reset                                                  |
|       |      |                    | ssmod_disable_sscg                                           |
| 1     | RW   | W 0x1              | Bypass SSMOD by module                                       |
| 1     |      |                    | 1'b0: no bypass                                              |
|       |      |                    | 1'b1: bypass                                                 |

| Bit | Attr | <b>Reset Value</b> | Description                 |
|-----|------|--------------------|-----------------------------|
|     |      |                    | ssmod_bp                    |
| 0   | RW   |                    | Bypass SSMOD by integration |
| 0   | r vv |                    | 1'b0: no bypass             |
|     |      |                    | 1'b1: bypass                |

#### CRU\_NPLL\_CON4

Address: Operational Base + offset (0x00b0) NPLL configuration register4

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |                       |
|-------|------|--------------------|--------------------------------------------------------------|-----------------------|
|       |      |                    | write_mask                                                   |                       |
| 31:16 | wo   | 0x0000             | write mask bits                                              |                       |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |                       |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |                       |
|       |      |                    | ssmod_ext_maxaddr                                            |                       |
| 15:8  | RW   | 0x7f               | External wave table data inputs                              |                       |
|       |      |                    | (0-255)                                                      |                       |
| 7:1   | RO   | 0x0                | reserved                                                     |                       |
|       |      |                    | ssmod_sel_ext_wave                                           |                       |
| 0     |      | 0.40               | select external wave                                         |                       |
| 0     | RW   | 0x0                | 1'b0: no select ext_wave                                     |                       |
|       |      |                    |                                                              | 1'b1: select ext_wave |

# CRU\_CLKSEL\_CON0

Address: Operational Base + offset (0x0100) Internal clock select and divide register0

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | WO   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15    | RO   | 0x0                | reserved                                                     |
|       |      |                    | bus_aclk_pll_sel                                             |
|       |      | RW 0x0             | bus_aclk pll source selection register                       |
| 14:13 |      |                    | 2'b00:CPLL                                                   |
| 14.15 | ĸvv  |                    | 2'b01:GPLL                                                   |
|       |      |                    | 2'b10:HDMIPHY                                                |
|       |      |                    | 2'b11:reserved                                               |
|       |      |                    | bus_aclk_div_con                                             |
| 12:8  | RW   | W 0x03             | bus_aclk integer divider control register                    |
|       |      |                    | clk=clk_src/(div_con+1)                                      |

| Bit | Attr | Reset Value | Description                            |
|-----|------|-------------|----------------------------------------|
|     |      |             | core_clk_pll_sel                       |
|     |      |             | core_clk pll source selection register |
| 7:6 | RW   | 0.40        | 2'b00:APLL                             |
| /:0 | RW   | V 0×0       | 2'b01:GPLL                             |
|     |      |             | 2'b10:DPLL                             |
|     |      |             | 2'b11:NPLL                             |
| 5   | RO   | 0x0         | reserved                               |
|     |      | W 0x00      | clk_core_div_con                       |
| 4:0 | RW   |             | Core A53 clock divider frequency       |
|     |      |             | clk=clk_src/(div_con+1)                |

Address: Operational Base + offset (0x0104) Internal clock select and divide register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
| 21.16 | WO   | 0~000              | write_mask<br>write mask bits                                |
| 31:10 | WU   | 0x0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15    | RO   | 0x0                | reserved                                                     |
|       |      |                    | bus_pclk_div_con                                             |
| 14:12 | RW   | 0x1                | bus_pclk integer divider control register                    |
|       |      |                    | clk=clk_src/(div_con+1)                                      |
| 11:10 | RO   | 0x0                | reserved                                                     |
|       |      |                    | bus_hclk_div_con                                             |
| 9:8   | RW   | 0x1                | bus_hclk integer divider control register                    |
|       |      |                    | clk=clk_src/(div_con+1)                                      |
| 7     | RO   | 0x0                | reserved                                                     |
|       |      |                    | aclk_core_div_con                                            |
| 6:4   | RW   | 0x1                | aclk_core integer divider control register                   |
|       |      |                    | clk=clk_src/(div_con+1)                                      |
|       |      |                    | clk_core_dbg_div_con                                         |
| 3:0   | RW   | 0x3                | clk_core_dbg integer divider control register                |
|       |      |                    | clk=clk_src/(div_con+1)                                      |

# CRU\_CLKSEL\_CON2

Address: Operational Base + offset (0x0108) Internal clock select and divide register2

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask<br>write mask bits                                |
| 31:16 | WO   | 0x0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:13 | RO   | 0x0                | reserved                                                     |

| Bit  | Attr | <b>Reset Value</b> | Description                               |
|------|------|--------------------|-------------------------------------------|
|      |      |                    | func_24m_div_con                          |
| 12:8 | RW   | 0x00               | func_24m integer divider control register |
|      |      |                    | clk=clk_src/(div_con+1)                   |
| 7:5  | RO   | 0x0                | reserved                                  |
|      |      |                    | test_div_con                              |
| 4:0  | RW   | 0x03               | test integer divider control register     |
|      |      |                    | clk=clk_src/(div_con+1)                   |

### CRU\_CLKSEL\_CON3

Address: Operational Base + offset (0x010c) Internal clock select and divide register3

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:10 | RO   | 0x0                | reserved                                                                                                                                                    |
| 9:8   | RW   | 0×0                | ddr_clk_pll_sel<br>ddr_clk pll source selection register<br>2'b00:DPLL<br>2'b01:APLL<br>2'b10:CPLL<br>2'b11:reserved                                        |
| 7:3   | RO   | 0x0                | reserved                                                                                                                                                    |
| 2:0   | RW   | 0x0                | ddr_div_cnt<br>ddrphy reference clock divider control register<br>clk=clk_src/(div_con+1)                                                                   |

# CRU\_CLKSEL\_CON4

Address: Operational Base + offset (0x0110) Internal clock select and divide register4

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | WO   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15    | RO   | 0x0                | reserved                                                     |
|       |      |                    | ddrpdclk_clk_pll_sel                                         |
|       |      |                    | pd_ddr pclk source selection register                        |
| 14:13 |      |                    | 2'b00:CPLL                                                   |
| 14:15 | RVV  | 0x0                | 2'b01:GPLL                                                   |
|       |      |                    | 2'b10:HDMIPHY                                                |
|       |      |                    | 2'b11:reserved                                               |

| Bit  | Attr | Reset Value | Description                          |
|------|------|-------------|--------------------------------------|
|      |      |             | pd_ddr_div_con                       |
| 12:8 | RW   | 0x07        | pd_ddr pclk divider control register |
|      |      |             | clk=clk_src/(div_con+1)              |
|      |      |             | otp_pll_sel                          |
|      |      |             | otp pll source selection register    |
| 7.0  | DW   | 0x2         | 2'b00:CPLL                           |
| 7:6  | RW   |             | 2'b01:GPLL                           |
|      |      |             | 2'b10:OSC input                      |
|      |      |             | 2'b11:reserved                       |
|      |      |             | otp_div_con                          |
| 5:0  | RW   | V 0x00      | otp integer divider control register |
|      |      |             | clk=clk_src/(div_con+1)              |

Address: Operational Base + offset (0x0114) Internal clock select and divide register5

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | efuse_pll_sel                                                |
|       |      |                    | efuse pll source selection register                          |
| 15:14 | RW   | 0x2                | 2'b00:CPLL                                                   |
|       |      |                    | 2'b01:GPLL                                                   |
|       |      |                    | 2'b10:OSC                                                    |
| 13    | RO   | 0x0                | reserved                                                     |
|       |      |                    | efuse_div_con                                                |
| 12:8  | RW   | 0x00               | efuse integer divider control register                       |
|       |      |                    | clk=clk_src/(div_con+1)                                      |
| 7:0   | RO   | 0x0                | reserved                                                     |

# CRU\_CLKSEL\_CON6

Address: Operational Base + offset (0x0118) Internal clock select and divide register6

| Bit   | Attr | Reset Value | Description                                                  |
|-------|------|-------------|--------------------------------------------------------------|
|       | wo   |             | write_mask                                                   |
| 21.16 |      | 02000       | write mask bits                                              |
| 51.10 |      | 0x0000      | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |             | When every bit LOW, don't care the writing corresponding bit |
|       | RW   |             | i2s0_pll_sel                                                 |
| 15    |      |             | i2s0 pll source selection register                           |
| 15    |      |             | 1'b0:CPLL                                                    |
|       |      |             | 1'b1:GPLL                                                    |
| 14:10 | RO   | 0x0         | reserved                                                     |

| Bit | Attr | Reset Value | Description                           |
|-----|------|-------------|---------------------------------------|
|     |      |             | i2s0_clk_sel                          |
|     |      |             | i2s0 clk source selection register    |
| 0.0 |      | / 0×0       | 2'b00: divout                         |
| 9:8 | RW   |             | 2'b01: frac_divout                    |
|     |      |             | 2'b10: 12M clkin                      |
|     |      |             | 2'b11: 12M clkin                      |
| 7   | RO   | 0x0         | reserved                              |
|     |      |             | i2s0_pll_div_con                      |
| 6:0 | RW   | RW 0x0f     | i2s0 integer divider control register |
|     |      |             | clk=clk_src/(div_con+1)               |

Address: Operational Base + offset (0x011c) Internal clock select and divide register7

| Bit  | Attr | <b>Reset Value</b> | Description                                                                              |
|------|------|--------------------|------------------------------------------------------------------------------------------|
| 31:0 | RW   |                    | i2s0_frac_div_con<br>i2s0 fraction divider control register<br>High 16-bit for numerator |
|      |      |                    | Low 16-bit for denominator                                                               |

# CRU\_CLKSEL\_CON8

Address: Operational Base + offset (0x0120) Internal clock select and divide register8

| Bit   | Attr | Reset Value | Description                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15    | RW   | 0×0         | i2s1_pll_sel<br>i2s1 pll source selection register<br>1'b0:CPLL<br>1'b1:GPLL                                                                                |
| 14:13 | RO   | 0x0         | reserved                                                                                                                                                    |
| 12    | RW   | 0×0         | i2s1_out_sel<br>i2s1 output clock selection register<br>1'b0: clk_i2s1<br>1'b1: 12M                                                                         |
| 11:10 | RO   | 0x0         | reserved                                                                                                                                                    |
| 9:8   | RW   | 0×0         | i2s1_clk_sel<br>i2s1 clk source selection register<br>2'b00: divout<br>2'b01: frac_divout<br>2'b10: IO I2S1 clkin<br>2'b11: 12M clkin                       |
| 7     | RO   | 0x0         | reserved                                                                                                                                                    |

| Bit | Attr | <b>Reset Value</b> | Description                                                                          |
|-----|------|--------------------|--------------------------------------------------------------------------------------|
| 6:0 | RW   | 0x0f               | i2s1_pll_div_con<br>i2s1 integer divider control register<br>clk=clk_src/(div_con+1) |

# CRU\_CLKSEL\_CON9

Address: Operational Base + offset (0x0124)

Internal clock select and divide register9

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                            |
|------|------|--------------------|------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   |                    | i2s1_frac_div_con<br>i2s1 fraction divider control register<br>High 16-bit for numerator<br>Low 16-bit for denominator |

# CRU\_CLKSEL\_CON10

Address: Operational Base + offset (0x0128) Internal clock select and divide register10

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51110 |      |                    | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | i2s2_pll_sel                                                 |
| 15    | RW   | 0x0                | i2s2 pll source selection register                           |
| 15    | 1    | 0.00               | 1'b0:CPLL                                                    |
|       |      |                    | 1'b1:GPLL                                                    |
| 14:13 | RO   | 0x0                | reserved                                                     |
|       |      | V 0×0              | i2s2_out_sel                                                 |
| 12    | RW   |                    | i2s2 output clock selection register                         |
| 12    | ĸw   |                    | 1'b0: clk_i2s2                                               |
|       |      |                    | 1'b1: 12M                                                    |
| 11:10 | RO   | 0x0                | reserved                                                     |
|       |      |                    | i2s2_clk_sel                                                 |
|       |      |                    | i2s2 clk source selection register                           |
| 9:8   | RW   | 0x0                | 2'b00: divout                                                |
| 9.0   |      | 0.00               | 2'b01: frac_divout                                           |
|       |      |                    | 2'b10: IO I2S2 clkin                                         |
|       |      |                    | 2'b11: 12M clkin                                             |
| 7     | RO   | 0x0                | reserved                                                     |
|       |      |                    | i2s2_pll_div_con                                             |
| 6:0   | RW   | 0x0f               | i2s2 integer divider control register                        |
|       |      |                    | clk=clk_src/(div_con+1)                                      |

# CRU\_CLKSEL\_CON11

Address: Operational Base + offset (0x012c) Internal clock select and divide register11

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                            |  |
|------|------|--------------------|------------------------------------------------------------------------------------------------------------------------|--|
| 31:0 | RW   |                    | i2s2_frac_div_con<br>i2s2 fraction divider control register<br>High 16-bit for numerator<br>Low 16-bit for denominator |  |

### CRU\_CLKSEL\_CON12

Address: Operational Base + offset (0x0130) Internal clock select and divide register12

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51110 |      |                    | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | spdif_pll_sel                                                |
| 15    | RW   | 0x0                | spdif pll source selection register                          |
| 15    | L AN | UXU                | 1'b0:CPLL                                                    |
|       |      |                    | 1'b1:GPLL                                                    |
| 14:10 | RO   | 0x0                | reserved                                                     |
|       |      |                    | spdif_clk_sel                                                |
|       |      |                    | spdif clock source selection register                        |
| 9:8   | RW   | V 0x0              | 2'b00: divout                                                |
| 9.0   | L AN |                    | 2'b01: frac_divout                                           |
|       |      |                    | 2'b10: 12M clkin                                             |
|       |      |                    | 2'b11: 12M clkin                                             |
| 7     | RO   | 0x0                | reserved                                                     |
|       |      |                    | spdif_pll_div_con                                            |
| 6:0   | RW   | W 0x0f             | spdif pll divider control register                           |
|       |      |                    | clk=clk_src/(div_con+1)                                      |

# CRU\_CLKSEL\_CON13

Address: Operational Base + offset (0x0134) Internal clock select and divide register13

| Bit  | Attr | <b>Reset Value</b> | Description                                                   |
|------|------|--------------------|---------------------------------------------------------------|
| 31:0 | RW   | 0x0bb8ea60         | spdif_frac_div_con<br>spdif fraction divider control register |
|      |      |                    | clk=clk_src/(div_con+1)                                       |

# CRU\_CLKSEL\_CON14

Address: Operational Base + offset (0x0138) Internal clock select and divide register14

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |  |
|-------|------|--------------------|--------------------------------------------------------------|--|
|       | wo   | 0x0000             | write_mask                                                   |  |
| 21.16 |      |                    | write mask bits                                              |  |
| 51.10 |      |                    | "When every bit HIGH, enable the writing corresponding bit   |  |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |  |

| Bit   | Attr | <b>Reset Value</b> | Description                                       |
|-------|------|--------------------|---------------------------------------------------|
| 15:14 | RO   | 0x0                | reserved                                          |
|       |      |                    | uart0_pll_sel                                     |
|       |      |                    | clk_uart0 pll source select control register      |
| 13:12 | RW   | 0x0                | 2'b00: select codec pll clock                     |
|       |      |                    | 2'b01: select general pll clock                   |
|       |      |                    | 2'b10: select USBPHY 480M clock                   |
| 11:10 | RO   | 0x0                | reserved                                          |
|       |      | W 0x0              | uart0_clk_sel                                     |
|       |      |                    | clk_uart0 clock source select control register    |
| 9:8   |      |                    | 2'b00: select divider ouput from pll divider      |
| 9:0   | RVV  |                    | 2'b01: select divider ouput from fraction divider |
|       |      |                    | 2'b10: select 24MHz from osc input                |
|       |      |                    | 2'b11: select 24MHz from osc input                |
| 7     | RO   | 0x0                | reserved                                          |
|       |      |                    | uart0_pll_div_con                                 |
| 6:0   | RW   | 0x07               | clk_uart0 divider control register                |
|       |      |                    | clk=clk_src/(div_con+1)                           |

Address: Operational Base + offset (0x013c) Internal clock select and divide register15

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                              |
|------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x0bb8ea60         | uart0_frac_div_con<br>Control UART0 fraction divider frequency. High 16-bit for<br>numerator<br>Low 16-bit for denominator<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |

# CRU\_CLKSEL\_CON16

Address: Operational Base + offset (0x0140) Internal clock select and divide register16

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | WO   | 0x0000             | write mask bits                                              |
| 51.10 | vv0  | 0x0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:14 | RO   | 0x0                | reserved                                                     |
|       | RW   |                    | uart1_pll_sel                                                |
|       |      |                    | clk_uart1 pll source select control register                 |
| 13:12 |      |                    | 2'b00: select codec pll clock                                |
|       |      |                    | 2'b01: select general pll clock                              |
|       |      |                    | 2'b10: select USBPHY 480M clock                              |

| Bit   | Attr | <b>Reset Value</b> | Description                                       |
|-------|------|--------------------|---------------------------------------------------|
| 11:10 | RO   | 0x0                | reserved                                          |
|       |      |                    | uart1_clk_sel                                     |
|       |      |                    | clk_uart1 clock source select control register    |
| 0.0   | RW   | / 0×0              | 2'b00: select divider ouput from pll divider      |
| 9:8   |      |                    | 2'b01: select divider ouput from fraction divider |
|       |      |                    | 2'b10: select 24MHz from osc input                |
|       |      |                    | 2'b11: select 24MHz from osc input                |
| 7     | RO   | 0x0                | reserved                                          |
|       |      |                    | uart1_pll_div_con                                 |
| 6:0   | RW   | W 0x07             | clk_uart1 divider control register                |
|       |      |                    | clk=clk_src/(div_con+1)                           |

Address: Operational Base + offset (0x0144) Internal clock select and divide register17

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                              |
|------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x0bb8ea60         | uart1_frac_div_con<br>Control uart1 fraction divider frequency. High 16-bit for<br>numerator<br>Low 16-bit for denominator<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |

# CRU\_CLKSEL\_CON18

Address: Operational Base + offset (0x0148) Internal clock select and divide register18

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                 |
|-------|------|--------------------|---------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit                                |
| 15:14 | RO   | 0x0                | reserved                                                                                    |
|       |      |                    | uart2_pll_sel                                                                               |
|       |      |                    | clk_uart2 pll source select control register                                                |
| 13:12 | RW   | .W 0x0             | 2'b00: select codec pll clock                                                               |
|       |      |                    | 2'b01: select general pll clock                                                             |
|       |      |                    | 2'b10: select USBPHY 480M clock                                                             |
| 11:10 | RO   | 0x0                | reserved                                                                                    |

| Bit | Attr | <b>Reset Value</b> | Description                                       |
|-----|------|--------------------|---------------------------------------------------|
|     |      |                    | uart2_clk_sel                                     |
|     |      |                    | clk_uart2 clock source select control register    |
| 9:8 |      | 0×0                | 2'b00: select divider ouput from pll divider      |
| 9:0 | RW   |                    | 2'b01: select divider ouput from fraction divider |
|     |      |                    | 2'b10: select 24MHz from osc input                |
|     |      |                    | 2'b11: select 24MHz from osc input                |
| 7   | RO   | 0x0                | reserved                                          |
|     |      |                    | uart2_pll_div_con                                 |
| 6:0 | RW   | V 0×07             | clk_uart2 divider control register                |
|     |      |                    | clk=clk_src/(div_con+1)                           |

Address: Operational Base + offset (0x014c) Internal clock select and divide register19

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                              |
|------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   |                    | uart2_frac_div_con<br>Control uart2 fraction divider frequency. High 16-bit for<br>numerator<br>Low 16-bit for denominator<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |

# CRU\_CLKSEL\_CON20

Address: Operational Base + offset (0x0150)Internal clock select and divide register20

| Bit       | Attr | <b>Reset Value</b> | Description                                                  |
|-----------|------|--------------------|--------------------------------------------------------------|
|           |      |                    | write_mask                                                   |
| 31:16     | wo   | 0x0000             | write mask bits                                              |
| 51.10     | ***  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|           |      |                    | When every bit LOW, don't care the writing corresponding bit |
|           |      |                    | pdm_pll_sel                                                  |
|           |      | W 0x2              | pdm pll source selection register                            |
| 1 5 . 1 4 |      |                    | 2'd0: CPLL                                                   |
| 15:14     | ĸw   |                    | 2'd1: GPLL                                                   |
|           |      |                    | 2'd2: APLL                                                   |
|           |      |                    | 2'd3: Reserved                                               |
| 13        | RO   | 0x0                | reserved                                                     |
|           |      |                    | pdm_div_con                                                  |
| 12:8      | RW   | W 0x0f             | pdm integer divider control register                         |
|           |      |                    | clk=clk_src/(div_con+1)                                      |

| Bit | Attr | Reset Value | Description                             |
|-----|------|-------------|-----------------------------------------|
|     |      |             | crypto_pll_sel                          |
| 7   |      | 0.40        | crypto pll source selection register    |
| /   | RW   | 0x0         | 1'b0:CPLL                               |
|     |      |             | 1'b1:GPLL                               |
| 6:5 | RO   | 0x0         | reserved                                |
|     |      |             | crypto_div_con                          |
| 4:0 | RW   |             | crypto integer divider control register |
|     |      |             | clk=clk_src/(div_con+1)                 |

Address: Operational Base + offset (0x0154) Internal clock select and divide register21

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                 |
|-------|------|--------------------|---------------------------------------------------------------------------------------------|
| 31:16 | wo   | /O 0x0000          | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit                                |
| 15    | RW   | 0x0                | tsp_pll_sel<br>tsp pll source selection register<br>1'b0:CPLL<br>1'b1:GPLL                  |
| 14:13 | RO   | 0x0                | reserved                                                                                    |
| 12:8  | RW   | 0x04               | tsp_div_con<br>tsp integer divider control register<br>clk=clk_src/(div_con+1)              |
| 7:0   | RO   | 0x0                | reserved                                                                                    |

# CRU\_CLKSEL\_CON22

Address: Operational Base + offset (0x0158) Internal clock select and divide register22

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       | wo   | 0×0000             | write_mask                                                   |
| 21.16 |      |                    | write mask bits                                              |
| 51:10 |      |                    | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:10 | RO   | 0x0                | reserved                                                     |
|       |      |                    | tsadc_div_con                                                |
| 9:0   | RW   |                    | tsadc integer divider control register                       |
|       |      |                    | clk=clk_src/(div_con+1)                                      |

#### CRU\_CLKSEL\_CON23

Address: Operational Base + offset (0x015c)

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | WO   | 0x0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:10 | RO   | 0x0                | reserved                                                                                                                                                    |
| 9:0   | RW   |                    | saradc_div_con<br>saradc integer divider control register<br>clk=clk_src/(div_con+1)                                                                        |

Internal clock select and divide register23

#### CRU\_CLKSEL\_CON24

Address: Operational Base + offset (0x0160) Internal clock select and divide register24

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 21.16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | clkpwm_pll_sel                                               |
| 15    | RW   | 0x0                | clkpwm pll source selection register                         |
| 15    | ĸw   | UXU                | 1'b0:CPLL                                                    |
|       |      |                    | 1'b1:GPLL                                                    |
|       |      | 0x07               | pwm0_div_con                                                 |
| 14:8  | RW   |                    | pwm0 integer divider control register                        |
|       |      |                    | clk=clk_src/(div_con+1)                                      |
|       |      |                    | clkspi_pll_sel                                               |
| 7     | RW   | 0x0                | clkspi pll source selection register                         |
| /     | ĸw   | 0.00               | 1'b0:CPLL                                                    |
|       |      |                    | 1'b1:GPLL                                                    |
|       |      | / 0x07             | spi0_div_con                                                 |
| 6:0   | RW   |                    | spi0 integer divider control register                        |
|       |      |                    | clk=clk_src/(div_con+1)                                      |

# CRU\_CLKSEL\_CON25

Address: Operational Base + offset (0x0164) Internal clock select and divide register25

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                |
|-------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------|
| 21.10 | wo   |                    | write_mask<br>write mask bits                                                                                              |
| 51.10 | WU   |                    | "When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:11 | RO   | 0x0                | reserved                                                                                                                   |

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                 |
|------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 10:8 | RW   | 0x2                | gmac_pclk_div_con<br>gmac_pclk integer divider control register<br>clk=clk_src/(div_con+1)                                  |
| 7:6  | RW   | 0×1                | gmac_aclk_pll_sel<br>gmac_aclk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMIPHY<br>2'b11:reserved |
| 5    | RO   | 0x0                | reserved                                                                                                                    |
| 4:0  | RW   | 0x02               | gmac_aclk_div_con<br>gmac_aclk integer divider control register<br>clk=clk_src/(div_con+1)                                  |

Address: Operational Base + offset (0x0168) Internal clock select and divide register26

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | vv0  | 00000              | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:10 | RO   | 0x0                | reserved                                                     |
|       |      |                    | clk_gmac2phy_div_con                                         |
| 9:8   | RW   | 0x0                | clk_gmac2phy integer divider control register                |
|       |      |                    | clk=clk_src/(div_con+1)                                      |
|       |      | RW 0×0             | gmac2phy_pll_sel                                             |
| 7     |      |                    | gmac2phy pll source selection register                       |
| /     | RVV  |                    | 1'b0:CPLL                                                    |
|       |      |                    | 1'b1:GPLL                                                    |
| 6:5   | RO   | 0x0                | reserved                                                     |
|       |      |                    | gmac2phy_div_con                                             |
| 4:0   | RW   | W 0x0f             | gmac2phy integer divider control register                    |
|       |      |                    | clk=clk_src/(div_con+1)                                      |

# CRU\_CLKSEL\_CON27

Address: Operational Base + offset (0x016c) Internal clock select and divide register27

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       | wo   | 0x0000             | write_mask                                                   |
| 21.16 |      |                    | write mask bits                                              |
| 51.10 |      |                    | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |

| Bit   | Attr | Reset Value | Description                                  |
|-------|------|-------------|----------------------------------------------|
|       |      |             | gmac2io_out_pll_sel                          |
| 15    | RW   | 0x0         | gmac2io_out pll source selection register    |
| 13    |      | 0.00        | 1'b0:CPLL                                    |
|       |      |             | 1'b1:GPLL                                    |
| 14:13 | RO   | 0x0         | reserved                                     |
|       |      |             | gmac2io_out_div_con                          |
| 12:8  | RW   | 0x07        | gmac2io_out integer divider control register |
|       |      |             | clk=clk_src/(div_con+1)                      |
|       |      |             | gmac2io_pll_sel                              |
| 7     | RW   | 0.20        | gmac2io pll source selection register        |
| /     | RVV  | / 0x0       | 1'b0:CPLL                                    |
|       |      |             | 1'b1:GPLL                                    |
| 6:5   | RO   | 0x0         | reserved                                     |
|       |      |             | gmac2io_div_con                              |
| 4:0   | RW   | V 0x05      | gmac2io integer divider control register     |
|       |      |             | clk=clk_src/(div_con+1)                      |

Address: Operational Base + offset (0x0170) Internal clock select and divide register28

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:8  | RO   | 0x0                | reserved                                                                                                                                                    |
| 7:6   | RW   | 0x1                | periph_pll_sel<br>periph pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMIPHY<br>2'b11:reserved                                       |
| 5     | RO   | 0x0                | reserved                                                                                                                                                    |
| 4:0   | RW   | 0x02               | periph_aclk_div_con<br>periph_aclk integer divider control register<br>clk=clk_src/(div_con+1)                                                              |

#### CRU\_CLKSEL\_CON29

Address: Operational Base + offset (0x0174) Internal clock select and divide register29

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:7  | RO   | 0x0                | reserved                                                                                                                                                    |
| 6:4   | RW   | 0x2                | periph_pclk_div_con<br>periph_pclk integer divider control register<br>clk=clk_src/(div_con+1)                                                              |
| 3:2   | RO   | 0x0                | reserved                                                                                                                                                    |
| 1:0   | RW   | 0x2                | periph_hclk_div_con<br>periph_hclk integer divider control register<br>clk=clk_src/(div_con+1)                                                              |

Address: Operational Base + offset (0x0178) Internal clock select and divide register30

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | WU   | 00000              | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:10 | RO   | 0x0                | reserved                                                     |
|       |      | / 0×0              | clksdmmc_pll_sel                                             |
|       |      |                    | clksdmmc pll source selection register                       |
| 9:8   | RW   |                    | 2'b00:CPLL                                                   |
| 9.0   |      |                    | 2'b01:GPLL                                                   |
|       |      |                    | 2'b10:OSC input                                              |
|       |      |                    | 2'b11:USBPHY 480M                                            |
|       |      | W 0x03             | sdmmc0_div_con                                               |
| 7:0   | RW   |                    | sdmmc0 integer divider control register                      |
|       |      |                    | clk=clk_src/(div_con+1)                                      |

# CRU\_CLKSEL\_CON31

Address: Operational Base + offset (0x017c) Internal clock select and divide register31

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                |
|-------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------|
|       |      |                    | write_mask<br>write mask bits                                                                                              |
| 31:16 | WO   |                    | "When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:10 | RO   | 0x0                | reserved                                                                                                                   |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                  |
|-----|------|--------------------|------------------------------------------------------------------------------------------------------------------------------|
| 9:8 | RW   | 0×0                | clksdio_pll_sel<br>clksdio pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:OSC input<br>2'b11:USBPHY 480M |
| 7:0 | RW   | 0x01               | sdio_div_con<br>sdio integer divider control register<br>clk=clk_src/(div_con+1)                                             |

Address: Operational Base + offset (0x0180) Internal clock select and divide register32

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:10 | RO   | 0x0                | reserved                                                                                                                                                    |
| 9:8   | RW   | 0×0                | clkemmc_pll_sel<br>clkemmc pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:OSC input<br>2'b11:USBPHY 480M                                |
| 7:0   | RW   | 0x01               | emmc_div_con<br>emmc integer divider control register<br>clk=clk_src/(div_con+1)                                                                            |

# CRU\_CLKSEL\_CON33

Address: Operational Base + offset (0x0184) Internal clock select and divide register33

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       | wo   | 0×0000             | write_mask<br>write mask bits                                |
| 31:16 |      |                    | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       | RW   | V 0×0              | usb3_otg0_suspend_src_sel                                    |
| 15    |      |                    | clk_usb3_otg0_suspend pll source selection register          |
| 15    |      |                    | 1'b0: OSC input                                              |
|       |      |                    | 1'b1: 32k clock                                              |
| 14:10 | RO   | 0x0                | reserved                                                     |

| Bit | Attr | <b>Reset Value</b> | Description                                            |
|-----|------|--------------------|--------------------------------------------------------|
|     |      |                    | clk_usb3_otg0_suspend_div_con                          |
| 9:0 | RW   | 0x30b              | clk_usb3_otg0_suspend integer divider control register |
|     |      |                    | clk=clk_src/(div_con+1)                                |

### CRU\_CLKSEL\_CON34

Address: Operational Base + offset (0x0188) Internal clock select and divide register34

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | ***  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | i2c1_pll_sel                                                 |
| 15    | RW   | 0x0                | i2c1 pll source selection register                           |
| 13    | RVV  | 0.00               | 1'b0:CPLL                                                    |
|       |      |                    | 1'b1:GPLL                                                    |
|       |      | 0x07               | i2c1_div_con                                                 |
| 14:8  | RW   |                    | i2c1 integer divider control register                        |
|       |      |                    | clk=clk_src/(div_con+1)                                      |
|       |      | N 0.0              | i2c0_pll_sel                                                 |
| 7     | RW   |                    | i2c0 pll source selection register                           |
| /     | ĸw   | 0x0                | 1'b0:CPLL                                                    |
|       |      |                    | 1'b1:GPLL                                                    |
|       |      |                    | i2c0_div_con                                                 |
| 6:0   | RW   | W 0x07             | i2c0 integer divider control register                        |
|       |      |                    | clk=clk_src/(div_con+1)                                      |

#### CRU\_CLKSEL\_CON35

Address: Operational Base + offset (0x018c) Internal clock select and divide register35

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0x0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      | W 0×0              | i2c3_pll_sel                                                 |
| 15    | RW   |                    | i2c3 pll source selection register                           |
| 15    | ĸw   |                    | 1'b0:CPLL                                                    |
|       |      |                    | 1'b1:GPLL                                                    |
|       | RW   | W 0x07             | i2c3_div_con                                                 |
| 14:8  |      |                    | i2c3 integer divider control register                        |
|       |      |                    | clk=clk_src/(div_con+1)                                      |

| Bit | Attr | <b>Reset Value</b> | Description                           |
|-----|------|--------------------|---------------------------------------|
|     |      | 0x0                | i2c2_pll_sel                          |
| 7   | RW   |                    | i2c2 pll source selection register    |
| /   |      |                    | 1'b0:CPLL                             |
|     |      |                    | 1'b1:GPLL                             |
|     |      |                    | i2c2_div_con                          |
| 6:0 | RW   |                    | i2c2 integer divider control register |
|     |      |                    | clk=clk_src/(div_con+1)               |

# CRU\_CLKSEL\_CON36

Address: Operational Base + offset (0x0190) Internal clock select and divide register36

| Bit   | Attr | Reset Value | Description                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000      | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:14 | RW   | 0x1         | rga_aclk_pll_sel<br>rga_aclk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMI PHY<br>2'b11:USBPHY 480M                               |
| 13    | RO   | 0x0         | reserved                                                                                                                                                    |
| 12:8  | RW   | 0x02        | rga_aclk_div_con<br>rga_aclk integer divider control register<br>clk=clk_src/(div_con+1)                                                                    |
| 7:6   | RW   | 0x1         | rga_clk_pll_sel<br>rga_clk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMI PHY<br>2'b11:USBPHY 480M                                 |
| 5     | RO   | 0x0         | reserved                                                                                                                                                    |
| 4:0   | RW   | 0x02        | rga_clk_div_con<br>rga_clk integer divider control register<br>clk=clk_src/(div_con+1)                                                                      |

# CRU\_CLKSEL\_CON37

Address: Operational Base + offset (0x0194) Internal clock select and divide register37

| Bit   | Attr | Reset Value | Description                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:13 | RO   | 0x0         | reserved                                                                                                                                                    |
| 12:8  | RW   | 0x02        | hclk_vio_div_con<br>hclk_vio integer divider control register<br>clk=clk_src/(div_con+1)                                                                    |
| 7:6   | RW   | 0×1         | vio_aclk_pll_sel<br>vio_aclk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMI PHY<br>2'b11:USBPHY 480M                               |
| 5     | RO   | 0x0         | reserved                                                                                                                                                    |
| 4:0   | RW   | 0x02        | vio_aclk_div_con<br>vio_aclk integer divider control register<br>clk=clk_src/(div_con+1)                                                                    |

Address: Operational Base + offset (0x0198) Internal clock select and divide register38

| Bit   | Attr | Reset Value | Description                                                  |
|-------|------|-------------|--------------------------------------------------------------|
|       |      |             | write_mask                                                   |
| 31:16 | wo   | 0x0000      | write mask bits                                              |
| 51.10 | **0  | 0x0000      | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |             | When every bit LOW, don't care the writing corresponding bit |
|       |      | .W 0x3      | rtc32k_clk_pll_sel                                           |
|       | RW   |             | rtc32k_clk pll source selection register                     |
| 15.14 |      |             | 2'b00:CPLL                                                   |
| 15.14 |      |             | 2'b01:GPLL                                                   |
|       |      |             | 2'b10:OSC input                                              |
|       |      |             | 2'b11:Reserved                                               |
|       |      | W 0x02dc    | rtc32k_clk_div_con                                           |
| 13:0  | RW   |             | rtc32k_clk integer divider control register                  |
|       |      |             | clk=clk_src/(div_con+1)                                      |

# CRU\_CLKSEL\_CON39

Address: Operational Base + offset (0x019c) Internal clock select and divide register39

| Bit   | Attr | Reset Value | Description                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:8  | RO   | 0x0         | reserved                                                                                                                                                    |
| 7:6   | RW   | 0×0         | vop_aclk_pll_sel<br>vop_aclk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMI PHY<br>2'b11:USBPHY 480M                               |
| 5     | RO   | 0x0         | reserved                                                                                                                                                    |
| 4:0   | RW   | 0x01        | vop_aclk_div_con<br>vop_aclk integer divider control register<br>clk=clk_src/(div_con+1)                                                                    |

Address: Operational Base + offset (0x01a0) Internal clock select and divide register40

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:8  | RW   | 0x31               | vop_dclk_div_con<br>vop_dclk integer divider control register<br>clk=clk_src/(div_con+1)                                                                    |
| 7:6   | RO   | 0x0                | reserved                                                                                                                                                    |
| 5:3   | RW   | 0x2                | hdmiphy_div_con<br>hdmiphy integer divider control register<br>clk=clk_src/(div_con+1)                                                                      |
| 2     | RW   | 0×0                | vop_dclk_frac_sel<br>vop divider source selection register<br>1'b0: divout<br>1'b1: frac_divout                                                             |
| 1     | RW   | 0x1                | vop_dclk_src_sel<br>vop dclk source selection register<br>1'b0:HDMIPHY<br>1'b2:PLL                                                                          |
| 0     | RW   | 0x1                | vop_dclk_pll_src_sel<br>vop dclk pll source selection register<br>1'b0:GPLL<br>1'b1:CPLL                                                                    |

Address: Operational Base + offset (0x01a4) Internal clock select and divide register41

| Bit  | Attr | <b>Reset Value</b> | Description                                                           |
|------|------|--------------------|-----------------------------------------------------------------------|
| 21.0 |      |                    | dclk_vop_frac_div_con                                                 |
| 31:0 | RW   |                    | dclk_vop fraction divider control register<br>clk=clk_src/(div_con+1) |

#### CRU\_CLKSEL\_CON42

Address: Operational Base + offset (0x01a8) Internal clock select and divide register42

| Bit   | Attr       | <b>Reset Value</b> | Description                                                                                 |
|-------|------------|--------------------|---------------------------------------------------------------------------------------------|
| 31:16 | wo         | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit |
| 1     | <b>D</b> O | 00                 | When every bit LOW, don't care the writing corresponding bit                                |
| 15:8  | RO         | 0x0                | reserved                                                                                    |
| 7     | RW         | 0x0                | cif_pll_sel<br>cif pll source selection register<br>1'b0:HDMIPLL<br>1'b1:GPLL               |
| 6     | RO         | 0x0                | reserved                                                                                    |
| 5     | RW         | 0×0                | cif_clk_sel<br>cif clk source selection register<br>1'b0:PLL<br>1'b1:OSC input              |
| 4:0   | RW         | 0x13               | cif_div_con<br>cif integer divider control register<br>clk=clk_src/(div_con+1)              |

#### CRU\_CLKSEL\_CON43

Address: Operational Base + offset (0x01ac) Internal clock select and divide register43

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       | wo   | 0x0000             | write_mask                                                   |
| 31.16 |      |                    | write mask bits                                              |
| 51.10 |      |                    | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:10 | RO   | 0x0                | reserved                                                     |

| Bit | Attr | <b>Reset Value</b> | Description                                                                              |
|-----|------|--------------------|------------------------------------------------------------------------------------------|
| 9:8 | RW   | 0×0                | clksdmmcext_pll_sel<br>clksdmmcext pll source selection register<br>2'b00:CPLL           |
| 9.0 |      |                    | 2'b01:GPLL<br>2'b10:OSC input<br>2'b11:USBPHY 480M                                       |
| 7:0 | RW   | 0x03               | sdmmcext_div_con<br>sdmmcext integer divider control register<br>clk=clk_src/(div_con+1) |

Address: Operational Base + offset (0x01b0) Internal clock select and divide register44

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:8  | RO   | 0x0                | reserved                                                                                                                                                    |
| 7:6   | RW   | 0×1                | gpu_aclk_pll_sel<br>gpu_aclk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMI PHY<br>2'b11:USBPHY 480M                               |
| 5     | RO   | 0x0                | reserved                                                                                                                                                    |
| 4:0   | RW   | 0x02               | gpu_aclk_div_con<br>gpu_aclk integer divider control register<br>clk=clk_src/(div_con+1)                                                                    |

#### CRU\_CLKSEL\_CON45

Address: Operational Base + offset (0x01b4) Internal clock select and divide register45

| Bit  | Attr | <b>Reset Value</b> | Description                                 |
|------|------|--------------------|---------------------------------------------|
| 31:9 | RO   | 0x0                | reserved                                    |
|      |      |                    | clk_usb3phy_ref_sel                         |
| 8    | RW   | 0×0                | usb3phy_ref clock source selection register |
| 0    | ĸvv  |                    | 1'b0:OSC input                              |
|      |      |                    | 1'b1:PLL                                    |
|      |      | RW 0x0             | usb3phy_ref_pll_sel                         |
| 7    |      |                    | usb3phy_ref pll source selection register   |
| /    | RVV  |                    | 1'b0:CPLL                                   |
|      |      |                    | 1'b1:GPLL                                   |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit | Attr | <b>Reset Value</b> | Description                                                                                    |
|-----|------|--------------------|------------------------------------------------------------------------------------------------|
| 6:0 | RW   | 0x1f               | usb3phy_ref_div_con<br>usb3phy_ref integer divider control register<br>clk=clk_src/(div_con+1) |

### CRU\_CLKSEL\_CON46

Address: Operational Base + offset (0x01b8) Internal clock select and divide register46

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                              |
|-------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | Reserve<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:0  | RO   | 0x0                | reserved                                                                                                                                                 |

#### CRU\_CLKSEL\_CON48

Address: Operational Base + offset (0x01c0) Internal clock select and divide register48

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | WO   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:14 | RW   | 0x1                | cabac_clk_pll_sel<br>cabac_clk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMI PHY<br>2'b11:USBPHY 480M                             |
| 13    | RO   | 0x0                | reserved                                                                                                                                                    |
| 12:8  | RW   | 0x02               | cabac_clk_div_con<br>cabac_clk integer divider control register<br>clk=clk_src/(div_con+1)                                                                  |
| 7:6   | RW   | 0x0                | rkvdec_aclk_pll_sel<br>rkvdec_aclk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMI PHY<br>2'b11:USBPHY 480M                         |
| 5     | RO   | 0x0                | reserved                                                                                                                                                    |
| 4:0   | RW   | 0×01               | rkvdec_aclk_div_con<br>rkvdec_aclk integer divider control register<br>clk=clk_src/(div_con+1)                                                              |

Address: Operational Base + offset (0x01c4) Internal clock select and divide register49

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:8  | RO   | 0x0                | reserved                                                                                                                                                    |
| 7:6   | RW   | 0x1                | vdec_clk_pll_sel<br>vdec_clk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMI PHY<br>2'b11:USBPHY 480M                               |
| 5     | RO   | 0x0                | reserved                                                                                                                                                    |
| 4:0   | RW   | 0x02               | vdec_clk_div_con<br>vdec_clk integer divider control register<br>clk=clk_src/(div_con+1)                                                                    |

#### CRU\_CLKSEL\_CON50

Address: Operational Base + offset (0x01c8) Internal clock select and divide register50

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:8  | RO   | 0x0                | reserved                                                                                                                                                    |
| 7:6   | RW   | 0×1                | vpu_aclk_pll_sel<br>vpu_aclk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMI PHY<br>2'b11:USBPHY 480M                               |
| 5     | RO   | 0x0                | reserved                                                                                                                                                    |
| 4:0   | RW   | 0x02               | vpu_aclk_div_con<br>vpu_aclk integer divider control register<br>clk=clk_src/(div_con+1)                                                                    |

### CRU\_CLKSEL\_CON51

Address: Operational Base + offset (0x01cc) Internal clock select and divide register51

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit   | Attr | Reset Value | Description                                                                                                                                                                        |
|-------|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |      |             | write_mask<br>write mask bits                                                                                                                                                      |
| 31:16 | WO   | 0x0000      | "When every bit HIGH, enable the writing corresponding bit                                                                                                                         |
| 15:14 | RW   | 0x0         | When every bit LOW, don't care the writing corresponding bit<br>h265_core_clk_pll_sel<br>h265_core_clk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMI PHY |
| 13    | RO   | 0x0         | 2'b11:USBPHY 480M<br>reserved                                                                                                                                                      |
|       | RW   | 0x02        | h265_core_clk_div_con<br>h265_core_clk integer divider control register<br>clk=clk_src/(div_con+1)                                                                                 |
| 7:6   | RW   | 0x0         | rkvenc_aclk_pll_sel<br>rkvenc_aclk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMI PHY<br>2'b11:USBPHY 480M                                                |
| 5     | RO   | 0x0         | reserved                                                                                                                                                                           |
| 4:0   | RW   | 0x03        | rkvenc_aclk_div_con<br>rkvenc_aclk integer divider control register<br>clk=clk_src/(div_con+1)                                                                                     |

Address: Operational Base + offset (0x01d0) Internal clock select and divide register52

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:14 | RW   | 0×0                | h265_dsp_clk_pll_sel<br>h265_dsp_clk pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b10:HDMI PHY<br>2'b11:USBPHY 480M                       |
| 13    | RO   | 0x0                | reserved                                                                                                                                                    |
| 12:8  | RW   | 0x02               | h265_dsp_clk_div_con<br>h265_dsp_clk integer divider control register<br>clk=clk_src/(div_con+1)                                                            |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                           |
|-----|------|--------------------|-----------------------------------------------------------------------------------------------------------------------|
| 7:6 | RW   | 0×0                | wifi_pll_sel<br>wifi pll source selection register<br>2'b00:CPLL<br>2'b01:GPLL<br>2'b11:USBPHY 480M<br>2'b11:Reserved |
| 5:0 | RW   | 0x1e               | wifi_div_con<br>wifi integer divider control register<br>clk=clk_src/(div_con+1)                                      |

Address: Operational Base + offset (0x0200) Internal clock gating register0

| Bit   | Attr | Reset Value | Description                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:13 | RO   | 0x0         | reserved                                                                                                                                                    |
| 12    | RW   | 0×0         | core_npll_clk_en<br>core_npll clk gate enable register<br>When HIGH, disable clock                                                                          |
| 11    | RW   | 0x0         | clk_rtc32k_src_en<br>clk_rtc32k clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 10    | RW   | 0x0         | clk_wifi_src_en<br>clk_wifi clk gate enable register<br>"When HIGH, disable clock                                                                           |
| 9     | RW   | 0x0         | testclk_en<br>tes clk gate enable register<br>"When HIGH, disable clock                                                                                     |
| 8:7   | RO   | 0x0         | reserved                                                                                                                                                    |
| 6     | RW   | 0x0         | clk_ddrmon_en<br>clk_ddrmon clk gate enable register<br>"When HIGH, disable clock                                                                           |
| 5     | RW   | 0x0         | clk_ddrpd_src_en<br>clk_ddrpd clk gate enable register<br>When HIGH, disable clock                                                                          |
| 4     | RW   | 0x0         | clk_ddrphy_src_en<br>clk_ddrphy clk gate enable register<br>When HIGH, disable clock                                                                        |
| 3     | RW   | 0×0         | bus_src_clk_en<br>bus_src clk gate enable register<br>When HIGH, disable clock                                                                              |

| Bit | Attr | Reset Value | Description                        |
|-----|------|-------------|------------------------------------|
|     |      |             | core_gpll_clk_en                   |
| 2   | RW   | 0x0         | core_gpll clk gate enable register |
|     |      |             | When HIGH, disable clock           |
|     |      |             | core_dpll_clk_en                   |
| 1   | RW   | 0x0         | core_dpll clk gate enable register |
|     |      |             | When HIGH, disable clock           |
|     |      |             | core_apll_clk_en                   |
| 0   | RW   | 0x0         | core_apll clk gate enable register |
|     |      |             | When HIGH, disable clock           |

Address: Operational Base + offset (0x0204) Internal clock gating register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | clk_uart0_frac_src_en                                        |
| 15    | RW   | 0x0                | clk_uart0_frac clk gate enable register                      |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | clk_uart0_src_en                                             |
| 14    | RW   | 0x0                | clk_uart0 clk gate enable register                           |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | clk_spdif_frac_src_en                                        |
| 13    | RW   | 0x0                | clk_spdif_frac clk gate enable register                      |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | clk_spdif_src_en                                             |
| 12    | RW   | 0x0                | clk_spdif clk gate enable register                           |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | clk_i2s2_out_en                                              |
| 11    | RW   | 0x0                | clk_i2s2_out clk gate enable register                        |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | clk_i2s2_en                                                  |
| 10    | RW   | 0x0                | clk_i2s2 clk gate enable register                            |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | clk_i2s2_frac_src_en                                         |
| 9     | RW   | 0x0                | clk_i2s2_frac clk gate enable register                       |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | clk_i2s2_src_en                                              |
| 8     | RW   | 0x0                | clk_i2s2 clk gate enable register                            |
|       |      |                    | "When HIGH, disable clock                                    |

| Bit | Attr | Reset Value | Description                            |
|-----|------|-------------|----------------------------------------|
|     |      |             | clk_i2s1_out_en                        |
| 7   | RW   | 0x0         | clk_i2s1_out clk gate enable register  |
|     |      |             | "When HIGH, disable clock              |
|     |      |             | clk_i2s1_en                            |
| 6   | RW   | 0x0         | clk_i2s1 clk gate enable register      |
|     |      |             | "When HIGH, disable clock              |
|     |      |             | clk_i2s1_frac_src_en                   |
| 5   | RW   | 0x0         | clk_i2s1_frac clk gate enable register |
|     |      |             | "When HIGH, disable clock              |
|     |      |             | clk_i2s1_src_en                        |
| 4   | RW   | 0x0         | clk_i2s1 clk gate enable register      |
|     |      |             | "When HIGH, disable clock              |
|     |      |             | clk_i2s0_en                            |
| 3   | RW   | 0x0         | clk_i2s0 clk gate enable register      |
|     |      |             | "When HIGH, disable clock              |
|     |      |             | clk_i2s0_frac_src_en                   |
| 2   | RW   | 0x0         | clk_i2s0_frac clk gate enable register |
|     |      |             | "When HIGH, disable clock              |
|     |      |             | clk_i2s0_src_en                        |
| 1   | RW   | 0x0         | clk_i2s0 clk gate enable register      |
|     |      |             | "When HIGH, disable clock              |
| 0   | RO   | 0x0         | reserved                               |

Address: Operational Base + offset (0x0208) Internal clock gating register2

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15    | RW   | 0×0                | clk_pdm_src_en<br>clk_pdm clk gate enable register<br>"When HIGH, disable clock                                                                             |
| 14    | RW   | 0×0                | clk_saradc_src_en<br>clk_saradc clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 13    | RW   | 0×0                | clk_efuse_src_en<br>clk_efuse clk gate enable register<br>"When HIGH, disable clock                                                                         |
| 12    | RW   | 0x0                | clk_i2c3_src_en<br>clk_i2c3 clk gate enable register<br>"When HIGH, disable clock                                                                           |

| Bit | Attr | <b>Reset Value</b> | Description                             |
|-----|------|--------------------|-----------------------------------------|
|     |      |                    | clk_i2c2_src_en                         |
| 11  | RW   | 0x0                | clk_i2c2 clk gate enable register       |
|     |      |                    | "When HIGH, disable clock               |
|     |      |                    | clk_i2c1_src_en                         |
| 10  | RW   | 0x0                | clk_i2c1 clk gate enable register       |
|     |      |                    | "When HIGH, disable clock               |
|     |      |                    | clk_i2c0_src_en                         |
| 9   | RW   | 0x0                | clk_i2c0 clk gate enable register       |
|     |      |                    | "When HIGH, disable clock               |
|     |      |                    | clk_pwm0_src_en                         |
| 8   | RW   | 0x0                | clk_pwm0 clk gate enable register       |
|     |      |                    | "When HIGH, disable clock               |
|     |      |                    | clk_spi0_src_en                         |
| 7   | RW   | 0x0                | clk_spi0 clk gate enable register       |
|     |      |                    | "When HIGH, disable clock               |
|     |      |                    | clk_tsadc_src_en                        |
| 6   | RW   | 0x0                | clk_tsadc clk gate enable register      |
|     |      |                    | "When HIGH, disable clock               |
|     |      |                    | clk_tsp_src_en                          |
| 5   | RW   | 0x0                | clk_tsp clk gate enable register        |
|     |      |                    | "When HIGH, disable clock               |
|     |      | 0×0                | clk_crypto_src_en                       |
| 4   | RW   |                    | clk_crypto clk gate enable register     |
|     |      |                    | "When HIGH, disable clock               |
|     |      |                    | clk_uart2_frac_src_en                   |
| 3   | RW   | 0x0                | clk_uart2_frac clk gate enable register |
|     |      |                    | "When HIGH, disable clock               |
|     |      |                    | clk_uart2_src_en                        |
| 2   | RW   | 0x0                | clk_uart2 clk gate enable register      |
|     |      |                    | "When HIGH, disable clock               |
|     |      |                    | clk_uart1_frac_src_en                   |
| 1   | RW   | 0x0                | clk_uart1_frac clk gate enable register |
|     |      |                    | "When HIGH, disable clock               |
|     |      |                    | clk_uart1_src_en                        |
| 0   | RW   | 0x0                | clk_uart1 clk gate enable register      |
|     |      |                    | "When HIGH, disable clock               |

Address: Operational Base + offset (0x020c) Internal clock gating register3

| Bit   | Attr | Reset Value | Description                                                  |
|-------|------|-------------|--------------------------------------------------------------|
|       |      |             | write_mask                                                   |
| 31:16 | wo   | 0x0000      | write mask bits                                              |
| 51:10 | WU   | 00000       | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |             | When every bit LOW, don't care the writing corresponding bit |
| 15:9  | RO   | 0x0         | reserved                                                     |
|       |      |             | clk_otp_src_en                                               |
| 8     | RW   | 0x0         | clk_otp clk gate enable register                             |
|       |      |             | "When HIGH, disable clock                                    |
| 7:6   | RO   | 0x0         | reserved                                                     |
|       |      |             | clk_gmac2io_out_en                                           |
| 5     | RW   | 0x0         | clk_gmac2io_out clk gate enable register                     |
|       |      |             | "When HIGH, disable clock                                    |
|       |      |             | gmac_vpll_src_en                                             |
| 4     | RW   | 0x0         | gmac_vpll clk gate enable register                           |
|       |      |             | "When HIGH, disable clock                                    |
|       |      |             | gmac_gpll_src_en                                             |
| 3     | RW   | 0x0         | gmac_gpll clk gate enable register                           |
|       |      |             | "When HIGH, disable clock                                    |
|       |      |             | gmac_cpll_src_en                                             |
| 2     | RW   | 0x0         | gmac_cpll clk gate enable register                           |
|       |      |             | "When HIGH, disable clock                                    |
|       |      |             | clk_gmac2io_src_en                                           |
| 1     | RW   | 0x0         | clk_gmac2io clk gate enable register                         |
|       |      |             | "When HIGH, disable clock                                    |
|       |      |             | clk_gmac2phy_src_en                                          |
| 0     | RW   | 0x0         | clk_gmac2phy clk gate enable register                        |
|       |      |             | "When HIGH, disable clock                                    |

Address: Operational Base + offset (0x0210) Internal clock gating register4

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | WU   | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:11 | RO   | 0x0                | reserved                                                     |
|       |      |                    | clk_sdmmcext_src_en                                          |
| 10    | RW   | W 0x0              | clk_sdmmcext clk gate enable register                        |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | clk_usb3phy_ref_25m_en                                       |
| 9     | RW   | W 0x0              | clk_usb3phy_ref_25m clk gate enable register                 |
|       |      |                    |                                                              |

| Bit | Attr | <b>Reset Value</b> | Description                                    |
|-----|------|--------------------|------------------------------------------------|
|     |      |                    | clk_usb3_otg0_suspend_en                       |
| 8   | RW   | 0x0                | clk_usb3_otg0_suspend clk gate enable register |
|     |      |                    | "When HIGH, disable clock                      |
|     |      |                    | clk_usb3_otg0_ref_en                           |
| 7   | RW   | 0x0                | clk_usb3_otg0_ref clk gate enable register     |
|     |      |                    | "When HIGH, disable clock                      |
|     |      |                    | clk_otgphy0_en                                 |
| 6   | RW   | 0x0                | clk_otgphy0 clk gate enable register           |
|     |      |                    | "When HIGH, disable clock                      |
|     |      |                    | clk_emmc_src_en                                |
| 5   | RW   | 0x0                | clk_emmc clk gate enable register              |
|     |      |                    | "When HIGH, disable clock                      |
|     |      |                    | clk_sdio_src_en                                |
| 4   | RW   | 0x0                | clk_sdio clk gate enable register              |
|     |      |                    | "When HIGH, disable clock                      |
|     |      |                    | clk_mmc0_src_en                                |
| 3   | RW   | 0x0                | clk_mmc0 clk gate enable register              |
|     |      |                    | "When HIGH, disable clock                      |
|     |      |                    | periph_vclk_src_en                             |
| 2   | RW   | 0x0                | periph_vclk clk gate enable register           |
|     |      |                    | "When HIGH, disable clock                      |
|     |      |                    | periph_cclk_src_en                             |
| 1   | RW   | 0x0                | periph_cclk clk gate enable register           |
|     |      |                    | "When HIGH, disable clock                      |
|     |      |                    | periph_gclk_src_en                             |
| 0   | RW   | 0x0                | periph_gclk clk gate enable register           |
|     |      |                    | "When HIGH, disable clock                      |

Address: Operational Base + offset (0x0214) Internal clock gating register5

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                |
|-------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When over this HICH, enable the writing corresponding bit                                |
|       |      |                    | "When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:7  | RO   | 0x0                | reserved                                                                                                                   |
| 6     | RW   | 0x0                | dclk_vop_src_en<br>dclk_vop clk gate enable register<br>"When HIGH, disable clock                                          |
| 5     | RW   | 0x0                | aclk_vop_src_en<br>aclk_vop clk gate enable register<br>"When HIGH, disable clock                                          |

| Bit | Attr | Reset Value | Description                           |
|-----|------|-------------|---------------------------------------|
|     |      |             | clk_hdmi_sfr_en                       |
| 4   | RW   | 0x0         | clk_hdmi_sfr clk gate enable register |
|     |      |             | "When HIGH, disable clock             |
|     |      |             | clk_cif_out_src_en                    |
| 3   | RW   | 0x0         | clk_cif_out clk gate enable register  |
|     |      |             | "When HIGH, disable clock             |
|     |      |             | aclk_vio_src_en                       |
| 2   | RW   | 0x0         | aclk_vio clk gate enable register     |
|     |      |             | "When HIGH, disable clock             |
|     |      |             | clk_rga_src_en                        |
| 1   | RW   | 0x0         | clk_rga clk gate enable register      |
|     |      |             | "When HIGH, disable clock             |
|     |      |             | aclk_rga_src_en                       |
| 0   | RW   | 0x0         | aclk_rga clk gate enable register     |
|     |      |             | "When HIGH, disable clock             |

Address: Operational Base + offset (0x0218) Internal clock gating register6

| Bit   | 1  | Reset Value | Description                                                  |
|-------|----|-------------|--------------------------------------------------------------|
| Dit   | ~  | Reset value | write_mask                                                   |
|       |    |             | write mask bits                                              |
| 31:16 | WO | 0x0000      |                                                              |
|       |    |             | "When every bit HIGH, enable the writing corresponding bit   |
| 4 5 0 |    |             | When every bit LOW, don't care the writing corresponding bit |
| 15:8  | RO | 0x0         | reserved                                                     |
|       |    |             | clk_venc_dsp_src_en                                          |
| 7     | RW | 0x0         | clk_venc_dsp clk gate enable register                        |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | aclk_gpu_src_en                                              |
| 6     | RW | 0x0         | aclk_gpu clk gate enable register                            |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | aclk_vpu_src_en                                              |
| 5     | RW | 0x0         | aclk_vpu clk gate enable register                            |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | clk_venc_core_src_en                                         |
| 4     | RW | 0x0         | clk_venc_core clk gate enable register                       |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | aclk_rkvenc_src_en                                           |
| 3     | RW | 0x0         | aclk_rkvenc clk gate enable register                         |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | clk_vdec_core_src_en                                         |
| 2     | RW | 0x0         | clk_vdec_core clk gate enable register                       |
|       |    |             | "When HIGH, disable clock                                    |

#### RK3328 TRM-Part1

| Bit | Attr | <b>Reset Value</b> | Description                          |
|-----|------|--------------------|--------------------------------------|
|     |      |                    | clk_cabac_src_en                     |
| 1   | RW   | 0x0                | clk_cabac clk gate enable register   |
|     |      |                    | "When HIGH, disable clock            |
|     |      |                    | aclk_rkvdec_src_en                   |
| 0   | RW   | 0x0                | aclk_rkvdec clk gate enable register |
|     |      |                    | "When HIGH, disable clock            |

### CRU\_CLKGATE\_CON7

Address: Operational Base + offset (0x021c) Internal clock gating register7

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:5  | RO   | 0x0                | reserved                                                                                                                                                    |
| 4     | RW   | 0×0                | pclk_ddr_en<br>pclk_ddr clk gate enable register<br>"When HIGH, disable clock                                                                               |
| 3     | RO   | 0x0                | reserved                                                                                                                                                    |
| 2     | RW   | 0×0                | clk_jtag_en<br>core jtag clock enable<br>"When HIGH, disable clock                                                                                          |
| 1     | RW   | 0x0                | clk_core_periph_en<br>clk_core_periph clk gate enable register<br>"When HIGH, disable clock                                                                 |
| 0     | RW   | 0x0                | aclk_core_en<br>aclk_core clk gate enable register<br>"When HIGH, disable clock                                                                             |

# CRU\_CLKGATE\_CON8

Address: Operational Base + offset (0x0220) Internal clock gating register8

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 21.16 | wo   | 0,0000             | write mask bits                                              |
| 51:10 | WU   | 0×0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:11 | RO   | 0x0                | reserved                                                     |
|       | RW   | 0x0                | clk_timer5_en                                                |
| 10    |      |                    | clk_timer5 clk gate enable register                          |
|       |      |                    | "When HIGH, disable clock                                    |

| Bit | Attr | Reset Value | Description                         |
|-----|------|-------------|-------------------------------------|
|     |      |             | clk_timer4_en                       |
| 9   | RW   | 0x0         | clk_timer4 clk gate enable register |
|     |      |             | "When HIGH, disable clock           |
|     |      |             | clk_timer3_en                       |
| 8   | RW   | 0x0         | clk_timer3 clk gate enable register |
|     |      |             | "When HIGH, disable clock           |
|     |      |             | clk_timer2_en                       |
| 7   | RW   | 0x0         | clk_timer2 clk gate enable register |
|     |      |             | "When HIGH, disable clock           |
|     |      |             | clk_timer1_en                       |
| 6   | RW   | 0x0         | clk_timer1 clk gate enable register |
|     |      |             | "When HIGH, disable clock           |
|     |      |             | clk_timer0_en                       |
| 5   | RW   | 0x0         | clk_timer0 clk gate enable register |
|     |      |             | "When HIGH, disable clock           |
|     |      |             | pclk_phy_en                         |
| 4   | RW   | 0x0         | pclk_phy clk gate enable register   |
|     |      |             | "When HIGH, disable clock           |
|     |      |             | pclk_bus_en                         |
| 3   | RW   | 0x0         | pclk_bus clk gate enable register   |
|     |      |             | "When HIGH, disable clock           |
|     |      |             | pclk_bus_src_en                     |
| 2   | RW   | 0x0         | pclk_bus clk gate enable register   |
|     |      |             | "When HIGH, disable clock           |
|     |      |             | hclk_bus_en                         |
| 1   | RW   | 0x0         | hclk_bus clk gate enable register   |
|     |      |             | "When HIGH, disable clock           |
|     |      |             | aclk_bus_en                         |
| 0   | RW   | 0x0         | aclk_bus clk gate enable register   |
|     |      |             | "When HIGH, disable clock           |

Address: Operational Base + offset (0x0224) Internal clock gating register9

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      | 0×0000             | write_mask                                                   |
| 21.16 | WO   |                    | write mask bits                                              |
| 31:10 |      |                    | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:8  | RO   | 0x0                | reserved                                                     |
|       | RW   | / 0x0              | clk_gmac2io_ref_en                                           |
| 7     |      |                    | clk_gmac2io_ref clk gate enable register                     |
|       |      |                    | "When HIGH, disable clock                                    |

| Bit | Attr | Reset Value | Description                                 |
|-----|------|-------------|---------------------------------------------|
|     |      |             | clk_gmac2io_refout_en                       |
| 6   | RW   | 0x0         | clk_gmac2io_refout clk gate enable register |
|     |      |             | "When HIGH, disable clock                   |
|     |      |             | clk_gmac2io_tx_en                           |
| 5   | RW   | 0x0         | clk_gmac2io_tx clk gate enable register     |
|     |      |             | "When HIGH, disable clock                   |
|     |      |             | clk_gmac2io_rx_en                           |
| 4   | RW   | 0x0         | clk_gmac2io_rx clk gate enable register     |
|     |      |             | "When HIGH, disable clock                   |
|     |      |             | clk_gmac2phy_ref_en                         |
| 3   | RW   | 0x0         | clk_gmac2phy_ref clk gate enable register   |
|     |      |             | "When HIGH, disable clock                   |
|     |      |             | clk_macphy_en                               |
| 2   | RW   | 0x0         | clk_macphy clk gate enable register         |
|     |      |             | "When HIGH, disable clock                   |
|     |      |             | clk_gmac2phy_rx_en                          |
| 1   | RW   | 0x0         | clk_gmac2phy_rx clk gate enable register    |
|     |      |             | "When HIGH, disable clock                   |
|     |      |             | pclk_gmac_en                                |
| 0   | RW   | 0x0         | pclk_gmac clk gate enable register          |
|     |      |             | "When HIGH, disable clock                   |

Address: Operational Base + offset (0x0228) Internal clock gating register10

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:3  | RO   | 0x0                | reserved                                                     |
|       |      |                    | pclk_periph_en                                               |
| 2     | RW   | W 0x0              | pclk_periph clk gate enable register                         |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | hclk_periph_en                                               |
| 1     | RW   | 0x0                | hclk_periph clk gate enable register                         |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | aclk_periph_en                                               |
| 0     | RW   | RW 0x0             | aclk_periph clk gate enable register                         |
|       |      |                    | "When HIGH, disable clock                                    |

# CRU\_CLKGATE\_CON11

Address: Operational Base + offset (0x022c)

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

Internal clock gating register11

| Bit   | Attr | Reset Value | Description                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:9  | RO   | 0x0         | reserved                                                                                                                                                    |
| 8     | RW   | 0x0         | hclk_vpu_en<br>hclk_vpu clk gate enable register<br>"When HIGH, disable clock                                                                               |
| 7:5   | RO   | 0x0         | reserved                                                                                                                                                    |
| 4     | RW   | 0x0         | hclk_rkvenc_en<br>hclk_rkvenc clk gate enable register<br>"When HIGH, disable clock                                                                         |
| 3:1   | RO   | 0x0         | reserved                                                                                                                                                    |
| 0     | RW   | 0×0         | hclk_rkvdec_en<br>hclk_rkvdec clk gate enable register<br>"When HIGH, disable clock                                                                         |

# CRU\_CLKGATE\_CON12

Address: Operational Base + offset (0x0230) Internal clock gating register12

| Bit  | Attr | <b>Reset Value</b> | Description                                                  |
|------|------|--------------------|--------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | Reserve                                                      |
|      |      |                    | write mask bits                                              |
|      |      |                    | "When every bit HIGH, enable the writing corresponding bit   |
|      |      |                    | When every bit LOW, don't care the writing corresponding bit |

# CRU\_CLKGATE\_CON13

Address: Operational Base + offset (0x0234) Internal clock gating register13

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:2  | RO   | 0x0                | reserved                                                     |
|       |      | V 0×0              | aclk_gic400_en                                               |
| 1     | RW   |                    | aclk_gic400 clk gate enable register                         |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | aclk_core_niu_en                                             |
| 0     | RW   | W 0x0              | aclk_core_niu clk gate enable register                       |
|       |      |                    | "When HIGH, disable clock                                    |

Address: Operational Base + offset (0x0238) Internal clock gating register14

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | WO   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:2  | RO   | 0x0                | reserved                                                     |
|       |      | 2W 0×0             | aclk_gpu_niu_en                                              |
| 1     | RW   |                    | aclk_gpu_niu clk gate enable register                        |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | aclk_gpu_en                                                  |
| 0     | RW   | V 0x0              | aclk_gpu clk gate enable register                            |
|       |      |                    | "When HIGH, disable clock                                    |

#### CRU\_CLKGATE\_CON15

Address: Operational Base + offset (0x023c) Internal clock gating register15

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15    | RW   | 0x0                | pclk_phy_niu_en<br>pclk_phy_niu clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 14    | RW   | 0×0                | pclk_bus_niu_en<br>pclk_bus_niu clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 13    | RW   | 0×0                | hclk_bus_niu_en<br>hclk_bus_niu clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 12    | RW   | 0x0                | aclk_bus_niu_en<br>aclk_bus_niu clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 11    | RW   | 0×0                | aclk_dcf_en<br>aclk_dcf clk gate enable register<br>"When HIGH, disable clock                                                                               |
| 10    | RW   | 0×0                | pclk_i2c0_en<br>pclk_i2c0 clk gate enable register<br>"When HIGH, disable clock                                                                             |

| Bit | Attr | Reset Value | Description                              |
|-----|------|-------------|------------------------------------------|
|     |      |             | pclk_efuse_1024_en                       |
| 9   | RW   | 0x0         | pclk_efuse_1024 clk gate enable register |
|     |      |             | "When HIGH, disable clock                |
|     |      |             | sclk_crypto_en                           |
| 8   | RW   | 0x0         | sclk_crypto clk gate enable register     |
|     |      |             | "When HIGH, disable clock                |
|     |      |             | mclk_crypto_en                           |
| 7   | RW   | 0x0         | mclk_crypto clk gate enable register     |
|     |      |             | "When HIGH, disable clock                |
|     |      |             | hclk_spdif_8ch_en                        |
| 6   | RW   | 0x0         | hclk_spdif_8ch clk gate enable register  |
|     |      |             | "When HIGH, disable clock                |
|     |      |             | hclk_i2s2_2ch_en                         |
| 5   | RW   | 0x0         | hclk_i2s2_2ch clk gate enable register   |
|     |      |             | "When HIGH, disable clock                |
|     |      |             | hclk_i2s1_8ch_en                         |
| 4   | RW   | 0x0         | hclk_i2s1_8ch clk gate enable register   |
|     |      |             | "When HIGH, disable clock                |
|     |      |             | hclk_i2s0_8ch_en                         |
| 3   | RW   | 0x0         | hclk_i2s0_8ch clk gate enable register   |
|     |      |             | "When HIGH, disable clock                |
|     |      |             | hclk_rom_en                              |
| 2   | RW   | 0x0         | hclk_rom clk gate enable register        |
|     |      |             | "When HIGH, disable clock                |
|     |      |             | aclk_dmac_bus_en                         |
| 1   | RW   | 0x0         | aclk_dmac_bus clk gate enable register   |
|     |      |             | "When HIGH, disable clock                |
|     |      |             | aclk_intmem_en                           |
| 0   | RW   | 0x0         | aclk_intmem clk gate enable register     |
|     |      |             | "When HIGH, disable clock                |

Address: Operational Base + offset (0x0240) Internal clock gating register16

| Bit   | Attr | Reset Value | Description                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15    | RW   | 0x0         | pclk_dcf_en<br>pclk_dcf clk gate enable register<br>"When HIGH, disable clock                                                                               |

| Bit | Attr | Reset Value | Description                                                     |
|-----|------|-------------|-----------------------------------------------------------------|
|     |      |             | pclk_tsadc_en                                                   |
| 14  | RW   | 0x0         | pclk_tsadc clk gate enable register                             |
|     |      |             | "When HIGH, disable clock                                       |
|     |      |             | pclk_uart2_en                                                   |
| 13  | RW   | 0x0         | pclk_uart2 clk gate enable register                             |
|     |      |             | "When HIGH, disable clock                                       |
|     |      |             | pclk_uart1_en                                                   |
| 12  | RW   | 0x0         | pclk_uart1 clk gate enable register                             |
|     |      |             | "When HIGH, disable clock                                       |
|     |      |             | pclk_uart0_en                                                   |
| 11  | RW   | 0x0         | pclk_uart0 clk gate enable register                             |
|     |      |             | "When HIGH, disable clock                                       |
|     |      |             | pclk_gpio3_en                                                   |
| 10  | RW   | 0x0         | pclk_gpio3 clk gate enable register                             |
|     |      |             | "When HIGH, disable clock                                       |
|     |      |             | pclk_gpio2_en                                                   |
| 9   | RW   | 0x0         | pclk_gpio2 clk gate enable register                             |
|     |      |             | "When HIGH, disable clock                                       |
|     |      |             | pclk_gpio1_en                                                   |
| 8   | RW   | 0x0         | pclk_gpio1 clk gate enable register                             |
|     |      |             | "When HIGH, disable clock                                       |
|     |      | 0×0         | pclk_gpio0_en                                                   |
| 7   | RW   |             | pclk_gpio0 clk gate enable register                             |
|     |      |             | "When HIGH, disable clock                                       |
| 6   | DW/  |             | pclk_rk_pwm_en                                                  |
| 6   | RW   | 0x0         | pclk_rk_pwm clk gate enable register                            |
|     |      |             | "When HIGH, disable clock                                       |
| F   | RW   | 0.40        | pclk_spi0_en                                                    |
| 5   | RVV  | 0x0         | pclk_spi0 clk gate enable register<br>"When HIGH, disable clock |
|     |      |             | pclk_stimer_en                                                  |
| 4   | RW   | 0x0         | pclk_stimer clk gate enable register                            |
| -   |      | 0.00        | "When HIGH, disable clock                                       |
|     |      |             | pclk timer0 en                                                  |
| 3   | RW   | 0x0         | pclk_timer0 clk gate enable register                            |
| 5   |      | 0,0         | "When HIGH, disable clock                                       |
|     |      |             | pclk_i2c3_en                                                    |
| 2   | RW   | 0x0         | pclk_i2c3 clk gate enable register                              |
|     |      |             | "When HIGH, disable clock                                       |
|     |      |             | pclk_i2c2_en                                                    |
| 1   | RW   | 0x0         | pclk_i2c2 clk gate enable register                              |
|     |      |             | "When HIGH, disable clock                                       |
|     |      |             | pclk_i2c1_en                                                    |
| 0   | RW   | 0x0         | pclk_i2c1 clk gate enable register                              |
|     |      |             | "When HIGH, disable clock                                       |

Address: Operational Base + offset (0x0244) Internal clock gating register17

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 21.10 |      | 0000               | write mask bits                                              |
| 31:16 | wo   | 0×0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | pclk_saradc_en                                               |
| 15    | RW   | 0x0                | pclk_saradc clk gate enable register                         |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_usb_grf_en                                              |
| 14    | RW   | 0x0                | pclk_usb_grf clk gate enable register                        |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | clk_hsadc_0_tsp_en                                           |
| 13    | RW   | 0x0                | clk_hsadc_0_tsp clk gate enable register                     |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | aclk_tsp_en                                                  |
| 12    | RW   | 0x0                | aclk_tsp clk gate enable register                            |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | hclk_tsp_en                                                  |
| 11    | RW   | 0x0                | hclk_tsp clk gate enable register                            |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_scr_en                                                  |
| 10    | RW   | 0x0                | pclk_scr clk gate enable register                            |
|       |      |                    | "When HIGH, disable clock                                    |
| 9     | RO   | 0x0                | reserved                                                     |
|       |      |                    | pclk_vdacphy_en                                              |
| 8     | RW   | 0x0                | pclk_vdacphy clk gate enable register                        |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_hdmiphy_en                                              |
| 7     | RW   | 0x0                | pclk_hdmiphy clk gate enable register                        |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_sgrf_en                                                 |
| 6     | RW   | 0x0                | pclk_sgrf clk gate enable register                           |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_acodecphy_en                                            |
| 5     | RW   | 0x0                | pclk_acodecphy clk gate enable register                      |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_cru_en                                                  |
| 4     | RW   | 0x0                | pclk_cru clk gate enable register                            |
|       |      |                    | "When HIGH, disable clock                                    |

| Bit | Attr | Reset Value | Description                           |
|-----|------|-------------|---------------------------------------|
|     |      |             | pclk_ddrphy_en                        |
| 3   | RW   | 0x0         | pclk_ddrphy clk gate enable register  |
|     |      |             | "When HIGH, disable clock             |
|     |      |             | pclk_usb3grf_en                       |
| 2   | RW   | 0x0         | pclk_usb3grf clk gate enable register |
|     |      |             | "When HIGH, disable clock             |
| 1   | RO   | 0x0         | reserved                              |
|     |      |             | pclk_grf_en                           |
| 0   | RW   | 0x0         | pclk_grf clk gate enable register     |
|     |      |             | "When HIGH, disable clock             |

Address: Operational Base + offset (0x0248) Internal clock gating register18

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | WU   | 00000              | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:8  | RO   | 0x0                | reserved                                                     |
|       |      |                    | pclk_ddrstdby_en                                             |
| 7     | RW   | 0x0                | pclk_ddrstdby clk gate enable register                       |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | clk_ddr_msch_en                                              |
| 6     | RW   | 0x0                | clk_ddr_msch clk gate enable register                        |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | clk_ddr_upctl_en                                             |
| 5     | RW   | 0x0                | clk_ddr_upctl clk gate enable register                       |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | aclk_ddr_upctl_en                                            |
| 4     | RW   | 0x0                | aclk_ddr_upctl clk gate enable register                      |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_ddr_mon_en                                              |
| 3     | RW   | 0x0                | pclk_ddr_mon clk gate enable register                        |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_ddr_msch_en                                             |
| 2     | RW   | 0x0                | pclk_ddr_msch clk gate enable register                       |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_ddr_upctl_en                                            |
| 1     | RW   | 0x0                | pclk_ddr_upctl clk gate enable register                      |
|       |      |                    | "When HIGH, disable clock                                    |
| 0     | RO   | 0x0                | reserved                                                     |

Address: Operational Base + offset (0x024c) Internal clock gating register19

| Bit   |    | Reset Value | Description                                                  |
|-------|----|-------------|--------------------------------------------------------------|
|       |    |             | write_mask                                                   |
|       |    |             | write mask bits                                              |
| 31:16 | wo | 0×0000      | "When every bit HIGH, enable the writing corresponding bit   |
|       |    |             | When every bit LOW, don't care the writing corresponding bit |
|       |    |             | hclk_sdmmc_ext_en                                            |
| 15    | RW | 0x0         | hclk_sdmmc_ext hclk gate enable register                     |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | aclk_usb3otg_en                                              |
| 14    | RW | 0x0         | aclk_usb3otg clk gate enable register                        |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | pclk_peri_niu_en                                             |
| 13    | RW | 0x0         | pclk_peri_niu clk gate enable register                       |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | hclk_peri_niu_en                                             |
| 12    | RW | 0x0         | hclk_peri_niu clk gate enable register                       |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | aclk_peri_niu_en                                             |
| 11    | RW | 0x0         | aclk_peri_niu clk gate enable register                       |
|       |    |             | "When HIGH, disable clock                                    |
| 10    | RO | 0x0         | reserved                                                     |
|       |    |             | hclk_otg_pmu_en                                              |
| 9     | RW | 0×0         | hclk_otg_pmu clk gate enable register                        |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | hclk_otg_en                                                  |
| 8     | RW | 0x0         | hclk_otg clk gate enable register                            |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | hclk_host0_arb_en                                            |
| 7     | RW | 0x0         | hclk_host0_arb clk gate enable register                      |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | hclk_host0_en                                                |
| 6     | RW | 0x0         | hclk_host0 clk gate enable register                          |
|       |    |             | "When HIGH, disable clock                                    |
| 5:3   | RO | 0x0         | reserved                                                     |
|       |    |             | hclk_emmc_en                                                 |
| 2     | RW | 0x0         | hclk_emmc clk gate enable register                           |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | hclk_sdio_en                                                 |
| 1     | RW | 0x0         | hclk_sdio clk gate enable register                           |
|       |    |             | "When HIGH, disable clock                                    |
|       |    |             | hclk_sdmmc_en                                                |
| 0     | RW | 0x0         | hclk_sdmmc clk gate enable register                          |
|       |    |             | "When HIGH, disable clock                                    |

Address: Operational Base + offset (0x0250) Internal clock gating register20

| Bit  | Attr | <b>Reset Value</b> | Description                                                  |
|------|------|--------------------|--------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | Reserve                                                      |
|      |      |                    | write mask bits                                              |
|      |      |                    | "When every bit HIGH, enable the writing corresponding bit   |
|      |      |                    | When every bit LOW, don't care the writing corresponding bit |

### CRU\_CLKGATE\_CON21

Address: Operational Base + offset (0x0254)

Internal clock gating register21

| Bit   | Attr | Reset Value | Description                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15    | RW   | 0x0         | aclk_hdcp_en<br>aclk_hdcp clk gate enable register<br>"When HIGH, disable clock                                                                             |
| 14    | RW   | 0x0         | hclk_h2p_en<br>hclk_h2p clk gate enable register<br>"When HIGH, disable clock                                                                               |
| 13    | RW   | 0x0         | pclk_h2p_en<br>pclk_h2p clk gate enable register<br>"When HIGH, disable clock                                                                               |
| 12    | RW   | 0×0         | hclk_ahb1tom_en<br>hclk_ahb1tom clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 11    | RW   | 0x0         | hclk_rga_en<br>hclk_rga clk gate enable register<br>"When HIGH, disable clock                                                                               |
| 10    | RW   | 0x0         | aclk_rga_en<br>aclk_rga clk gate enable register<br>"When HIGH, disable clock                                                                               |
| 9     | RW   | 0×0         | hclk_cif_en<br>hclk_cif clk gate enable register<br>"When HIGH, disable clock                                                                               |
| 8     | RW   | 0x0         | aclk_cif_en<br>aclk_cif clk gate enable register<br>"When HIGH, disable clock                                                                               |

| Bit | Attr | Reset Value | Description                           |
|-----|------|-------------|---------------------------------------|
|     |      |             | hclk_iep_en                           |
| 7   | RW   | 0x0         | hclk_iep clk gate enable register     |
|     |      |             | "When HIGH, disable clock             |
|     |      |             | aclk_iep_en                           |
| 6   | RW   | 0x0         | aclk_iep clk gate enable register     |
|     |      |             | "When HIGH, disable clock             |
|     |      |             | hclk_vop_niu_en                       |
| 5   | RW   | 0x0         | hclk_vop_niu clk gate enable register |
|     |      |             | "When HIGH, disable clock             |
|     |      |             | aclk_vop_niu_en                       |
| 4   | RW   | 0x0         | aclk_vop_niu clk gate enable register |
|     |      |             | "When HIGH, disable clock             |
|     |      |             | hclk_vop_en                           |
| 3   | RW   | 0x0         | hclk_vop clk gate enable register     |
|     |      |             | "When HIGH, disable clock             |
|     |      |             | aclk_vop_en                           |
| 2   | RW   | 0x0         | aclk_vop clk gate enable register     |
|     |      |             | "When HIGH, disable clock             |
| 1:0 | RO   | 0x0         | reserved                              |

Address: Operational Base + offset (0x0258) Internal clock gating register22

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:6  | RO   | 0x0                | reserved                                                                                                                                                    |
| 5     | RW   | 0x0                | pclk_hdcp_ctrl_en<br>pclk_hdcp_ctrl clk gate enable register<br>"When HIGH, disable clock                                                                   |
| 4     | RW   | 0×0                | pclk_hdmi_ctrl_en<br>pclk_hdmi_ctrl clk gate enable register<br>"When HIGH, disable clock                                                                   |
| 3     | RW   | 0x0                | aclk_rga_niu_en<br>aclk_rga_niu clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 2     | RW   | 0x0                | aclk_vio_niu_en<br>aclk_vio_niu clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 1     | RW   | 0x0                | hclk_vio_niu_en<br>hclk_vio_niu clk gate enable register<br>"When HIGH, disable clock                                                                       |

#### RK3328 TRM-Part1

| Bit | Attr | <b>Reset Value</b> | Description                        |
|-----|------|--------------------|------------------------------------|
|     |      |                    | hclk_hdcp_en                       |
| 0   | RW   | 0x0                | hclk_hdcp clk gate enable register |
|     |      |                    | "When HIGH, disable clock          |

### CRU\_CLKGATE\_CON23

Address: Operational Base + offset (0x025c) Internal clock gating register23

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:4  | RO   | 0x0                | reserved                                                                                                                                                    |
| 3     | RW   | 0x0                | hclk_vpu_niu_en<br>hclk_vpu_niu clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 2     | RW   | 0x0                | aclk_vpu_niu_en<br>aclk_vpu_niu clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 1     | RW   | 0x0                | hclk_vpu_en<br>hclk_vpu clk gate enable register<br>"When HIGH, disable clock                                                                               |
| 0     | RW   | 0x0                | aclk_vpu_en<br>aclk_vpu clk gate enable register<br>"When HIGH, disable clock                                                                               |

### CRU\_CLKGATE\_CON24

Address: Operational Base + offset (0x0260) Internal clock gating register24

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | WO   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:4  | RO   | 0x0                | reserved                                                     |
|       |      |                    | hclk_rkvdec_niu_en                                           |
| 3     | RW   |                    | hclk_rkvdec_niu clk gate enable register                     |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      | .W 0x0             | aclk_rkvdec_niu_en                                           |
| 2     | RW   |                    | aclk_rkvdec_niu clk gate enable register                     |
|       |      |                    | "When HIGH, disable clock                                    |

#### RK3328 TRM-Part1

| Bit | Attr | <b>Reset Value</b> | Description                          |
|-----|------|--------------------|--------------------------------------|
|     |      |                    | hclk_rkvdec_en                       |
| 1   | RW   | 0x0                | hclk_rkvdec clk gate enable register |
|     |      |                    | "When HIGH, disable clock            |
|     |      |                    | aclk_rkvdec_en                       |
| 0   | RW   | 0x0                | aclk_rkvdec clk gate enable register |
|     |      |                    | "When HIGH, disable clock            |

### CRU\_CLKGATE\_CON25

Address: Operational Base + offset (0x0264) Internal clock gating register25

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | w0   | 00000              | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:7  | RO   | 0x0                | reserved                                                     |
|       |      |                    | aclk_axi2sram_en                                             |
| 6     | RW   | 0x0                | axi2sram clk gate enable register                            |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | hclk_h264_en                                                 |
| 5     | RW   | 0x0                | hclk_h264 clk gate enable register                           |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | aclk_h264_en                                                 |
| 4     | RW   | 0x0                | aclk_h264 clk gate enable register                           |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_h265_en                                                 |
| 3     | RW   | 0x0                | pclk_h265 clk gate enable register                           |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | aclk_h265_en                                                 |
| 2     | RW   | 0x0                | aclk_h265 clk gate enable register                           |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | hclk_rkvenc_niu_en                                           |
| 1     | RW   | 0x0                | hclk_rkvenc_niu clk gate enable register                     |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | aclk_rkvenc_niu_en                                           |
| 0     | RW   | 0x0                | aclk_rkvenc_niu clk gate enable register                     |
|       |      |                    | "When HIGH, disable clock                                    |

# CRU\_CLKGATE\_CON26

Address: Operational Base + offset (0x0268) Internal clock gating register26

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:6  | RO   | 0x0                | reserved                                                                                                                                                    |
| 5     | RW   | 0x0                | pclk_gmac_niu_en<br>pclk_gmac_niu clk gate enable register<br>"When HIGH, disable clock                                                                     |
| 4     | RW   | 0×0                | aclk_gmac_niu_en<br>aclk_gmac_niu clk gate enable register<br>"When HIGH, disable clock                                                                     |
| 3     | RW   | 0x0                | pclk_gmac2io_en<br>pclk_gmac2io clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 2     | RW   | 0x0                | aclk_gmac2io_en<br>aclk_gmac2io clk gate enable register<br>"When HIGH, disable clock                                                                       |
| 1     | RW   | 0x0                | pclk_gmac2phy_en<br>pclk_gmac2phy clk gate enable register<br>"When HIGH, disable clock                                                                     |
| 0     | RW   | 0×0                | aclk_gmac2phy_en<br>aclk_gmac2phy clk gate enable register<br>"When HIGH, disable clock                                                                     |

Address: Operational Base + offset (0x026c) Internal clock gating register27

| Bit   | Attr | Reset Value | Description                                                  |
|-------|------|-------------|--------------------------------------------------------------|
|       |      |             | write_mask                                                   |
| 31:16 | WO   | 0x0000      | write mask bits                                              |
| 51.10 | WU   | 0,0000      | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |             | When every bit LOW, don't care the writing corresponding bit |
| 15:2  | RO   | 0x0         | reserved                                                     |
|       |      | .W 0x0      | clk4x_ddrphy_en                                              |
| 1     | RW   |             | clk4x_ddrphy clk gate enable register                        |
|       |      |             | "When HIGH, disable clock                                    |
|       |      |             | clk_ddrphy_en                                                |
| 0     | RW   | V 0x0       | clk_ddrphy clk gate enable register                          |
|       |      |             | "When HIGH, disable clock                                    |

# CRU\_CLKGATE\_CON28

Address: Operational Base + offset (0x0270) Internal clock gating register28

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | WU   | 0x0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:5  | RO   | 0x0                | reserved                                                     |
|       |      |                    | pclk_otp_en                                                  |
| 4     | RW   | 0x0                | pclk_otp clk gate enable register                            |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_pmu_en                                                  |
| 3     | RW   | 0x0                | pclk_pmu clk gate enable register                            |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_usb3phy_pipe_en                                         |
| 2     | RW   | 0x0                | pclk_usb3phy_pipe clk gate enable register                   |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | pclk_usb3phy_otg_en                                          |
| 1     | RW   | 0x0                | pclk_usb3phy_otg clk gate enable register                    |
|       |      |                    | "When HIGH, disable clock                                    |
|       |      |                    | hclk_pdm_en                                                  |
| 0     | RW   | 0x0                | hclk_pdm clk gate enable register                            |
|       |      |                    | "When HIGH, disable clock                                    |

# CRU\_SSGTBL0\_3

Address: Operational Base + offset (0x0280) SSMOD external wave table register0

| Bit  | Attr | <b>Reset Value</b> | Description           |
|------|------|--------------------|-----------------------|
|      |      |                    | ssgtbl0_3             |
|      | wo   |                    | Extern wave table 0-3 |
| 31:0 |      |                    | 7-0: table0           |
| 51.0 |      |                    | 15-8: table1          |
|      |      |                    | 23-16: table2         |
|      |      |                    | 31-24: table3         |

# CRU\_SSGTBL4\_7

Address: Operational Base + offset (0x0284) SSMOD external wave table register1

| Bit  | Attr | <b>Reset Value</b> | Description           |
|------|------|--------------------|-----------------------|
|      |      |                    | ssgtbl4_7             |
|      | wo   |                    | Extern wave table 4-7 |
| 31:0 |      |                    | 7-0: table4           |
| 51.0 |      |                    | 15-8: table5          |
|      |      |                    | 23-16: table6         |
|      |      |                    | 31-24: table7         |

### CRU\_SSGTBL8\_11

Address: Operational Base + offset (0x0288) SSMOD external wave table register2

| Bit  | Attr | <b>Reset Value</b> | Description            |
|------|------|--------------------|------------------------|
|      |      |                    | ssgtbl8_11             |
|      | wo   |                    | Extern wave table 8-11 |
| 31:0 |      |                    | 7-0: table8            |
| 51.0 |      |                    | 15-8: table9           |
|      |      |                    | 23-16: table10         |
|      |      |                    | 31-24: table11         |

#### CRU\_SSGTBL12\_15

Address: Operational Base + offset (0x028c) SSMOD external wave table register3

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl12_15             |
|      | wo   |                    | Extern wave table 12-15 |
| 31:0 |      |                    | 7-0: table12            |
| 51.0 |      |                    | 15-8: table13           |
|      |      |                    | 23-16: table14          |
|      |      |                    | 31-24: table15          |

### CRU\_SSGTBL16\_19

Address: Operational Base + offset (0x0290) SSMOD external wave table register4

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl16_19             |
|      | wo   |                    | Extern wave table 16-19 |
| 31:0 |      |                    | 7-0: table16            |
| 51.0 |      |                    | 15-8: table17           |
|      |      |                    | 23-16: table18          |
|      |      |                    | 31-24: table19          |

#### CRU\_SSGTBL20\_23

Address: Operational Base + offset (0x0294) SSMOD external wave table register5

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl20_23             |
|      | wo   |                    | Extern wave table 20-23 |
| 31:0 |      |                    | 7-0: table20            |
| 51.0 |      |                    | 15-8: table21           |
|      |      |                    | 23-16: table22          |
|      |      |                    | 31-24: table23          |

### CRU\_SSGTBL24\_27

Address: Operational Base + offset (0x0298) SSMOD external wave table register6

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl24_27             |
|      | wo   |                    | Extern wave table 24-27 |
| 31:0 |      |                    | 7-0: table24            |
| 51.0 |      |                    | 15-8: table25           |
|      |      |                    | 23-16: table26          |
|      |      |                    | 31-24: table27          |

### CRU\_SSGTBL28\_31

Address: Operational Base + offset (0x029c) SSMOD external wave table register7

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl28_31             |
|      | wo   |                    | Extern wave table 28-31 |
| 31:0 |      |                    | 7-0: table28            |
| 51.0 |      |                    | 15-8: table29           |
|      |      |                    | 23-16: table30          |
|      |      |                    | 31-24: table31          |

### CRU\_SSGTBL32\_35

Address: Operational Base + offset (0x02a0) SSMOD external wave table register8

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl32_35             |
|      | wo   |                    | Extern wave table 32-35 |
| 31:0 |      |                    | 7-0: table32            |
| 51.0 |      |                    | 15-8: table33           |
|      |      |                    | 23-16: table34          |
|      |      |                    | 31-24: table35          |

### CRU\_SSGTBL36\_39

Address: Operational Base + offset (0x02a4) SSMOD external wave table register9

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      | 0×00000000         | ssgtbl36_39             |
|      | wo   |                    | Extern wave table 36-39 |
| 31:0 |      |                    | 7-0: table36            |
| 51.0 |      |                    | 15-8: table37           |
|      |      |                    | 23-16: table38          |
|      |      |                    | 31-24: table39          |

### CRU\_SSGTBL40\_43

Address: Operational Base + offset (0x02a8) SSMOD external wave table register10

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl40_43             |
|      | wo   |                    | Extern wave table 40-43 |
| 31:0 |      |                    | 7-0: table40            |
| 51.0 |      |                    | 15-8: table41           |
|      |      |                    | 23-16: table42          |
|      |      |                    | 31-24: table43          |

# CRU\_SSGTBL44\_47

Address: Operational Base + offset (0x02ac) SSMOD external wave table register11

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl44_47             |
|      | wo   |                    | Extern wave table 44-47 |
| 31:0 |      |                    | 7-0: table44            |
| 51.0 |      |                    | 15-8: table45           |
|      |      |                    | 23-16: table46          |
|      |      |                    | 31-24: table47          |

# CRU\_SSGTBL48\_51

Address: Operational Base + offset (0x02b0) SSMOD external wave table register12

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl48_51             |
|      | wo   |                    | Extern wave table 48-51 |
| 31:0 |      |                    | 7-0: table48            |
| 51.0 |      |                    | 15-8: table49           |
|      |      |                    | 23-16: table50          |
|      |      |                    | 31-24: table51          |

# CRU\_SSGTBL52\_55

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      | wo   | 0×00000000         | ssgtbl52_55             |
|      |      |                    | Extern wave table 52-55 |
| 31:0 |      |                    | 7-0: table52            |
| 51.0 |      |                    | 15-8: table53           |
|      |      |                    | 23-16: table54          |
|      |      |                    | 31-24: table55          |

Address: Operational Base + offset (0x02b4) SSMOD external wave table register13

### CRU\_SSGTBL56\_59

Address: Operational Base + offset (0x02b8) SSMOD external wave table register14

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl56_59             |
|      | wo   |                    | Extern wave table 56-59 |
| 31:0 |      |                    | 7-0: table56            |
| 51.0 |      |                    | 15-8: table57           |
|      |      |                    | 23-16: table58          |
|      |      |                    | 31-24: table59          |

# CRU\_SSGTBL60\_63

Address: Operational Base + offset (0x02bc) SSMOD external wave table register15

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl60_63             |
|      | wo   |                    | Extern wave table 60-63 |
| 31:0 |      |                    | 7-0: table60            |
| 51.0 |      |                    | 15-8: table61           |
|      |      |                    | 23-16: table62          |
|      |      |                    | 31-24: table63          |

# CRU\_SSGTBL64\_67

Address: Operational Base + offset (0x02c0) SSMOD external wave table register16

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl64_67             |
|      | wo   |                    | Extern wave table 64-67 |
| 31:0 |      | 0×00000000         | 7-0: table64            |
| 51.0 |      |                    | 15-8: table65           |
|      |      |                    | 23-16: table66          |
|      |      |                    | 31-24: table67          |

### CRU\_SSGTBL68\_71

| Address: Operational Base + offset (0x02c4) |
|---------------------------------------------|
| SSMOD external wave table register17        |

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      | wo   | 0×00000000         | ssgtbl68_71             |
|      |      |                    | Extern wave table 68-71 |
| 31:0 |      |                    | 7-0: table68            |
| 51.0 |      |                    | 15-8: table69           |
|      |      |                    | 23-16: table70          |
|      |      |                    | 31-24: table71          |

### CRU\_SSGTBL72\_75

Address: Operational Base + offset (0x02c8) SSMOD external wave table register18

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      |                    | ssgtbl72_75             |
|      | wo   |                    | Extern wave table 72-75 |
| 31:0 |      | 0x00000000         | 7-0: table72            |
| 51.0 |      |                    | 15-8: table73           |
|      |      |                    | 23-16: table74          |
|      |      |                    | 31-24: table75          |

### CRU\_SSGTBL76\_79

Address: Operational Base + offset (0x02cc) SSMOD external wave table register19

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      | 0×00000000         | ssgtbl76_79             |
|      | wo   |                    | Extern wave table 76-79 |
| 31:0 |      |                    | 7-0: table76            |
| 51.0 |      |                    | 15-8: table77           |
|      |      |                    | 23-16: table78          |
|      |      |                    | 31-24: table79          |

### CRU\_SSGTBL80\_83

Address: Operational Base + offset (0x02d0) SSMOD external wave table register20

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      | wo   | 0x00000000         | ssgtbl80_83             |
|      |      |                    | Extern wave table 80-83 |
| 21.0 |      |                    | 7-0: table80            |
| 31:0 |      |                    | 15-8: table81           |
|      |      |                    | 23-16: table82          |
|      |      |                    | 31-24: table83          |

# CRU\_SSGTBL84\_87

Address: Operational Base + offset (0x02d4) SSMOD external wave table register21

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      | 0x00000000         | ssgtbl84_87             |
|      | wo   |                    | Extern wave table 84-87 |
| 31:0 |      |                    | 7-0: table84            |
| 51.0 |      |                    | 15-8: table85           |
|      |      |                    | 23-16: table86          |
|      |      |                    | 31-24: table87          |

# CRU\_SSGTBL88\_91

Address: Operational Base + offset (0x02d8) SSMOD external wave table register22

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      | wo   |                    | ssgtbl88_91             |
|      |      |                    | Extern wave table 88-91 |
| 31:0 |      | 0x00000000         | 7-0: table88            |
| 51.0 |      |                    | 15-8: table89           |
|      |      |                    | 23-16: table90          |
|      |      |                    | 31-24: table91          |

# CRU\_SSGTBL92\_95

Address: Operational Base + offset (0x02dc) SSMOD external wave table register23

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      |      | 0x00000000         | ssgtbl92_95             |
|      | wo   |                    | Extern wave table 92-95 |
| 31:0 |      |                    | 7-0: table92            |
| 51.0 |      |                    | 15-8: table93           |
|      |      |                    | 23-16: table94          |
|      |      |                    | 31-24: table95          |

# CRU\_SSGTBL96\_99

Address: Operational Base + offset (0x02e0)

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

SSMOD external wave table register24

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
|      | wo   |                    | ssgtbl96_99             |
|      |      |                    | Extern wave table 96-99 |
| 31:0 |      |                    | 7-0: table96            |
| 51.0 |      |                    | 15-8: table97           |
|      |      |                    | 23-16: table98          |
|      |      |                    | 31-24: table99          |

### CRU\_SSGTBL100\_103

Address: Operational Base + offset (0x02e4) SSMOD external wave table register25

| Bit  | Attr | <b>Reset Value</b> | Description               |
|------|------|--------------------|---------------------------|
|      |      |                    | ssgtbl100_103             |
|      | wo   |                    | Extern wave table 100-103 |
| 31:0 |      | 0×00000000         | 7-0: table100             |
| 51.0 |      |                    | 15-8: table101            |
|      |      |                    | 23-16: table102           |
|      |      |                    | 31-24: table103           |

### CRU\_SSGTBL104\_107

Address: Operational Base + offset (0x02e8) SSMOD external wave table register26

| Bit  | Attr | <b>Reset Value</b> | Description               |
|------|------|--------------------|---------------------------|
|      | wo   |                    | ssgtbl104_107             |
|      |      | 0×00000000         | Extern wave table 104-107 |
| 31:0 |      |                    | 7-0: table104             |
| 51.0 |      |                    | 15-8: table105            |
|      |      |                    | 23-16: table106           |
|      |      |                    | 31-24: table107           |

# CRU\_SSGTBL108\_111

Address: Operational Base + offset (0x02ec)

| 55110 | SSMOD external wave table register 27 |                    |                           |  |
|-------|---------------------------------------|--------------------|---------------------------|--|
| Bit   | Attr                                  | <b>Reset Value</b> | Description               |  |
|       | wo                                    |                    | ssgtbl108_111             |  |
|       |                                       |                    | Extern wave table 108-111 |  |
| 31:0  |                                       |                    | 7-0: table108             |  |
| 51.0  |                                       |                    | 15-8: table109            |  |
|       |                                       |                    | 23-16: table110           |  |
|       |                                       |                    | 31-24: table111           |  |

# CRU\_SSGTBL112\_115

Address: Operational Base + offset (0x02f0) SSMOD external wave table register28

| Bit  | Attr | <b>Reset Value</b> | Description               |
|------|------|--------------------|---------------------------|
|      |      |                    | ssgtbl112_115             |
|      | wo   |                    | Extern wave table 112-115 |
| 31:0 |      |                    | 7-0: table112             |
| 51:0 |      |                    | 15-8: table113            |
|      |      |                    | 23-16: table114           |
|      |      |                    | 31-24: table115           |

### CRU\_SSGTBL116\_119

Address: Operational Base + offset (0x02f4) SSMOD external wave table register29

| Bit  | Attr | <b>Reset Value</b> | Description               |
|------|------|--------------------|---------------------------|
|      |      |                    | ssgtbl116_119             |
|      | wo   |                    | Extern wave table 116-119 |
| 31:0 |      |                    | 7-0: table116             |
| 51.0 |      |                    | 15-8: table117            |
|      |      |                    | 23-16: table118           |
|      |      |                    | 31-24: table119           |

# CRU\_SSGTBL120\_123

Address: Operational Base + offset (0x02f8) SSMOD external wave table register30

| Bit  | Attr | <b>Reset Value</b> | Description               |
|------|------|--------------------|---------------------------|
|      |      |                    | ssgtbl120_123             |
|      | wo   |                    | Extern wave table 120-123 |
| 21.0 |      |                    | 7-0: table120             |
| 31:0 |      |                    | 15-8: table121            |
|      |      |                    | 23-16: table122           |
|      |      |                    | 31-24: table123           |

### CRU\_SSGTBL124\_127

Address: Operational Base + offset (0x02fc) SSMOD external wave table register31

| Bit  | Attr | <b>Reset Value</b> | Description               |
|------|------|--------------------|---------------------------|
|      | wo   |                    | ssgtbl124_127             |
|      |      |                    | Extern wave table 124-127 |
| 31:0 |      |                    | 7-0: table124             |
| 51.0 |      |                    | 15-8: table125            |
|      |      |                    | 23-16: table126           |
|      |      |                    | 31-24: table127           |

Address: Operational Base + offset (0x0300) Internal software reset control register0

| Bit   | Attr | Reset Value | Description                                                  |  |  |  |  |                                  |
|-------|------|-------------|--------------------------------------------------------------|--|--|--|--|----------------------------------|
|       |      |             | write mask                                                   |  |  |  |  |                                  |
|       |      |             | write mask bits                                              |  |  |  |  |                                  |
| 31:16 | wo   | 0x0000      | "When every bit HIGH, enable the writing corresponding bit   |  |  |  |  |                                  |
|       |      |             | When every bit LOW, don't care the writing corresponding bit |  |  |  |  |                                  |
|       |      |             | I2_srstn_req                                                 |  |  |  |  |                                  |
| 15    | RW   | 0x0         | 12 reset request bit                                         |  |  |  |  |                                  |
|       |      |             | "When HIGH, reset relative logic                             |  |  |  |  |                                  |
|       |      |             | strc_sys_asrstn_req                                          |  |  |  |  |                                  |
| 14    | RW   | 0x0         | bus niu aresetn request bit                                  |  |  |  |  |                                  |
|       |      |             | "When HIGH, reset relative logic                             |  |  |  |  |                                  |
|       |      |             | core_niu_srstn_req                                           |  |  |  |  |                                  |
| 13    | RW   | 0x0         | core_niu reset request bit                                   |  |  |  |  |                                  |
|       |      |             | "When HIGH, reset relative logic                             |  |  |  |  |                                  |
|       |      |             | topdbg_srstn_req                                             |  |  |  |  |                                  |
| 12    | RW   | 0x0         | dap presetn request bit                                      |  |  |  |  |                                  |
|       |      |             | "When HIGH, reset relative logic                             |  |  |  |  |                                  |
|       |      |             | core3_dbg_srstn_req                                          |  |  |  |  |                                  |
| 11    | RW   | 0x0         | core3_dbg reset request bit                                  |  |  |  |  |                                  |
|       |      |             | "When HIGH, reset relative logic                             |  |  |  |  |                                  |
|       |      |             | core2_dbg_srstn_req                                          |  |  |  |  |                                  |
| 10    | RW   | 0x0         | core2_dbg reset request bit                                  |  |  |  |  |                                  |
|       |      |             | "When HIGH, reset relative logic                             |  |  |  |  |                                  |
|       |      |             | core1_dbg_srstn_req                                          |  |  |  |  |                                  |
| 9     | RW   | 0x0         | core1_dbg reset request bit                                  |  |  |  |  |                                  |
|       |      |             | "When HIGH, reset relative logic                             |  |  |  |  |                                  |
|       |      |             | core0_dbg_srstn_req                                          |  |  |  |  |                                  |
| 8     | RW   | 0x0         | core0_dbg reset request bit                                  |  |  |  |  |                                  |
|       |      |             |                                                              |  |  |  |  | "When HIGH, reset relative logic |
|       |      |             | core3_srstn_req                                              |  |  |  |  |                                  |
| 7     | RW   | 0x0         | core3 reset request bit                                      |  |  |  |  |                                  |
|       |      |             | "When HIGH, reset relative logic                             |  |  |  |  |                                  |
|       |      |             | core2_srstn_req                                              |  |  |  |  |                                  |
| 6     | RW   | 0x0         | core2 reset request bit                                      |  |  |  |  |                                  |
|       |      |             | "When HIGH, reset relative logic                             |  |  |  |  |                                  |
|       |      |             | core1_srstn_req                                              |  |  |  |  |                                  |
| 5     | RW   | 0x0         | core1 reset request bit                                      |  |  |  |  |                                  |
|       |      |             | "When HIGH, reset relative logic                             |  |  |  |  |                                  |
|       |      |             | core0_srstn_req                                              |  |  |  |  |                                  |
| 4     | RW   | 0x0         | core0 reset request bit                                      |  |  |  |  |                                  |
|       |      |             | "When HIGH, reset relative logic                             |  |  |  |  |                                  |

| Bit | Attr | Reset Value | Description                      |
|-----|------|-------------|----------------------------------|
|     |      |             | corepo3_srstn_req                |
| 3   | RW   | 0x0         | corepo3 reset request bit        |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | corepo2_srstn_req                |
| 2   | RW   | 0x0         | corepo2 reset request bit        |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | corepo1_srstn_req                |
| 1   | RW   | 0x0         | corepo1 reset request bit        |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | corepo0_srstn_req                |
| 0   | RW   | 0x0         | corepo0 reset request bit        |
|     |      |             | "When HIGH, reset relative logic |

Address: Operational Base + offset (0x0304) Internal software reset control register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | WO   | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | gpio3_srstn_req                                              |
| 15    | RW   | 0x0                | gpio3 reset request bit                                      |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | gpio2_srstn_req                                              |
| 14    | RW   | 0x0                | gpio2 reset request bit                                      |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | gpio1_srstn_req                                              |
| 13    | RW   | 0x0                | gpio1 reset request bit                                      |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | gpio0_srstn_req                                              |
| 12    | RW   | 0x0                | gpio0 reset request bit                                      |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | rom_srstn_req                                                |
| 11    | RW   | 0x0                | rom reset request bit                                        |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | intmem_srstn_req                                             |
| 10    | RW   | 0x0                | intmem reset request bit                                     |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | spdif_srstn_req                                              |
| 9     | RW   | 0x0                | spdif reset request bit                                      |
|       |      |                    | "When HIGH, reset relative logic                             |

| Bit | Attr | <b>Reset Value</b> | Description                      |
|-----|------|--------------------|----------------------------------|
|     |      |                    | bussys_psrstn_req                |
| 8   | RW   | 0x0                | bus niu presetn request bit      |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | bussys_hsrstn_req                |
| 7   | RW   | 0x0                | bus niu hresetn request bit      |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | efuse_srstn_req                  |
| 6   | RW   | 0x0                | efuse reset request bit          |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | pmu_psrstn_req                   |
| 5   | RW   | 0x0                | pmu presetn request bit          |
|     |      |                    | "When HIGH, reset relative logic |
| 4   | RO   | 0x0                | Reserved                         |
|     |      |                    | dap_srstn_req                    |
| 3   | RW   | 0x0                | dap reset request bit            |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | a53_gic_srstn_req                |
| 2   | RW   | 0x0                | a53_gic reset request bit        |
|     |      |                    | "When HIGH, reset relative logic |
| 1:0 | RO   | 0x0                | Reserved                         |

Address: Operational Base + offset (0x0308) Internal software reset control register2

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                 |
|-------|------|--------------------|---------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit                                |
| 15    | RW   | 0×0                | i2c3_srstn_req<br>i2c3 reset request bit<br>"When HIGH, reset relative logic                |
| 14    | RW   | 0×0                | i2c2_srstn_req<br>i2c2 reset request bit<br>"When HIGH, reset relative logic                |
| 13    | RW   | 0×0                | i2c1_srstn_req<br>i2c1 reset request bit<br>"When HIGH, reset relative logic                |
| 12    | RW   | 0x0                | i2c0_srstn_req<br>i2c0 reset request bit<br>"When HIGH, reset relative logic                |
| 11    | RW   | 0×0                | uart2_psrstn_req<br>uart2 presetn request bit<br>"When HIGH, reset relative logic           |

| Bit | Attr | <b>Reset Value</b> | Description                      |
|-----|------|--------------------|----------------------------------|
|     |      |                    | uart1_psrstn_req                 |
| 10  | RW   | 0x0                | uart1 presetn request bit        |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | uart0_psrstn_req                 |
| 9   | RW   | 0x0                | uart0 presetn request bit        |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | uart2_srstn_req                  |
| 8   | RW   | 0x0                | uart2 reset request bit          |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | uart1_srstn_req                  |
| 7   | RW   | 0x0                | uart1 reset request bit          |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | uart0_srstn_req                  |
| 6   | RW   | 0x0                | uart0 reset request bit          |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | i2s2_hsrstn_req                  |
| 5   | RW   | 0x0                | i2s2 hresetn request bit         |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | i2s1_hsrstn_req                  |
| 4   | RW   | 0x0                | i2s1 hresetn request bit         |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | i2s0_hsrstn_req                  |
| 3   | RW   | 0x0                | i2s0 hresetn request bit         |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | i2s2_srstn_req                   |
| 2   | RW   | 0x0                | i2s2 reset request bit           |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | i2s1_srstn_req                   |
| 1   | RW   | 0x0                | i2s1 reset request bit           |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | i2s0_srstn_req                   |
| 0   | RW   | 0x0                | i2s0 reset request bit           |
|     |      |                    | "When HIGH, reset relative logic |

Address: Operational Base + offset (0x030c) Internal software reset control register3

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       | wo   | 0x0000             | write_mask                                                   |
| 21.16 |      |                    | write mask bits                                              |
| 51.10 | vvO  | 0x0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15    | RO   | 0x0                | reserved                                                     |

| Bit | Attr | <b>Reset Value</b> | Description                      |
|-----|------|--------------------|----------------------------------|
| 14  | RW   | 0×0                | dcf_psrstn_req                   |
|     |      |                    | dcf presetn request bit          |
|     |      |                    | "When HIGH, reset relative logic |
| 13  | RW   | 0x0                | dcf_asrstn_req                   |
|     |      |                    | dcf aresetn request bit          |
|     |      |                    | "When HIGH, reset relative logic |
| 12  | RW   | 0x0                | tsp_hsadc_srstn_req              |
|     |      |                    | tsp_hsadc reset request bit      |
|     |      |                    | "When HIGH, reset relative logic |
| 11  | RW   | 0x0                | tsp_srstn_req                    |
|     |      |                    | tsp reset request bit            |
|     |      |                    | "When HIGH, reset relative logic |
| 10  | RW   | 0x0                | tsp_hsrstn_req                   |
|     |      |                    | tsp hresetn request bit          |
|     |      |                    | "When HIGH, reset relative logic |
| 9   | RW   | 0x0                | tsp_asrstn_req                   |
|     |      |                    | tsp aresetn request bit          |
|     |      |                    | "When HIGH, reset relative logic |
| 8   | RW   | 0x0                | dma_srstn_req                    |
|     |      |                    | dma reset request bit            |
|     |      |                    | "When HIGH, reset relative logic |
| 7   | RW   | 0×0                | pwm0_psrstn_req                  |
|     |      |                    | pwm0 presetn request bit         |
|     |      |                    | "When HIGH, reset relative logic |
| 6   | RW   | 0×0                | pwm0_srstn_req                   |
|     |      |                    | pwm0 reset request bit           |
|     |      |                    | "When HIGH, reset relative logic |
| 5   | RW   | 0×0                | efuse_ns_psrstn_req              |
|     |      |                    | efuse_ns presetn request bit     |
|     |      |                    | "When HIGH, reset relative logic |
| 4   | RW   | 0×0                | efuse_se_psrstn_req              |
|     |      |                    | efuse_se presetn request bit     |
|     |      |                    | "When HIGH, reset relative logic |
| 3   | RW   | 0×0                | i2c3_psrstn_req                  |
|     |      |                    | i2c3 presetn request bit         |
|     |      |                    | "When HIGH, reset relative logic |
| 2   | RW   | 0×0                | i2c2_psrstn_req                  |
|     |      |                    | i2c2 presetn request bit         |
|     |      |                    | "When HIGH, reset relative logic |
| 1   | RW   | 0×0                | i2c1_psrstn_req                  |
|     |      |                    | i2c1 presetn request bit         |
|     |      |                    | "When HIGH, reset relative logic |
| 0   | RW   | 0×0                | i2c0_psrstn_req                  |
|     |      |                    | i2c0 presetn request bit         |
|     |      |                    | "When HIGH, reset relative logic |

Address: Operational Base + offset (0x0310) Internal software reset control register4

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 21.10 |      |                    | write mask bits                                              |
| 31:16 | wO   | 0×0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | usb3grf_srstn_reg                                            |
| 15    | RW   | 0x0                | usb3grf reset request bit                                    |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | timer5_srstn_req                                             |
| 14    | RW   | 0x0                | timer5 reset request bit                                     |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | timer4_srstn_req                                             |
| 13    | RW   | 0x0                | timer4 reset request bit                                     |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | timer3_srstn_req                                             |
| 12    | RW   | 0x0                | timer3 reset request bit                                     |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | timer2_srstn_req                                             |
| 11    | RW   | 0x0                | timer2 reset request bit                                     |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | timer1_srstn_req                                             |
| 10    | RW   | 0x0                | timer1 reset request bit                                     |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | timer0_srstn_req                                             |
| 9     | RW   | 0x0                | timer0 reset request bit                                     |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | timer_6ch_psrstn_req                                         |
| 8     | RW   | 0x0                | timer_6ch presetn request bit                                |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | usb_grf_srstn_req                                            |
| 7     | RW   | 0x0                | usb_grf reset request bit                                    |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | grf_srstn_req                                                |
| 6     | RW   | 0x0                | grf reset request bit                                        |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | sgrf_srstn_req                                               |
| 5     | RW   | 0×0                | sgrf reset request bit                                       |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | crypto_srstn_req                                             |
| 4     | RW   | 0×0                | crypto reset request bit                                     |
|       |      |                    | "When HIGH, reset relative logic                             |

| Bit | Attr | Reset Value | Description                      |
|-----|------|-------------|----------------------------------|
|     |      |             | tsadc_psrstn_req                 |
| 3   | RW   | 0x0         | tsadc presetn request bit        |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | tsadc_srstn_req                  |
| 2   | RW   | 0x0         | tsadc reset request bit          |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | spi0_srstn_req                   |
| 1   | RW   | 0x0         | spi0 reset request bit           |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | scr_srstn_req                    |
| 0   | RW   | 0x0         | scr reset request bit            |
|     |      |             | "When HIGH, reset relative logic |

Address: Operational Base + offset (0x0314) Internal software reset control register5

| Bit   | Attr | Reset Value | Description                                                  |
|-------|------|-------------|--------------------------------------------------------------|
|       |      |             | write_mask                                                   |
| 31:16 | wo   | 0x0000      | write mask bits                                              |
| 51.10 | WU   | 00000       | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |             | When every bit LOW, don't care the writing corresponding bit |
|       |      |             | ddrphy_psrstn_req                                            |
| 15    | RW   | 0x0         | ddrphy presetn request bit                                   |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | ddrphy_srstn_req                                             |
| 14    | RW   | 0x0         | ddrphy reset request bit                                     |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | ddrctrl_psrstn_req                                           |
| 13    | RW   | 0x0         | ddrctrl presetn request bit                                  |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | ddrctrl_srstn_req                                            |
| 12    | RW   | V 0×0       | ddrctrl reset request bit                                    |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | ddrmsch_srstn_req                                            |
| 11    | RW   | 0x0         | ddrmsch reset request bit                                    |
|       |      |             | "When HIGH, reset relative logic                             |
| 10    | RO   | 0x0         | reserved                                                     |
|       |      |             | msch_srstn_req                                               |
| 9     | RW   | 0x0         | msch reset request bit                                       |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | dfimon_srstn_req                                             |
| 8     | RW   | 0x0         | dfimon reset request bit                                     |
|       |      |             | "When HIGH, reset relative logic                             |

| Bit | Attr | Reset Value | Description                      |
|-----|------|-------------|----------------------------------|
|     |      |             | grf_ddr_srstn_req                |
| 7   | RW   | 0x0         | grf_ddr reset request bit        |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | saradc_psrstn_req                |
| 6   | RW   | 0x0         | saradc presetn request bit       |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | saradc_srstn_req                 |
| 5   | RW   | 0x0         | saradc reset request bit         |
|     |      |             | "When HIGH, reset relative logic |
| 4   | RO   | 0x0         | reserved                         |
|     |      |             | acodec_psrstn_req                |
| 3   | RW   | 0x0         | acodec presetn request bit       |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | vdac_srstn_req                   |
| 2   | RW   | 0x0         | vdac reset request bit           |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | hdmiphy_srstn_req                |
| 1   | RW   | 0x0         | hdmiphy reset request bit        |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | phyniu_srstn_req                 |
| 0   | RW   | 0x0         | phyniu reset request bit         |
|     |      |             | "When HIGH, reset relative logic |

Address: Operational Base + offset (0x0318) Internal software reset control register6

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | WU   | 00000              | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | emmc_srstn_req                                               |
| 15    | RW   | 0x0                | emmc reset request bit                                       |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      | V 0×0              | sdio_srstn_req                                               |
| 14    | RW   |                    | sdio reset request bit                                       |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      | W 0x0              | mmc0_srstn_req                                               |
| 13    | RW   |                    | mmc0 reset request bit                                       |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | periphsys_hsrstn_req                                         |
| 12    | RW   | W 0x0              | periph_niu hresetn request bit                               |
|       |      |                    | "When HIGH, reset relative logic                             |

| Bit | Attr | <b>Reset Value</b> | Description                      |
|-----|------|--------------------|----------------------------------|
|     |      |                    | periph_niu_psrstn_req            |
| 11  | RW   | 0x0                | periph_niu presetn request bit   |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | periph_niu_hsrstn_req            |
| 10  | RW   | 0x0                | periph_niu hresetn request bit   |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | periph_niu_asrstn_req            |
| 9   | RW   | 0x0                | periph_niu aresetn request bit   |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | sdmmcext_srstn_req               |
| 8   | RW   | 0x0                | sdmmcext reset request bit       |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | gpu_niu_asrstn_req               |
| 7   | RW   | 0x0                | gpu_niu aresetn request bit      |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | gpu_asrstn_req                   |
| 6   | RW   | 0x0                | gpu aresetn request bit          |
|     |      |                    | "When HIGH, reset relative logic |
|     |      | 0×0                | otp_phy_srstn_req                |
| 5   | RW   |                    | otp_phy reset request bit        |
|     |      |                    | "When HIGH, reset relative logic |
|     |      | 0x0                | macphy_srstn_req                 |
| 4   | RW   |                    | macphy reset request bit         |
|     |      |                    | "When HIGH, reset relative logic |
|     |      | 0x0                | gmac2io_asrstn_req               |
| 3   | RW   |                    | gmac2io aresetn request bit      |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | gmac2phy_asrstn_req              |
| 2   | RW   | 0x0                | gmac2phy aresetn request bit     |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | gmac_niu_psrstn_req              |
| 1   | RW   | 0x0                | gmac_niu presetn request bit     |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | gmac_niu_asrstn_req              |
| 0   | RW   | 0x0                | gmac_niu aresetn request bit     |
|     |      |                    | "When HIGH, reset relative logic |

Address: Operational Base + offset (0x031c) Internal software reset control register7

| Bit   | Attr | Reset Value | Description                                                  |
|-------|------|-------------|--------------------------------------------------------------|
|       |      |             | write_mask                                                   |
| 21.10 | wo   | 0000        | write mask bits                                              |
| 31:16 | WO   | 0x0000      | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |             | When every bit LOW, don't care the writing corresponding bit |
|       |      |             | usb3phy_pipe_srstn_req                                       |
| 15    | RW   | 0x0         | usb3phy_pipe reset request bit                               |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | usb3phy_u3_srstn_req                                         |
| 14    | RW   | 0x0         | usb3phy_u3 reset request bit                                 |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | usb3phy_u2_srstn_req                                         |
| 13    | RW   | 0x0         | usb3phy_u2 reset request bit                                 |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | usb3otg_utmi_srst_reg                                        |
| 12    | RW   | 0x0         | usb3otg_utmi reset request bit                               |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | usb2host_utmi_srst_req                                       |
| 11    | RW   | 0x0         | usb2host_utmi reset request bit                              |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | usb2otg_utmi_srst_req                                        |
| 10    | RW   | 0x0         | usb2otg_utmi reset request bit                               |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | usbpor_srst_req                                              |
| 9     | RW   | 0x0         | usbpor reset request bit                                     |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | usb3otg_srstn_req                                            |
| 8     | RW   | 0x0         | usb3otg reset request bit                                    |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | usb2host_utmi_srstn_req                                      |
| 7     | RW   | 0x0         | usb2host_utmi reset request bit                              |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | usb2host_ehciphy_srstn_req                                   |
| 6     | RW   | 0x0         | usb2host_ehciphy reset request bit                           |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | usb2host_aux_srstn_req                                       |
| 5     | RW   | 0x0         | usb2host_aux reset request bit                               |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | usb2host_arb_srstn_req                                       |
| 4     | RW   | 0x0         | usb2host_arb reset request bit                               |
|       |      |             | "When HIGH, reset relative logic                             |
|       |      |             | usb2host_hsrstn_req                                          |
| 3     | RW   | 0x0         | usb2host hresetn request bit                                 |
|       |      |             | "When HIGH, reset relative logic                             |
|       | •    | •           | -                                                            |

| Bit | Attr | Reset Value | Description                      |
|-----|------|-------------|----------------------------------|
|     |      |             | usb2otg_adp_srstn_req            |
| 2   | RW   | 0x0         | usb2otg_adp reset request bit    |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | usb2otg_srstn_req                |
| 1   | RW   | 0x0         | usb2otg reset request bit        |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | usb2otg_hsrstn_req               |
| 0   | RW   | 0x0         | usb2otg hresetn request bit      |
|     |      |             | "When HIGH, reset relative logic |

Address: Operational Base + offset (0x0320) Internal software reset control register8

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                |
|-------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits                                                                                              |
|       |      |                    | "When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | hdmi_psrstn_req                                                                                                            |
| 15    | RW   | 0x0                | hdmi presetn request bit                                                                                                   |
|       |      |                    | "When HIGH, reset relative logic                                                                                           |
|       |      |                    | hdmi_srstn_req                                                                                                             |
| 14    | RW   | 0x0                | hdmi reset request bit                                                                                                     |
|       |      |                    | "When HIGH, reset relative logic                                                                                           |
|       |      |                    | iep_hsrstn_req                                                                                                             |
| 13    | RW   | 0×0                | iep hresetn request bit                                                                                                    |
|       |      |                    | "When HIGH, reset relative logic                                                                                           |
|       |      | 0x0                | iep_asrstn_req                                                                                                             |
| 12    | RW   |                    | iep aresetn request bit                                                                                                    |
|       |      |                    | "When HIGH, reset relative logic                                                                                           |
|       |      |                    | rga_hsrstn_req                                                                                                             |
| 11    | RW   | 0x0                | rga hresetn request bit                                                                                                    |
|       |      |                    | "When HIGH, reset relative logic                                                                                           |
|       |      |                    | rga_asrstn_req                                                                                                             |
| 10    | RW   | 0x0                | rga aresetn request bit                                                                                                    |
|       |      |                    | "When HIGH, reset relative logic                                                                                           |
|       |      |                    | rga_niu_asrstn_req                                                                                                         |
| 9     | RW   | 0x0                | rga_niu aresetn request bit                                                                                                |
|       |      |                    | "When HIGH, reset relative logic                                                                                           |
|       |      |                    | rga_srstn_req                                                                                                              |
| 8     | RW   | 0x0                | rga reset request bit                                                                                                      |
|       |      |                    | "When HIGH, reset relative logic                                                                                           |

| Bit | Attr | Reset Value | Description                      |
|-----|------|-------------|----------------------------------|
|     |      |             | vop_dsrstn_req                   |
| 7   | RW   | 0x0         | vop dresetn request bit          |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | vop_hsrstn_req                   |
| 6   | RW   | 0x0         | vop hresetn request bit          |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | vop_asrstn_req                   |
| 5   | RW   | 0x0         | vop aresetn request bit          |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | vop_niu_asrstn_req               |
| 4   | RW   | 0x0         | vop_niu aresetn request bit      |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | vio_arbi_hsrstn_req              |
| 3   | RW   | 0x0         | vio_arbi hresetn request bit     |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | vio_h2p_hsrstn_req               |
| 2   | RW   | 0x0         | vio_h2p hresetn request bit      |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | vio_bus_hsrstn_req               |
| 1   | RW   | 0x0         | vio_bus hresetn request bit      |
|     |      |             | "When HIGH, reset relative logic |
|     |      |             | vio_asrstn_req                   |
| 0   | RW   | 0x0         | vio aresetn request bit          |
|     |      |             | "When HIGH, reset relative logic |

Address: Operational Base + offset (0x0324) Internal software reset control register9

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | wo   | 0x0000             | write mask bits                                              |
| 51.10 | WU   | 0x0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      | V 0x0              | usb3phy_pipe_psrstn_req                                      |
| 15    | RW   |                    | usb3phy_pipe presetn request bit                             |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      | W 0×0              | usb3phy_otg_psrstn_req                                       |
| 14    | RW   |                    | usb3phy_otg presetn request bit                              |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      | W 0x0              | pdm_srstn_req                                                |
| 13    | RW   |                    | pdm reset request bit                                        |
|       |      |                    | "When HIGH, reset relative logic                             |

| Bit | Attr | <b>Reset Value</b> | Description                      |
|-----|------|--------------------|----------------------------------|
|     |      |                    | pdm_hsrstn_req                   |
| 12  | RW   | 0x0                | pdm hresetn request bit          |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | ddrstdy_srstn_req                |
| 11  | RW   | 0x0                | ddrstdy reset request bit        |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | ddrstdy_psrstn_req               |
| 10  | RW   | 0x0                | ddrstdy presetn request bit      |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | ddrctrl_asrstn_req               |
| 9   | RW   | 0x0                | ddrctrl aresetn request bit      |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | otp_user_srstn_req               |
| 8   | RW   | 0x0                | otp_user reset request bit       |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | otp_sbpi_srstn_req               |
| 7   | RW   | 0x0                | otp_sbpi reset request bit       |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | otp_psrstn_req                   |
| 6   | RW   | 0x0                | otp presetn request bit          |
|     |      |                    | "When HIGH, reset relative logic |
|     |      | 0×0                | cif_psrstn_req                   |
| 5   | RW   |                    | cif presetn request bit          |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | cif_hsrstn_reg                   |
| 4   | RW   | 0x0                | cif hresetn request bit          |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | cif_asrstn_req                   |
| 3   | RW   | 0x0                | cif aresetn request bit          |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | hdcp_hsrstn_req                  |
| 2   | RW   | 0x0                | hdcp hresetn request bit         |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | hdcp_srstn_req                   |
| 1   | RW   | 0x0                | hdcp reset request bit           |
|     |      |                    | "When HIGH, reset relative logic |
|     |      |                    | hdcp_asrstn_req                  |
| 0   | RW   | 0x0                | hdcp aresetn request bit         |
|     |      |                    | "When HIGH, reset relative logic |

Address: Operational Base + offset (0x0328) Internal software reset control register10

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 21.10 |      |                    | write mask bits                                              |
| 31:16 | WO   | 0×0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
|       |      |                    | ddrphydiv_srstn_req                                          |
| 15    | RW   | 0x0                | ddrphydiv reset request bit                                  |
|       |      |                    | "When HIGH, reset relative logic                             |
| 14:10 | RO   | 0x0                | reserved                                                     |
|       |      |                    | vdec_cabac_srstn_req                                         |
| 9     | RW   | 0x0                | vdec_cabac reset request bit                                 |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | vdec_core_srstn_req                                          |
| 8     | RW   | 0x0                | vdec_core reset request bit                                  |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | vdec_niu_hsrstn_req                                          |
| 7     | RW   | 0×0                | vdec_niu hresetn request bit                                 |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | vdec_hsrstn_req                                              |
| 6     | RW   | 0x0                | vdec hresetn request bit                                     |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | vdec_niu_asrstn_req                                          |
| 5     | RW   | 0x0                | vdec_niu aresetn request bit                                 |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | vdec_asrstn_req                                              |
| 4     | RW   | 0x0                | vdec aresetn request bit                                     |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      | RW 0x0             | vcodec_niu_hsrstn_req                                        |
| 3     | RW   |                    | vcodec_niu hresetn request bit                               |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | vcodec_hsrstn_req                                            |
| 2     | RW   | 0x0                | vcodec hresetn request bit                                   |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | vcodec_niu_asrstn_req                                        |
| 1     | RW   | 0x0                | vcodec_niu aresetn request bit                               |
|       |      | -                  | "When HIGH, reset relative logic                             |
|       |      |                    | vcodec_asrstn_req                                            |
| 0     | RW   | 0x0                | vcodec aresetn request bit                                   |
|       |      |                    | "When HIGH, reset relative logic                             |

Address: Operational Base + offset (0x032c) Internal software reset control register11

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | WO   | 0x0000             | write mask bits                                              |
| 51.10 | WÜ   | 00000              | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:9  | RO   | 0x0                | reserved                                                     |
|       |      |                    | rkvenc_intmem_srstn_req                                      |
| 8     | RW   | 0x0                | rkvenc_intmem reset request bit                              |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | rkvenc_h264_hsrstn_req                                       |
| 7     | RW   | 0x0                | rkvenc_h264 hresetn request bit                              |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | rkvenc_h264_asrstn_req                                       |
| 6     | RW   | 0x0                | rkvenc_h264 aresetn request bit                              |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | rkvenc_h265_dsp_srstn_req                                    |
| 5     | RW   | 0x0                | rkvenc_h265_dsp reset request bit                            |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | rkvenc_h265_core_srstn_req                                   |
| 4     | RW   | 0x0                | rkvenc_h265_core reset request bit                           |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | rkvenc_h265_psrstn_req                                       |
| 3     | RW   | 0x0                | rkvenc_h265 presetn request bit                              |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | rkvenc_h265_asrstn_req                                       |
| 2     | RW   | 0x0                | rkvenc_h265 aresetn request bit                              |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | rkvenc_niu_hsrstn_req                                        |
| 1     | RW   | 0x0                | rkvenc_niu hresetn request bit                               |
|       |      |                    | "When HIGH, reset relative logic                             |
|       |      |                    | rkvenc_niu_asrstn_req                                        |
| 0     | RW   | 0x0                | rkvenc_niu aresetn request bit                               |
|       |      |                    | "When HIGH, reset relative logic                             |

## CRU\_CRU\_SDMMC\_CON0

Address: Operational Base + offset (0x0380) sdmmc control0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                |
|-------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------|
| 21.10 |      | 0.0000             | write_mask<br>write mask bits                                                                                              |
| 31:10 | WU   |                    | "When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:12 | RO   | 0x0                | reserved                                                                                                                   |

| Bit  | Attr | Reset Value | Description        |
|------|------|-------------|--------------------|
|      |      |             | drv_sel            |
| 11   | RW   | 0x0         | drive select       |
|      |      |             | drive select       |
|      |      |             | drv_delaynum       |
| 10:3 | RW   | 0x00        | drive delay number |
|      |      |             | drive delay number |
|      |      |             | drv_degree         |
| 2:1  | RW   | 0x2         | drive degree       |
|      |      |             | drive degree       |
|      |      |             | init_state         |
| 0    | RW   | 0x0         | initial state      |
|      |      |             | initial state      |

## CRU\_CRU\_SDMMC\_CON1

Address: Operational Base + offset (0x0384) sdmmc control1

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | WO   | 0x0000             | write mask bits                                              |
| 51.10 | vv0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:11 | RO   | 0x0                | reserved                                                     |
|       |      |                    | sample_sel                                                   |
| 10    | RW   | 0x0                | sample select                                                |
|       |      |                    | sample select                                                |
|       |      |                    | sample_delaynum                                              |
| 9:2   | RW   | 0x00               | sample delay number                                          |
|       |      |                    | sample delay number                                          |
|       |      |                    | sample_degree                                                |
| 1:0   | RW   | 0x0                | sample degree                                                |
|       |      |                    | sample degree                                                |

## CRU\_CRU\_SDIO\_CON0

Address: Operational Base + offset (0x0388) SDIO control0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                |
|-------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------|
| 21.10 | WO   |                    | write_mask<br>write mask bits                                                                                              |
| 51.10 | WO   |                    | "When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:12 | RO   | 0x0                | reserved                                                                                                                   |

| Bit  | Attr | Reset Value | Description        |
|------|------|-------------|--------------------|
|      |      |             | drv_sel            |
| 11   | RW   | 0x0         | drive select       |
|      |      |             | drive select       |
|      |      |             | drv_delaynum       |
| 10:3 | RW   | 0x00        | drive delay number |
|      |      |             | drive delay number |
|      |      |             | drv_degree         |
| 2:1  | RW   | 0x2         | drive degree       |
|      |      |             | drive degree       |
|      |      |             | init_state         |
| 0    | RW   | 0x0         | initial state      |
|      |      |             | initial state      |

## CRU\_CRU\_SDIO\_CON1

Address: Operational Base + offset (0x038c) SDIO control1

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | WO   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:11 | RO   | 0x0                | reserved                                                     |
|       |      |                    | sample_sel                                                   |
| 10    | RW   | 0x0                | sample select                                                |
|       |      |                    | sample select                                                |
|       |      |                    | sample_delaynum                                              |
| 9:2   | RW   | 0x00               | sample delay number                                          |
|       |      |                    | sample delay number                                          |
|       |      |                    | sample_degree                                                |
| 1:0   | RW   | W 0x0              | sample degree                                                |
|       |      |                    | sample degree                                                |

## CRU\_CRU\_EMMC\_CON0

Address: Operational Base + offset (0x0390) EMMC control0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | write_mask<br>write mask bits<br>"When every bit HIGH, enable the writing corresponding bit<br>When every bit LOW, don't care the writing corresponding bit |
| 15:12 | RO   | 0x0                | reserved                                                                                                                                                    |

| Bit  | Attr | Reset Value | Description        |
|------|------|-------------|--------------------|
|      |      |             | drv_sel            |
| 11   | RW   | 0x0         | drive select       |
|      |      |             | drive select       |
|      |      |             | drv_delaynum       |
| 10:3 | RW   | 0x00        | drive delay number |
|      |      |             | drive delay number |
|      |      |             | drv_degree         |
| 2:1  | RW   | 0x2         | drive degree       |
|      |      |             | drive degree       |
|      |      |             | init_state         |
| 0    | RW   | 0x0         | initial state      |
|      |      |             | initial state      |

## CRU\_CRU\_EMMC\_CON1

Address: Operational Base + offset (0x0394) EMMC control1

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | WO   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:11 | RO   | 0x0                | reserved                                                     |
|       |      |                    | sample_sel                                                   |
| 10    | RW   | 0x0                | sample select                                                |
|       |      |                    | sample select                                                |
|       |      |                    | sample_delaynum                                              |
| 9:2   | RW   | 0x00               | sample delay number                                          |
|       |      |                    | sample delay number                                          |
|       |      |                    | sample_degree                                                |
| 1:0   | RW   | W 0x0              | sample degree                                                |
|       |      |                    | sample degree                                                |

#### CRU\_CRU\_SDMMC\_EXT\_CON0

Address: Operational Base + offset (0x0398) SDMMC\_EXT control0

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask<br>write mask bits                                |
| 31:16 | WO   |                    | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:12 | RO   | 0x0                | reserved                                                     |

| Bit  | Attr | Reset Value | Description        |
|------|------|-------------|--------------------|
|      |      |             | drv_sel            |
| 11   | RW   | 0x0         | drive select       |
|      |      |             | drive select       |
|      |      |             | drv_delaynum       |
| 10:3 | RW   | 0x00        | drive delay number |
|      |      |             | drive delay number |
|      |      |             | drv_degree         |
| 2:1  | RW   | 0x2         | drive degree       |
|      |      |             | drive degree       |
|      |      |             | init_state         |
| 0    | RW   | 0x0         | initial state      |
|      |      |             | initial state      |

## CRU\_CRU\_SDMMC\_EXT\_CON1

Address: Operational Base + offset (0x039c) SDMMC\_EXT control1

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
|       |      |                    | write_mask                                                   |
| 31:16 | WO   | 0x0000             | write mask bits                                              |
| 51.10 | **0  | 0,0000             | "When every bit HIGH, enable the writing corresponding bit   |
|       |      |                    | When every bit LOW, don't care the writing corresponding bit |
| 15:11 | RO   | 0x0                | reserved                                                     |
|       |      |                    | sample_sel                                                   |
| 10    | RW   | 0x0                | sample select                                                |
|       |      |                    | sample select                                                |
|       |      |                    | sample_delaynum                                              |
| 9:2   | RW   | 0x00               | sample delay number                                          |
|       |      |                    | sample delay number                                          |
|       |      |                    | sample_degree                                                |
| 1:0   | RW   | 0x0                | sample degree                                                |
|       |      |                    | sample degree                                                |

# 2.7 Timing Diagram

Power on reset timing is shown as follow:

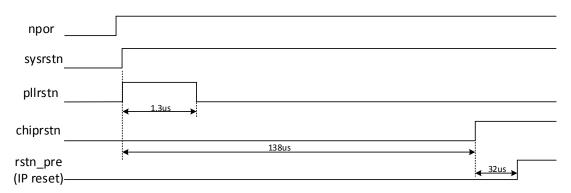



Fig. 2-4 Chip Power On Reset Timing Diagram

Npor is hardware reset signal from out-chip, which is filtered glitch to obtain signal sysrstn. To make PLLs work normally, the PLL reset signal (pllrstn) must maintain high for more than 1us, and PLLs start to lock when pllrstn de-assert, and the PLL max lock time is 1500 PLL REFCLK cycles. And then the system will wait about 138us, and then de-assert reset signal chiprstn. The signal chiprstn is used to generate output clocks in CRU. After CRU start output clocks, the system waits again for 768cycles (21.3us) to de-assert signal rstn\_pre, which is used to generate power on reset of all IPs.

## 2.8 Application Notes

## 2.8.1 PLL usage

### A. PLL output frequency configuration

```
FBDIV, POSTDIV1, BYPASS can be configured by programming CRU_APLL_CON0,
CRU DPLL CON0 and CRU GPLL CON0.
DSMPD, REFDIV, POSTDIV2 can be configured by programming CRU_APLL_CON1,
CRU_DPLL_CON1 and CRU_GPLL_CON1.
FRAC can be configured by programming CRU_APLL_CON2, CRU_DPLL_CON2 and
CRU_GPLL_CON2.
If DSMPD = 1 (DSM is disabled, "integer mode")
FOUTVCO = FREF / REFDIV * FBDIV
FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
When FREF is 24MHz, and if 700MHz FOUTPOSTDIV is needed. The configuration can be:
      DSMPD = 1
      REFDIV = 6
      FBDIV = 175
      POSTDIV1=1
      POSTDIV2=1
And then
FOUTVCO = FREF / REFDIV * FBDIV = 24/6*175=700
FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2=700/1/1=700
If DSMPD = 0 (DSM is enabled, "fractional mode")
FOUTVCO = FREF / REFDIV * (FBDIV + FRAC / 224)
FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
When FREF is 24MHz, and if 491.52MHz FOUTPOSTDIV is needed. The configuration can
be:
      DSMPD = 0
      REFDIV = 1
```

```
FBDIV = 40
```

```
FRAC = 24'hf5c28f
POSTDIV1=2
POSTDIV2=1
```

And then

FOUTVCO = FREF / REFDIV \* (FBDIV + FRAC / 224) = 24/1\*(40+24'hf5c28f /224)= 983.04

FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2=983.04/2/1=491.52

## B. PLL setting consideration

- If the POSTDIV value is changed during operation a short pulse (glitch) may occur on FOUTPOSTDIV. The minimum width of the short pulse will be equal to twice the period of the VCO. Therefore, if the circuitry clocked by the PLL is sensitive to short pulses, the new divide value should be re-timed so that it is synchronous with the rising edge of the output clock (FOUTPOSTDIV). Glitches cannot occur on any of the other outputs.
- For lowest power operation, the minimum VCO and FREF frequencies should be used. For minimum jitter operation, the highest VCO and FREF frequencies should be used. The normal operating range for the VCO is described above in .
- The supply rejection will be worse at the low end of the VCO range so care should be taken to keep the supply clean for low power applications.
- The feedback divider is not capable of dividing by all possible settings due to the use of a power-saving architecture. The following settings are valid for FBDIV:
- DSMPD=1 (Integer Mode)
- DSMPD=0 (Fractional Mode)
- The PD input places the PLL into the lowest power mode. In this case, all analog circuits are turned off and FREF will be "ignored". The FOUTPOSTDIV and FOUTVCO pins are forced to logic low (0V).
- The BYPASS pin controls a mux which selects FREF to be passed to the FOUTPOSTDIV when active high. However, the PLL continues to run as it normally would if bypass were low. This is a useful feature for PLL testing since the clock path can be verified without the PLL being required to work. Also, the effect that the PLL induced supply noise has on the output buffering can be evaluated. It is not recommended to switch between BYPASS mode and normal mode for regular chip operation since this may result in a glitch. Also, FOUTPOSTDIVPD should be set low if the PLL is to be used in BYPASS mode.

## 2.8.2 PLL frequency change and lock check

The PLL programming supports changed on-the-fly and the PLL will simply slew to the new frequency.

PLL lock state can be checked in CRU\_APLL\_CON1[10], CRU\_DPLL\_CON1[10], CRU\_CPLL\_CON1[10], CRU\_GPLL\_CON1[10] register. The lock state is high when both original hardware PLL lock and PLL counter lock are high. The PLL counter lock initial value is CRU\_GLB\_CNT\_TH[31:16].

The max delay time is 500 REF\_CLK.

- PLL locking consists of three phases.
- Phase 1 is control voltage slewing. During this phase one of the clocks (reference or divide) is much faster than the other, and the PLL frequency adjusts almost continuously. When locking from power down, the divide clock is initially very slow and steadily increases frequency. It will take slightly longer for faster VCO settings when locking from power down, since the PLL must slew further.

- Phase 2 is small signal phase acquisition. During this phase, the internal up/down signals alternate semi-chaotically as the phase slowly adjusts until the two signals are aligned. The duration of this phase depends on the loop bandwidth and is faster with higher bandwidth. Bandwidth can be estimated as FREF / REFDIV / 20 for integer mode and FREF /REFDIV / 40 for fractional mode. The duration of small signal locking is about 1/Bandwidth.
- Phase 3 is the digital cycle count. After the last cycle slip is detected, an internal counter waits 256 FREF / REFDIV cycles before the lock signal goes high. This is frequently the dominant factor in lock time especially for slower reference clock signals or large reference divide settings. This time can be calculated as 256\*REFDIV/FREF.

## 2.8.3 Fractional divider usage

To get specific frequency, clocks of I2S, SPDIF, UART can be generated by fractional divider. Generally you must set that denominator is 20 times larger than numerator to generate precise clock frequency. So the fractional divider applies only to generate low frequency clock like I2S, UART.

## 2.8.4 Global software reset

Two global software resets are designed in the chip, you can program CRU\_GLB\_SRST\_FST\_VALUE[15:0] as 0xfdb9 to assert the first global software reset glb\_srstn\_1 and program CRU\_GLB\_SRST\_SND\_VALUE[15:0] as 0xeca8 to assert the second global software reset glb\_srstn\_2. These two software resets are self-deasserted by hardware.

Glb\_srstn\_1 resets almost all logic.

Glb\_srstn\_2 resets almost all logic except GRF and GPIOs.

### 2.8.5 Restriction

a The HDMI controller apb bus is connected to NIU (Network interface Unit) through a h2p bridge. So if HDMI is needed, make sure hclk\_h2p\_en and pclk\_h2p\_en

(cru\_clkgate\_con21 bit 13 and bit 14) is disabled to open the clock for h2p bridge.b The AXI bus of RGA/IEP/HDCP /VIP share same logic in niu of pd\_vio. Please make sure the rga\_aclk\_niu is opened (aclk\_rga\_niu\_en, cru\_clkgate\_con22 bit 3 is disabled) if either

of these controllers is inuse. c There is a sram shared between H265 and H264. H265 can access this sram by an axi2sram bridge. So if H265 or H264 is enabled, make sure the clock of axi2sram is opend (aclk axi2sram en, cru clkgate con25 bit6 should be set to disable).

# **Chapter 3 General Register Files (GRF)**

## 3.1 Overview

The general register file will be used to do static set by software, which is composed of many registers for system control. The GRF is divided into four sections,

- GRF, used for general non-secure system,
- DDR\_GRF, used for always on system
- USB2PHY\_GRF, used for USB2 PHY control and query
- USB3PHY\_GRF, used for USB3 PHY control and query

## **3.2 Function Description**

The function of general register file is:

- IOMUX control
- Control the state of GPIO in power-down mode
- GPIO PAD pull down and pull up control
- Used for common system control
- Used to record the system state

## **3.3 GRF Register Description**

## 3.3.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

|                   | -      |      |             |                       |
|-------------------|--------|------|-------------|-----------------------|
| Name              | Offset | Size | Reset Value | Description           |
| GRF_GPIO0A_IOMUX  | 0x0000 | W    | 0x00000000  | GPIO0A iomux control  |
| GRF_GPIO0B_IOMUX  | 0x0004 | W    | 0x00000000  | GPIO0B iomux control  |
| GRF_GPIO0C_IOMUX  | 0x0008 | W    | 0x00000000  | GPIO0C iomux control  |
| GRF_GPIO0D_IOMUX  | 0x000c | w    | 0x00000000  | GPIO0D iomux control  |
| GRF_GPIO1A_IOMUX  | 0x0010 | w    | 0x000004aa  | GPIO1A iomux control  |
| GRF_GPIO1B_IOMUX  | 0x0014 | W    | 0x00000000  | GPIO1B iomux control  |
| GRF_GPIO1C_IOMUX  | 0x0018 | w    | 0x00000000  | GPIO1C iomux control  |
| GRF_GPIO1D_IOMUX  | 0x001c | W    | 0x00000000  | GPIO1D iomux control  |
| GRF_GPIO2A_IOMUX  | 0x0020 | w    | 0x00000000  | GPIO2A iomux control  |
| GRF_GPIO2BL_IOMUX | 0x0024 | w    | 0x00000200  | GPIO2BL iomux control |
| GRF_GPIO2BH_IOMUX | 0x0028 | w    | 0x00000000  | GPIO2BH iomux control |

## 3.3.2 Registers Summary

| Name              | Offset | Size | Reset Value | Description                   |
|-------------------|--------|------|-------------|-------------------------------|
| GRF_GPIO2CL_IOMUX | 0x002c | W    | 0x00000000  | GPIO2CL iomux control         |
| GRF_GPIO2CH_IOMUX | 0x0030 | W    | 0x00000000  | GPIO2CH iomux control         |
| GRF_GPIO2D_IOMUX  | 0x0034 | W    | 0x00000000  | GPIO2D iomux control          |
| GRF_GPIO3AL_IOMUX | 0x0038 | W    | 0x00000000  | GPIO3AL iomux control         |
| GRF_GPIO3AH_IOMUX | 0x003c | W    | 0x00000000  | GPIO3AH iomux control         |
| GRF_GPIO3BL_IOMUX | 0x0040 | W    | 0x00000000  | GPIO3BL iomux control         |
| GRF_GPIO3BH_IOMUX | 0x0044 | W    | 0x00000000  | GPIO3BH iomux control         |
| GRF_GPIO3C_IOMUX  | 0x0048 | W    | 0x00000000  | GPIO3C iomux control          |
| GRF_GPIO3D_IOMUX  | 0x004c | W    | 0x00000000  | GPIO3D iomux control          |
| GRF_COM_IOMUX     | 0x0050 | W    | 0x00000000  | GRF common iomux control      |
| GRF_GPIO0A_P      | 0x0100 | W    | 0x0000566a  | GPIO0A PU/PD control          |
| GRF_GPIO0B_P      | 0x0104 | W    | 0x0000aa6a  | GPIO0B PU/PD control          |
| GRF_GPIO0C_P      | 0x0108 | W    | 0x0000aa6a  | GPIO0C PU/PD control          |
| GRF_GPIO0D_P      | 0x010c | W    | 0x0000aaaa  | GPIO0D PU/PD control          |
| GRF_GPIO1A_P      | 0x0110 | W    | 0x0000a555  | GPIO1A PU/PD control          |
| GRF_GPIO1B_P      | 0x0114 | W    | 0x000056a5  | GPIO1B PU/PD control          |
| GRF_GPIO1C_P      | 0x0118 | W    | 0x00009a65  | GPIO1C PU/PD control          |
| GRF_GPIO1D_P      | 0x011c | W    | 0x0000aaaa  | GPIO1D PU/PD control          |
| GRF_GPIO2A_P      | 0x0120 | W    | 0x00009556  | GPIO2A PU/PD control          |
| GRF_GPIO2B_P      | 0x0124 | W    | 0x0000959a  | GPIO2B PU/PD control          |
| GRF_GPIO2C_P      | 0x0128 | W    | 0x00005565  | GPIO2C PU/PD control          |
| GRF_GPIO2D_P      | 0x012c | W    | 0x000055a5  | GPIO2D PU/PD control          |
| GRF_GPIO3A_P      | 0x0130 | W    | 0x000055a5  | GPIO3A PU/PD control          |
| GRF_GPIO3B_P      | 0x0134 | W    | 0x00005aaa  | GPIO3B PU/PD control          |
| GRF_GPIO3C_P      | 0x0138 | W    | 0x00006555  | GPIO3C PU/PD control          |
| GRF_GPIO3D_P      | 0x013c | W    | 0x0000555a  | GPIO3D PU/PD control          |
| GRF_GPIO0A_E      | 0x0200 | W    | 0x00008011  | GPIO0A drive strength control |
| GRF_GPIO0B_E      | 0x0204 | W    | 0x0000aa2a  | GPIO0B drive strength control |
| GRF_GPIO0C_E      | 0x0208 | W    | 0x0000aa0a  | GPIO0C drive strength control |

| Name           | Offset | Size | Reset Value | Description                        |
|----------------|--------|------|-------------|------------------------------------|
| GRF_GPIO0D_E   | 0x020c | W    | 0x0000005a  | GPIO0D drive strength control      |
| GRF_GPIO1A_E   | 0x0210 | W    | 0x0000aaaa  | GPIO1A drive strength control      |
| GRF_GPIO1B_E   | 0x0214 | W    | 0x0000aa2a  | GPIO1B drive strength control      |
| GRF_GPIO1C_E   | 0x0218 | W    | 0x0000a88a  | GPIO1C drive strength control      |
| GRF_GPIO1D_E   | 0x021c | W    | 0x0000005a  | GPIO1D drive strength control      |
| GRF_GPIO2A_E   | 0x0220 | W    | 0x00000000  | GPIO2A drive strength control      |
| GRF_GPIO2B_E   | 0x0224 | W    | 0x00004145  | GPIO2B drive strength control      |
| GRF_GPIO2C_E   | 0x0228 | W    | 0x00005515  | GPIO2C drive strength control      |
| GRF_GPIO2D_E   | 0x022c | W    | 0x0000aa01  | GPIO2D drive strength control      |
| GRF_GPIO3A_E   | 0x0230 | W    | 0x0000aa22  | GPIO3A drive strength control      |
| GRF_GPIO3B_E   | 0x0234 | W    | 0x00000000  | GPIO3B drive strength control      |
| GRF_GPIO3C_E   | 0x0238 | W    | 0x0000aaaa  | GPIO3C drive strength control      |
| GRF_GPIO3D_E   | 0x023c | W    | 0x0000aaaa  | GPIO3D drive strength control      |
| GRF_GPIO0L_SR  | 0x0300 | W    | 0x00000000  | GPIO0 A/B SR control               |
| GRF_GPIO0H_SR  | 0x0304 | W    | 0x00000000  | GPIO0 C/D SR control               |
| GRF_GPIO1L_SR  | 0x0308 | W    | 0x00000000  | GPIO1 A/B SR control               |
| GRF_GPIO1H_SR  | 0x030c | W    | 0x00000000  | GPIO1 C/D SR control               |
| GRF_GPIO2L_SR  | 0x0310 | W    | 0x00000000  | GPIO2 A/B SR control               |
| GRF_GPIO2H_SR  | 0x0314 | W    | 0x00000000  | GPIO2 C/D SR control               |
| GRF_GPIO3L_SR  | 0x0318 | W    | 0x00000000  | GPIO3 A/B SR control               |
| GRF_GPIO3H_SR  | 0x031c | W    | 0x00000000  | GPIO3 C/D SR control               |
| GRF_GPIO0L_SMT | 0x0380 | W    | 0x00000000  | GPIO0 A/B smitter control register |
| GRF_GPIO0H_SMT | 0x0384 | W    | 0x00000000  | GPIO0 C/D smitter control register |
| GRF_GPIO1L_SMT | 0x0388 | W    | 0x00000000  | GPIO1 A/B smitter control register |
| GRF_GPIO1H_SMT | 0x038c | W    | 0x00000000  | GPIO1 C/D smitter control register |
| GRF_GPIO2L_SMT | 0x0390 | W    | 0x00000000  | GPIO2 A/B smitter control register |
| GRF_GPIO2H_SMT | 0x0394 | W    | 0x00000000  | GPIO2 C/D smitter control register |
| GRF_GPIO3L_SMT | 0x0398 | W    | 0x00000000  | GPIO3 A/B smitter control register |
| GRF_GPIO3H_SMT | 0x039c | W    | 0x00000000  | GPIO3 C/D smitter control register |

| Name             | Offset | Size | Reset Value | Description               |
|------------------|--------|------|-------------|---------------------------|
| GRF_SOC_CON0     | 0x0400 | W    | 0x00000000  | SOC control register0     |
| GRF_SOC_CON1     | 0x0404 | W    | 0x00000000  | SOC control register1     |
| GRF_SOC_CON2     | 0x0408 | W    | 0x00001000  | SOC control register2     |
| GRF_SOC_CON3     | 0x040c | W    | 0x00000000  | SOC control register3     |
| GRF_SOC_CON4     | 0x0410 | W    | 0x00000000  | SOC control register4     |
| GRF_SOC_CON5     | 0x0414 | W    | 0x00000000  | SOC control register5     |
| GRF_SOC_CON6     | 0x0418 | W    | 0x00000000  | SOC control register6     |
| GRF_SOC_CON7     | 0x041c | W    | 0x00000000  | SOC control register7     |
| GRF_SOC_CON8     | 0x0420 | W    | 0x00000000  | SOC control register8     |
| GRF_SOC_CON9     | 0x0424 | W    | 0x00000000  | SOC control register9     |
| GRF_SOC_CON10    | 0x0428 | W    | 0x0000f800  | SOC control register10    |
| GRF_SOC_STATUS0  | 0x0480 | W    | 0x00000000  | SOC status register0      |
| GRF_SOC_STATUS1  | 0x0484 | W    | 0x00000000  | SOC status register1      |
| GRF_SOC_STATUS2  | 0x0488 | W    | 0x00000000  | SOC status register2      |
| GRF_SOC_STATUS3  | 0x048c | W    | 0x00000000  | SOC status register3      |
| GRF_SOC_STATUS4  | 0x0490 | W    | 0x00000000  | SOC status register4      |
| GRF_USB3OTG_CON0 | 0x04c0 | W    | 0x00002000  | USB3OTG control register0 |
| GRF_USB3OTG_CON1 | 0x04c4 | W    | 0x00001100  | USB3OTG control register1 |
| GRF_CPU_CON0     | 0x0500 | W    | 0x00000060  | CPU control register0     |
| GRF_CPU_CON1     | 0x0504 | W    | 0x0000000c  | CPU control register1     |
| GRF_CPU_STATUS0  | 0x0520 | W    | 0x00000000  | CPU status register0      |
| GRF_CPU_STATUS1  | 0x0524 | W    | 0x00000000  | CPU status register1      |
| GRF_OS_REG0      | 0x05c8 | W    | 0x00000000  | os register0              |
| GRF_OS_REG1      | 0x05cc | W    | 0x00000000  | os register1              |
| GRF_OS_REG2      | 0x05d0 | W    | 0x00000000  | os register2              |
| GRF_OS_REG3      | 0x05d4 | W    | 0x00000000  | os register3              |
| GRF_OS_REG4      | 0x05d8 | W    | 0x00000000  | os register4              |
| GRF_OS_REG5      | 0x05dc | W    | 0x00000000  | os register5              |
| GRF_OS_REG6      | 0x05e0 | W    | 0x00000000  | os register6              |

| Name                     | Offset | Size | Reset Value | Description                              |
|--------------------------|--------|------|-------------|------------------------------------------|
| GRF_OS_REG7              | 0x05e4 | W    | 0x00000000  | os register7                             |
| GRF_SIG_DETECT_CON       | 0x0680 | W    | 0x00000000  | External signal detect configue register |
| GRF_SIG_DETECT_STATUS    | 0x0690 | W    | 0x00000000  | External signal detect status register   |
| GRF_SIG_DETECT_STATUS_CL | 0x06a0 | w    | 0x00000000  | External signal detect status clear      |
| EAR                      | 0x00a0 | vv   | 0x00000000  | register                                 |
| GRF_SDMMC_DET_COUNTER    | 0x06b0 | W    | 0x00030100  | SDMMC detect counter register            |
| GRF_HOST0_CON0           | 0x0700 | W    | 0x00000820  | host0 control register0                  |
| GRF_HOST0_CON1           | 0x0704 | W    | 0x000004bc  | host0 control register1                  |
| GRF_HOST0_CON2           | 0x0708 | W    | 0x00000019  | host0 control register2                  |
| GRF_OTG_CON0             | 0x0880 | W    | 0x00000000  | OTG control register                     |
| GRF_HOST0_STATUS         | 0x0890 | W    | 0x00000000  | HOST0 status register                    |
| GRF_MAC_CON0             | 0x0900 | W    | 0x00000000  | MAC control register0                    |
| GRF_MAC_CON1             | 0x0904 | W    | 0x00000000  | MAC control register1                    |
| GRF_MAC_CON2             | 0x0908 | W    | 0x00000000  | MAC control register2                    |
| GRF_MACPHY_CON0          | 0x0b00 | W    | 0x00002039  | MACPHY control register0                 |
| GRF_MACPHY_CON1          | 0x0b04 | W    | 0x00000000  | MACPHY control register1                 |
| GRF_MACPHY_CON2          | 0x0b08 | W    | 0x00000000  | MACPHY control register2                 |
| GRF_MACPHY_CON3          | 0x0b0c | W    | 0x00000000  | MACPHY control register3                 |
| GRF_MACPHY_STATUS        | 0x0b10 | W    | 0x00000000  | MACPHY status register                   |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 3.3.3 Detail Register Description

### GRF\_GPIO0A\_IOMUX

Address: Operational Base + offset (0x0000) GPIO0A iomux control

| Bit   | Attr | Reset Value | Description                                          |
|-------|------|-------------|------------------------------------------------------|
|       |      |             | write_enable                                         |
|       |      |             | Bit0~15 write enable                                 |
|       |      |             | "When bit16=1, bit0 can be written by software.      |
|       |      |             | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | WO   | 0x0000      | When bit 17=1, bit 1 can be written by software.     |
|       |      |             | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |             |                                                      |
|       |      |             | When bit 31=1, bit 15 can be written by software.    |
|       |      |             | When bit 31=0, bit 15 cannot be written by software; |
|       |      |             | gpio0_a7_sel                                         |
|       |      |             | GPIO0A[7] iomux select                               |
| 15:14 | RW   | 0x0         | 2'b00: gpio                                          |
| 13.14 |      | 0.00        | 2'b01: reserved                                      |
|       |      |             | 2'b10: emmc_d0                                       |
|       |      |             | 2'b11: reserved                                      |
| 13:10 | RO   | 0x0         | reserved                                             |
|       |      |             | gpio0_a4_sel                                         |
|       |      |             | GPIO0A[4] iomux select                               |
| 9:8   | RW   | 0x0         | 2'b00: gpio                                          |
| 9.0   |      | 0.00        | 2'b01: hdmi_hdp                                      |
|       |      |             | 2'b10: reserved                                      |
|       |      |             | 2'b11: reserved                                      |
| 7:6   | RO   | 0x0         | reserved                                             |
|       |      |             | gpio0_a2_sel                                         |
|       |      |             | GPIO0A[2] iomux select                               |
| 5:4   | RW   | 0x0         | 2'b00: gpio                                          |
| 5.4   |      | 0.0         | 2'b01: clk_out_gmacm0                                |
|       |      |             | 2'b10: spdif_txm2                                    |
|       |      |             | 2'b11: reserved                                      |
| 3:2   | RO   | 0x0         | reserved                                             |
|       |      |             | gpio0_a0_sel                                         |
|       |      |             | GPIO0A[0] iomux select                               |
| 1:0   | RW   | 0x0         | 2'b00: gpio                                          |
| 1.0   |      | 0.0         | 2'b01: clk_out_wifim0                                |
|       |      |             | 2'b10: reserved                                      |
|       |      |             | 2'b11: reserved                                      |

## GRF\_GPIO0B\_IOMUX

Address: Operational Base + offset (0x0004) GPIO0B iomux control

| Bit   | Attr | Reset Value | Description                                          |  |  |  |
|-------|------|-------------|------------------------------------------------------|--|--|--|
|       |      |             | write_enable                                         |  |  |  |
|       |      |             | Bit0~15 write enable                                 |  |  |  |
|       |      |             | "When bit16=1, bit0 can be written by software.      |  |  |  |
|       |      |             | When bit16=0, bit 0 cannot be written by software;   |  |  |  |
| 31:16 | WO   | 0x0000      | When bit 17=1, bit 1 can be written by software.     |  |  |  |
|       |      |             | When bit 17=0, bit 1 cannot be written by software;  |  |  |  |
|       |      |             |                                                      |  |  |  |
|       |      |             | When bit 31=1, bit 15 can be written by software.    |  |  |  |
|       |      |             | When bit 31=0, bit 15 cannot be written by software; |  |  |  |
| 15:0  | RO   | 0x0         | reserved                                             |  |  |  |

### GRF\_GPIO0C\_IOMUX

Address: Operational Base + offset (0x0008) GPIO0C iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                              |
|-------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 |      | 0×0000             | write_enable<br>Bit0~15 write enable<br>"When bit16=1, bit0 can be written by software.<br>When bit16=0, bit 0 cannot be written by software;<br>When bit 17=1, bit 1 can be written by software.<br>When bit 17=0, bit 1 cannot be written by software; |
|       |      |                    | When bit 31=1, bit 15 can be written by software.<br>When bit 31=0, bit 15 cannot be written by software;                                                                                                                                                |
| 15:0  | RO   | 0x0                | reserved                                                                                                                                                                                                                                                 |

### GRF\_GPIO0D\_IOMUX

Address: Operational Base + offset (0x000c) GPIO0D iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:14 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                         |  |  |  |  |
|-------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 13:12 | RW   | 0×0                | <pre>gpio0_d6_sel<br/>GPIO0D[6] iomux select<br/>2'b00: gpio<br/>2'b01: fephyled_speed10<br/>2'b10: fephyled_duplex<br/>2'b11: sdmmc0_pwrenm1</pre> |  |  |  |  |
| 11:8  | RO   | 0x0                | reserved                                                                                                                                            |  |  |  |  |
| 7:6   | RW   | 0×0                | <pre>gpio0_d3_sel<br/>GPIO0D[3] iomux select<br/>2'b00: gpio<br/>2'b01: spdif_txm0<br/>2'b10: reserved<br/>2'b11: reserved</pre>                    |  |  |  |  |
| 5:0   | RO   | 0x0                | reserved                                                                                                                                            |  |  |  |  |

## **GRF\_GPIO1A\_IOMUX**

Address: Operational Base + offset (0x0010) GPIO1A iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | WO   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software. |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
| 15:14 | RO   | 0x0                | reserved                                             |
|       |      |                    | gpio1_a6_sel                                         |
|       |      | W 0×0              | GPIO1A[6] iomux select                               |
| 13:12 | RW   |                    | 2'b00: gpio                                          |
| 13.12 | 1    |                    | 2'b01: sdmmc0_clkout                                 |
|       |      |                    | 2'b10: test_clk0                                     |
|       |      |                    | 2'b11: reserved                                      |
|       |      |                    | gpio1_a5_sel                                         |
|       |      | W 0x1              | GPIO1A[5] iomux select                               |
| 11:10 | RW   |                    | 2'b00: gpio                                          |
|       |      |                    | 2'b01: sdmmc0_detn                                   |
|       |      |                    | 2'b10: reserved                                      |
|       |      |                    | 2'b11: reserved                                      |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                          |
|-----|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 9:8 | RW   | 0×0                | <pre>gpio1_a4_sel<br/>GPIO1A[4] iomux select<br/>2'b00: gpio<br/>2'b01: sdmmc0_cmd<br/>2'b10: reserved<br/>2'b11: reserved</pre>     |
| 7:6 | RW   | 0x2                | gpio1_a3_sel<br>GPIO1A[3] iomux select<br>2'b00: gpio<br>2'b01: sdmmc0_d3<br>2'b10: jtag_tms<br>2'b11: reserved                      |
| 5:4 | RW   | 0x2                | <pre>gpio1_a2_sel<br/>GPIO1A[2] iomux select<br/>2'b00: gpio<br/>2'b01: sdmmc0_d2<br/>2'b10: jtag_tck<br/>2'b11: reserved</pre>      |
| 3:2 | RW   | 0x2                | <pre>gpio1_a1_sel<br/>GPIO1A[1] iomux select<br/>2'b00: gpio<br/>2'b01: sdmmc0_d1<br/>2'b10: uart2dbg_rxm0<br/>2'b11: reserved</pre> |
| 1:0 | RW   | 0x2                | <pre>gpio1_a0_sel<br/>GPIO1A[0] iomux select<br/>2'b00: gpio<br/>2'b01: sdmmc0_d0<br/>2'b10: uart2dbg_txm0<br/>2'b11: reserved</pre> |

## **GRF\_GPIO1B\_IOMUX**

Address: Operational Base + offset (0x0014) GPIO1B iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 |      | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |

| Bit   | Attr | Reset Value | Description                                                                                                                             |
|-------|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 15:14 | RW   | 0×0         | <pre>gpio1_b7_sel<br/>GPIO1B[7] iomux select<br/>2'b00: gpio<br/>2'b01: sdmmc1_d1<br/>2'b10: gmac_rxd2m1<br/>2'b11: reserved</pre>      |
| 13:12 | RW   | 0×0         | <pre>gpio1_b6_sel<br/>GPIO1B[6] iomux select<br/>2'b00: gpio<br/>2'b01: sdmmc1_d0<br/>2'b10: gmac_rxd3m1<br/>2'b11: reserved</pre>      |
| 11:10 | RW   | 0x0         | <pre>gpio1_b5_sel<br/>GPIO1B[5] iomux select<br/>2'b00: gpio<br/>2'b01: sdmmc1_cmd<br/>2'b10: gmac_rxclkm1<br/>2'b11: reserved</pre>    |
| 9:8   | RW   | 0×0         | <pre>gpio1_b4_sel<br/>GPIO1B[4] iomux select<br/>2'b00: gpio<br/>2'b01: sdmmc1_clkout<br/>2'b10: gmac_txclkm1<br/>2'b11: reserved</pre> |
| 7:6   | RW   | 0x0         | <pre>gpio1_b3_sel<br/>GPIO1B[3] iomux select<br/>2'b00: gpio<br/>2'b01: uart0_ctsn<br/>2'b10: gmac_rxd0m1<br/>2'b11: reserved</pre>     |
| 5:4   | RW   | 0x0         | <pre>gpio1_b2_sel<br/>GPIO1B[2] iomux select<br/>2'b00: gpio<br/>2'b01: uart0_rtsn<br/>2'b10: gmac_rxd1m1<br/>2'b11: reserved</pre>     |
| 3:2   | RW   | 0×0         | <pre>gpio1_b1_sel<br/>GPIO1B[1] iomux select<br/>2'b00: gpio<br/>2'b01: uart0_tx<br/>2'b10: gmac_txd0m1<br/>2'b11: reserved</pre>       |

| Bit | Attr | Reset Value | Description            |
|-----|------|-------------|------------------------|
|     | RW   | 0×0         | gpio1_b0_sel           |
|     |      |             | GPIO1B[0] iomux select |
| 1:0 |      |             | 2'b00: gpio            |
| 1.0 |      |             | 2'b01: uart0_rx        |
|     |      |             | 2'b10: gmac_txd1m1     |
|     |      |             | 2'b11: reserved        |

## **GRF\_GPIO1C\_IOMUX**

Address: Operational Base + offset (0x0018) GPIO1C iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | WO   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:14 | RW   | 0×0                | <pre>gpio1_c7_sel GPIO1C[7] iomux select 2'b00: gpio 2'b01: i2s2_lrcktxm0 2'b10: gmac_mdcm1 2'b11: pdm_sdi0m1</pre>                                                                                                                                                                                                                                         |
| 13:12 | RW   | 0×0                | <pre>gpio1_c6_sel<br/>GPIO1C[6] iomux select<br/>2'b00: gpio<br/>2'b01: i2s2_sclkm0<br/>2'b10: gmac_rxdvm1<br/>2'b11: pdm_clkm1</pre>                                                                                                                                                                                                                       |
| 11:10 | RW   | 0×0                | gpio1_c5_sel<br>GPIO1C[5] iomux select<br>2'b00: gpio<br>2'b01: i2s2_mclk<br>2'b10: gmac_clkm1<br>2'b11: reserved                                                                                                                                                                                                                                           |
| 9:8   | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |

| Bit | Attr | Reset Value | Description            |
|-----|------|-------------|------------------------|
|     |      | Reset value | -                      |
|     |      |             | gpio1_c3_sel           |
|     |      |             | GPIO1C[3] iomux select |
| 7:6 | RW   | 0x0         | 2'b00: gpio            |
|     |      |             | 2'b01: sdmmc1_detn     |
|     |      |             | 2'b10: gmac_mdiom1     |
|     |      |             | 2'b11: pdm_fsyncm1     |
|     |      |             | gpio1_c2_sel           |
|     |      |             | GPIO1C[2] iomux select |
| 5:4 | RW   | 0x0         | 2'b00: gpio            |
| 5   |      | 0,0         | 2'b01: sdmmc1_pwren    |
|     |      |             | 2'b10: gmac_crsm1      |
|     |      |             | 2'b11: reserved        |
|     |      |             | gpio1_c1_sel           |
|     |      |             | GPIO1C[1] iomux select |
| 3:2 | RW   | 0x0         | 2'b00: gpio            |
| 5.2 |      |             | 2'b01: sdmmc1_d3       |
|     |      |             | 2'b10: gmac_txd2m1     |
|     |      |             | 2'b11: reserved        |
|     |      |             | gpio1_c0_sel           |
|     |      |             | GPIO1C[0] iomux select |
| 1.0 | RW   | 0×0         | 2'b00: gpio            |
| 1:0 | K VV |             | 2'b01: sdmmc1_d2       |
|     |      |             | 2'b10: gmac_txd3m1     |
|     |      |             | 2'b11: reserved        |

## GRF\_GPIO1D\_IOMUX

Address: Operational Base + offset (0x001c) GPIO1D iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:10 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |

| Bit | Attr | Reset Value | Description            |
|-----|------|-------------|------------------------|
|     |      |             | gpio1_d4_sel           |
|     |      |             | GPIO1D[4] iomux select |
|     |      |             | 2'b00: gpio            |
| 9:8 | RW   | 0x0         | 2'b01: clk32k_outm1    |
|     |      |             | 2'b10: reserved        |
|     |      |             | 2'b11: reserved        |
| 7.6 |      | 0.40        |                        |
| 7:6 | RO   | 0x0         | reserved               |
|     |      |             | gpio1_d2_sel           |
|     |      |             | GPIO1D[2] iomux select |
| 5:4 | RW   | 0×0         | 2'b00: gpio            |
|     |      |             | 2'b01: i2s2_lrckrxm0   |
|     |      |             | 2'b10: clk_out_gmacm2  |
|     |      |             | 2'b11: pdm_sdi3m1      |
|     |      |             | gpio1_d1_sel           |
|     |      |             | GPIO1D[1] iomux select |
| 3:2 | RW   | 0x0         | 2'b00: gpio            |
| 5.2 |      | 0,0         | 2'b01: i2s2_sdom0      |
|     |      |             | 2'b10: gmac_txenm1     |
|     |      |             | 2'b11: pdm_sdi2m1      |
|     |      |             | gpio1_d0_sel           |
|     |      |             | GPIO1D[0] iomux select |
| 1.0 | RW   | V 0×0       | 2'b00: gpio            |
| 1:0 | K VV |             | 2'b01: i2s2_sdim0      |
|     |      |             | 2'b10: gmac_rxerm1     |
|     |      |             | 2'b11: pdm_sdi1m1      |

## GRF\_GPIO2A\_IOMUX

Address: Operational Base + offset (0x0020) GPIO2A iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:14 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |

| Bit   | Attr | Reset Value | Description                                                                                                                      |
|-------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------|
| 13:12 | RW   | 0×0         | gpio2_a6_sel<br>GPIO2A[6] iomux select<br>2'b00: gpio<br>2'b01: pwm_2<br>2'b10: reserved<br>2'b11: reserved                      |
| 11:10 | RW   | 0x0         | gpio2_a5_sel<br>GPIO2A[5] iomux select<br>2'b00: gpio<br>2'b01: pwm_1<br>2'b10: i2c1_scl<br>2'b11: reserved                      |
| 9:8   | RW   | 0×0         | gpio2_a4_sel<br>GPIO2A[4] iomux select<br>2'b00: gpio<br>2'b01: pwm_0<br>2'b10: i2c1_sda<br>2'b11: reserved                      |
| 7:6   | RW   | 0×0         | gpio2_a3_sel<br>GPIO2A[3] iomux select<br>2'b00: gpio<br>2'b01: efuse_pwren<br>2'b10: power_state3<br>2'b11: reserved            |
| 5:4   | RW   | 0×0         | <pre>gpio2_a2_sel<br/>GPIO2A[2] iomux select<br/>2'b00: gpio<br/>2'b01: pwm_ir<br/>2'b10: power_state2<br/>2'b11: reserved</pre> |
| 3:2   | RW   | 0×0         | gpio2_a1_sel<br>GPIO2A[1] iomux select<br>2'b00: gpio<br>2'b01: uart2dbg_rxm1<br>2'b10: power_state1<br>2'b11: reserved          |
| 1:0   | RW   | 0x0         | gpio2_a0_sel<br>GPIO2A[0] iomux select<br>2'b00: gpio<br>2'b01: uart2dbg_txm1<br>2'b10: power_state0<br>2'b11: reserved          |

### **GRF\_GPIO2BL\_IOMUX**

Address: Operational Base + offset (0x0024)

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

GPIO2BL iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <ul> <li>write_enable</li> <li>Bit0~15 write enable</li> <li>"When bit16=1, bit0 can be written by software.</li> <li>When bit16=0, bit 0 cannot be written by software;</li> <li>When bit 17=1, bit 1 can be written by software.</li> <li>When bit 17=0, bit 1 cannot be written by software;</li> <li></li> <li>When bit 31=1, bit 15 can be written by software.</li> <li>When bit 31=0, bit 15 cannot be written by software;</li> </ul> |
| 15:14 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13:12 | RW   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11:10 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9:8   | RW   | 0x2                | <pre>gpio2_b4_sel GPIO2B[4] iomux select 2'b00: gpio 2'b01: spi_csn1m0 2'b10: flash_vol_sel 2'b11: reserved</pre>                                                                                                                                                                                                                                                                                                                             |
| 7:0   | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## **GRF\_GPIO2BH\_IOMUX**

Address: Operational Base + offset (0x0028) GPIO2BH iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:3  | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                   |
|-----|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:0 |      | 0×0                | <pre>gpio2_b7_sel<br/>GPIO2B[7] iomux select<br/>3'b000: gpio<br/>3'b001: i2s1_mclk<br/>3'b010: reserved<br/>3'b011: tsp_syncm1<br/>3'b100: cif_clkoutm1<br/>3'b101: reserved<br/>3'b111: reserved<br/>3'b111: reserved</pre> |

## **GRF\_GPIO2CL\_IOMUX**

Address: Operational Base + offset (0x002c) GPIO2CL iomux control

| Bit   | Attr | Reset Value | Description                                          |
|-------|------|-------------|------------------------------------------------------|
|       |      |             | write_enable                                         |
|       |      |             | Bit0~15 write enable                                 |
|       |      |             | "When bit16=1, bit0 can be written by software.      |
|       |      |             | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | WO   | 0x0000      | When bit 17=1, bit 1 can be written by software.     |
|       |      |             | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |             |                                                      |
|       |      |             | When bit $31=1$ , bit 15 can be written by software. |
|       |      |             | When bit 31=0, bit 15 cannot be written by software; |
| 15    | RO   | 0x0         | reserved                                             |
|       |      |             | gpio2_c4_sel                                         |
|       |      |             | GPIO2C[4] iomux select                               |
|       |      |             | 3'b000: gpio                                         |
|       |      |             | 3'b001: i2s1_sdio1                                   |
| 14:12 | RW   | 0×0         | 3'b010: pdm_sdi1m0                                   |
|       |      |             | 3'b011: card_rstm1                                   |
|       |      |             | 3'b100: reserved                                     |
|       |      |             | 3'b101: reserved                                     |
|       |      |             | 3'b110: reserved                                     |
|       |      |             | 3'b111: reserved                                     |
|       | RW   | V 0×0       | gpio2_c3_sel                                         |
|       |      |             | GPIO2C[3] iomux select                               |
|       |      |             | 3'b000: gpio                                         |
|       |      |             | 3'b001: i2s1_sdi                                     |
| 11:9  |      |             | 3'b010: pdm_sdi0m0                                   |
|       |      |             | 3'b011: card_clkm1                                   |
|       |      |             | 3'b100: reserved<br>3'b101: reserved                 |
|       |      |             |                                                      |
|       |      |             | 3'b110: reserved                                     |
|       |      |             | 3'b111: reserved                                     |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                    |
|-----|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8:6 | RW   | 0x0         | <pre>gpio2_c2_sel<br/>GPIO2C[2] iomux select<br/>3'b000: gpio<br/>3'b001: i2s1_sclk<br/>3'b010: pdm_clkm0<br/>3'b011: tsp_d7m1<br/>3'b100: cif_data7m1<br/>3'b101: reserved<br/>3'b110: reserved<br/>3'b111: reserved</pre>    |
| 5:3 | RW   | 0×0         | <pre>gpio2_c1_sel<br/>GPIO2C[1] iomux select<br/>3'b000: gpio<br/>3'b001: i2s1_lrcktx<br/>3'b010: spdif_txm1<br/>3'b011: tsp_d6m1<br/>3'b100: cif_data6m1<br/>3'b101: reserved<br/>3'b110: reserved<br/>3'b111: reserved</pre> |
| 2:0 | RW   | 0×0         | <pre>gpio2_c0_sel<br/>GPIO2C[0] iomux select<br/>3'b000: gpio<br/>3'b001: i2s1_lrckrx<br/>3'b010: reserved<br/>3'b011: tsp_d5m1<br/>3'b100: cif_data5m1<br/>3'b101: reserved<br/>3'b110: reserved<br/>3'b111: reserved</pre>   |

## GRF\_GPIO2CH\_IOMUX

Address: Operational Base + offset (0x0030) GPIO2CH iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                  |
|-------|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:14 | RW   | 0×0         | gpio2_c7_sel<br>GPIO2C[7] iomux select<br>2'b00: gpio<br>2'b01: i2s1_sdo<br>2'b10: pdm_fsyncm0<br>2'b11: reserved                                                                                                            |
| 13:6  | RO   | 0x0         | reserved                                                                                                                                                                                                                     |
| 5:3   | RW   | 0×0         | <pre>gpio2_c6_sel<br/>GPIO2C[6] iomux select<br/>3'b000: gpio<br/>3'b001: i2s1_sdio3<br/>3'b010: pdm_sdi3m0<br/>3'b011: card_iom1<br/>3'b100: reserved<br/>3'b101: reserved<br/>3'b111: reserved</pre>                       |
| 2:0   | RW   | 0×0         | <pre>gpio2_c5_sel<br/>GPIO2C[5] iomux select<br/>3'b000: gpio<br/>3'b001: i2s1_sdio2<br/>3'b010: pdm_sdi2m0<br/>3'b011: card_detm1<br/>3'b100: reserved<br/>3'b101: reserved<br/>3'b101: reserved<br/>3'b111: reserved</pre> |

### **GRF\_GPIO2D\_IOMUX**

Address: Operational Base + offset (0x0034) GPIO2D iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 |      | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |

| Bit   | Attr | Reset Value | Description                                                                                                              |
|-------|------|-------------|--------------------------------------------------------------------------------------------------------------------------|
| 15:14 | RW   | 0×0         | gpio2_d7_sel<br>GPIO2D[7] iomux select<br>2'b00: gpio<br>2'b01: reserved<br>2'b10: emmc_d4<br>2'b11: reserved            |
| 13:12 | RW   | 0x0         | gpio2_d6_sel<br>GPIO2D[6] iomux select<br>2'b00: gpio<br>2'b01:reserved<br>2'b10: emmc_d3<br>2'b11: reserved             |
| 11:10 | RW   | 0×0         | gpio2_d5_sel<br>GPIO2D[5] iomux select<br>2'b00: gpio<br>2'b01: reserved<br>2'b10: emmc_d2<br>2'b11: reserved            |
| 9:8   | RW   | 0×0         | gpio2_d4_sel<br>GPIO2D[4] iomux select<br>2'b00: gpio<br>2'b01: reserved<br>2'b10: emmc_d1<br>2'b11: reserved            |
| 7:6   | RO   | 0x0         | reserved                                                                                                                 |
| 5:4   |      | 0x0         | <pre>gpio2_d2_sel GPIO2D[2] iomux select 2'b00: gpio 2'b01: usb2otg_drvbus 2'b10: reserved 2'b11: reserved</pre>         |
| 3:2   | RW   | 0×0         | gpio2_d1_sel<br>GPIO2D[1] iomux select<br>2'b00: gpio<br>2'b01: i2c0_sda<br>2'b10: fephyled_rxm1<br>2'b11: fephyled_txm1 |
| 1:0   | RW   | 0x0         | gpio2_d0_sel<br>GPIO2D[0] iomux select<br>2'b00: gpio<br>2'b01: i2c0_scl<br>2'b10: fephy_led_linkm1<br>2'b11: reserved   |

## **GRF\_GPIO3AL\_IOMUX**

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

Address: Operational Base + offset (0x0038)

| GPIO3AL | iomux | control |
|---------|-------|---------|
|         |       |         |

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                          |
|-------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software;</pre> |
|       |      |                    | When bit 31=1, bit 15 can be written by software.<br>When bit 31=0, bit 15 cannot be written by software;                                                                                                                                            |
| 15    | RO   | 0x0                | reserved                                                                                                                                                                                                                                             |
| 14:12 | RW   | 0×0                | <pre>gpio3_a4_sel<br/>GPIO3A[4] iomux select<br/>3'b000: gpio<br/>3'b001: tsp_d0<br/>3'b010: cif_data0<br/>3'b011: sdmmc0ext_d0<br/>3'b100: uart1_tx<br/>3'b100: uart1_tx<br/>3'b101: usb3phy_debug4<br/>3'b110: reserved<br/>3'b111: reserved</pre> |
| 11:9  | RO   | 0x0                | reserved                                                                                                                                                                                                                                             |
| 8:6   | RW   | 0×0                | <pre>gpio3_a2_sel<br/>GPIO3A[2] iomux select<br/>3'b000: gpio<br/>3'b001: tsp_clk<br/>3'b010: cif_clkin<br/>3'b011: sdmmc0ext_clkout<br/>3'b101: spi_rxdm2<br/>3'b101: usb3phy_debug3<br/>3'b110: i2s2_sdim1<br/>3'b111: reserved</pre>              |
| 5:3   | RW   | 0x0                | <pre>gpio3_a1_sel<br/>GPIO3A[1] iomux select<br/>3'b000: gpio<br/>3'b001: tsp_fail<br/>3'b010: cif_href<br/>3'b011: sdmmc0ext_det<br/>3'b101: spi_txdm2<br/>3'b101: usb3phy_debug2<br/>3'b110: i2s2_sdom1<br/>3'b111: reserved</pre>                 |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                             |
|-----|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:0 | RW   | 0×0         | <pre>gpio3_a0_sel<br/>GPIO3A[0] iomux select<br/>3'b000: gpio<br/>3'b001: tsp_valid<br/>3'b010: cif_vsync<br/>3'b011: sdmmc0ext_cmd<br/>3'b100: spi_clkm2<br/>3'b101: usb3phy_debug1<br/>3'b110: i2s2_sclkm1<br/>3'b111: reserved</pre> |

# **GRF\_GPIO3AH\_IOMUX**

Address: Operational Base + offset (0x003c) GPIO3AH iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | WO   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software. |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
| 15:9  | RO   | 0x0                | reserved                                             |
|       |      |                    | gpio3_a7_sel                                         |
|       |      |                    | GPIO3A[7] iomux select                               |
|       |      |                    | 3'b000: gpio                                         |
|       |      |                    | 3'b001: tsp_d3                                       |
| 8:6   | RW   | 0x0                | 3'b010: cif_data3                                    |
|       |      |                    | 3'b011: sdmmc0ext_d3                                 |
|       |      |                    | 3'b100: uart1_ctsn                                   |
|       |      |                    | 3'b101: usb3phy_debug7                               |
|       |      |                    | 3'b110: reserved                                     |
|       |      |                    | 3'b111: reserved                                     |
|       |      |                    | gpio3_a6_sel                                         |
|       |      |                    | GPIO3A[6] iomux select                               |
|       |      |                    | 3'b000: gpio                                         |
|       |      |                    | 3'b001: tsp_d2                                       |
| 5:3   | RW   | 0x0                | 3'b010: cif_data2                                    |
|       |      |                    | 3'b011: sdmmc0ext_d2                                 |
|       |      |                    | 3'b100: uart1_rx<br>3'b101: usb3phy_debug6           |
|       |      |                    | 3'b110: reserved                                     |
|       |      |                    | 3'b111: reserved                                     |
|       |      |                    |                                                      |

| gpio3_a5_sel<br>GPIO3A[5] iomux select                                                                                                                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2:0 RW 0x0<br>3'b000: gpio<br>3'b001: tsp_d1<br>3'b010: cif_data1<br>3'b011: sdmmc0ext_d1<br>3'b100: uart1_rtsn<br>3'b101: usb3phy_debug5<br>3'b110: reserved<br>3'b111: reserved |  |

# **GRF\_GPIO3BL\_IOMUX**

Address: Operational Base + offset (0x0040) GPIO3BL iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:3  | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |
| 2:0   | RW   | 0×0                | <pre>gpio3_b0_sel<br/>GPIO3B[0] iomux select<br/>3'b000: gpio<br/>3'b001: tsp_d4<br/>3'b010: cif_data4<br/>3'b011: spi_csn0m2<br/>3'b100: i2s2_lrcktxm1<br/>3'b101: usb3phy_debug8<br/>3'b110: i2s2_lrckrxm1<br/>3'b111: reserved</pre>                                                                                                                     |

# **GRF\_GPIO3BH\_IOMUX**

Address: Operational Base + offset (0x0044) GPIO3BH iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |

# GRF\_GPIO3C\_IOMUX

Address: Operational Base + offset (0x0048) GPIO3C iomux control

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                              |
|-------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 |      | 0×0000      | write_enable<br>Bit0~15 write enable<br>"When bit16=1, bit0 can be written by software.<br>When bit16=0, bit 0 cannot be written by software;<br>When bit 17=1, bit 1 can be written by software.<br>When bit 17=0, bit 1 cannot be written by software; |
|       |      |             | When bit $31=1$ , bit 15 can be written by software.                                                                                                                                                                                                     |
| 15.14 |      | 0.40        | When bit 31=0, bit 15 cannot be written by software;                                                                                                                                                                                                     |
| 15:14 | кO   | 0x0         | reserved                                                                                                                                                                                                                                                 |
| 13:12 | RW   | 0×0         | <pre>gpio3_c6_sel<br/>GPIO3C[6] iomux select<br/>2'b00: gpio<br/>2'b01: reserved<br/>2'b10: emmc_pwren<br/>2'b11: reserved</pre>                                                                                                                         |
| 11:10 | RW   | 0×0         | gpio3_c5_sel<br>GPIO3C[5] iomux select<br>2'b00: gpio<br>2'b01:reserved<br>2'b10: emmc_clkout<br>2'b11: reserved                                                                                                                                         |
| 9:8   | RO   | 0x0         | reserved                                                                                                                                                                                                                                                 |
| 7:6   | RW   | 0×0         | gpio3_c3_sel<br>GPIO3C[3] iomux select<br>2'b00: gpio<br>2'b01: reserved<br>2'b10: emmc_cmd<br>2'b11: reserved                                                                                                                                           |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                   |
|-----|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 5:4 | RW   | 0×0                | gpio3_c2_sel<br>GPIO3C[2] iomux select<br>2'b00: gpio<br>2'b01: reserved<br>2'b10: emmc_d7<br>2'b11: reserved                 |
| 3:2 | RW   | 0x0                | <pre>gpio3_c1_sel<br/>GPIO3C[1] iomux select<br/>2'b00: gpio<br/>2'b01: reserved<br/>2'b10: emmc_d6<br/>2'b11: reserved</pre> |
| 1:0 | RW   | 0×0                | gpio3_c0_sel<br>GPIO3C[0] iomux select<br>2'b00: gpio<br>2'b01: reserved<br>2'b10: emmc_d5<br>2'b11: reserved                 |

## **GRF\_GPIO3D\_IOMUX**

Address: Operational Base + offset (0x004c) GPIO3D iomux control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |

# **GRF\_COM\_IOMUX**

Address: Operational Base + offset (0x0050) GRF common iomux control

| Bit          | Attr | Reset Value | Description                                                                                                                                                                                                 |
|--------------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |      |             | write_enable                                                                                                                                                                                                |
|              |      |             | Bit0~15 write enable                                                                                                                                                                                        |
|              |      |             | "When bit16=1, bit0 can be written by software.                                                                                                                                                             |
|              |      |             | When bit16=0, bit 0 cannot be written by software;                                                                                                                                                          |
| 31:16        | WO   | 0x0000      | When bit 17=1, bit 1 can be written by software.                                                                                                                                                            |
|              |      |             | When bit 17=0, bit 1 cannot be written by software;                                                                                                                                                         |
|              |      |             |                                                                                                                                                                                                             |
|              |      |             | When bit $31=1$ , bit 15 can be written by software.                                                                                                                                                        |
|              |      |             | When bit 31=0, bit 15 cannot be written by software;                                                                                                                                                        |
| 15:13        | RO   | 0x0         | reserved                                                                                                                                                                                                    |
|              |      |             | grf_clk_out_gmacm1_sel                                                                                                                                                                                      |
|              |      |             | gmac m1 io select                                                                                                                                                                                           |
| 12           | RW   | 0x0         | 0:before optimization                                                                                                                                                                                       |
|              |      |             | 1:after optimization                                                                                                                                                                                        |
|              |      |             |                                                                                                                                                                                                             |
|              |      |             | grf_clk_out_gmacm2_sel                                                                                                                                                                                      |
| 11           | RW   | 0x0         | clk_out_gmacm2 select                                                                                                                                                                                       |
|              |      |             | 0:before optimization                                                                                                                                                                                       |
|              |      |             | 1:after optimization                                                                                                                                                                                        |
|              |      |             | grf_gmac_m1_sel                                                                                                                                                                                             |
| 10           | RW   | 0x0         | gmac m1 io select                                                                                                                                                                                           |
|              |      |             | 0:before optimization                                                                                                                                                                                       |
|              |      |             | 1:after optimization                                                                                                                                                                                        |
|              |      |             | grf_cif_io_sel                                                                                                                                                                                              |
| 9            | RW   | 0x0         | cif_io select                                                                                                                                                                                               |
|              |      |             | 0: m0 mux solution<br>1: m1 mux solution                                                                                                                                                                    |
|              |      |             |                                                                                                                                                                                                             |
|              |      |             | grf_tsp_io_sel                                                                                                                                                                                              |
| 8            | RW   | 0x0         | tsp_io select<br>0: m0 mux solution                                                                                                                                                                         |
|              |      |             | 1: m1 mux solution                                                                                                                                                                                          |
|              |      |             | grf_card_io_sel                                                                                                                                                                                             |
|              |      |             | card io select                                                                                                                                                                                              |
| 7            | RW   | 0x0         | 0: m0 mux solution                                                                                                                                                                                          |
|              |      |             | 1: m1 mux solution                                                                                                                                                                                          |
|              |      |             |                                                                                                                                                                                                             |
|              |      |             | -                                                                                                                                                                                                           |
| 6            | RW   | 0x0         | 0: m0 mux solution                                                                                                                                                                                          |
|              |      |             | 1: m1 mux solution                                                                                                                                                                                          |
|              |      |             | grf_con_spi_io_sel                                                                                                                                                                                          |
|              |      |             | spi_io_sel bit control                                                                                                                                                                                      |
| <b>F</b> . 4 |      | 00          | 2'b00: m0 mux solution                                                                                                                                                                                      |
| 5:4          | КW   | RW 0x0      | 2'b01: m1 mux solution                                                                                                                                                                                      |
|              |      |             | 2'b10: m2 mux solution                                                                                                                                                                                      |
|              |      |             | 2'b11: reserved                                                                                                                                                                                             |
| 6<br>5:4     | RW   | 0×0<br>0×0  | grf_i2s2_io_sel<br>i2s2_io select<br>0: m0 mux solution<br>1: m1 mux solution<br>grf_con_spi_io_sel<br>spi_io_sel bit control<br>2'b00: m0 mux solution<br>2'b01: m1 mux solution<br>2'b10: m2 mux solution |

| Bit | Attr | Reset Value | Description                                               |
|-----|------|-------------|-----------------------------------------------------------|
|     |      |             | grf_con_pdm_iomux_sel                                     |
| 3   |      | 0x0         | pdm_iomux_sel bit control                                 |
| 5   | RW   | 0.00        | 0: m0 mux solution                                        |
|     |      |             | 1: m1 mux solution                                        |
|     |      |             | grf_con_gmac_iomux_sel                                    |
| 2   | RW   | W 0×0       | gmac_iomux_sel bit control                                |
| Z   | ĸvv  |             | 0: m0 mux solution                                        |
|     |      |             | 1: m1 mux solution                                        |
|     |      | RW 0x0      | grf_uart_dbg_sel                                          |
|     |      |             | grf_con_iomux_uartdbgsel                                  |
|     |      |             | when grf_con_iomux_uartdbgena is 1, uartdbg source select |
| 1:0 | RW   |             | 2'b00: m0                                                 |
|     |      |             | 2'b01: m1                                                 |
|     |      |             | 2'b10: usb2phy                                            |
|     |      |             | 2'b11: reserved                                           |

# GRF\_GPIO0A\_P

Address: Operational Base + offset (0x0100) GPIO0A PU/PD control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x566a             | <pre>gpio0_a_p gpio0_a_p gpio0a bit control GPIO0A PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>                                                                                                                       |

#### GRF\_GPIO0D\_P

Address: Operational Base + offset (0x010c) GPIOOD PU/PD control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0xaaaa             | <pre>gpio0_d_p gpio0_d_p gpio0d bit control GPIO0D PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>                                                                                                                       |

## GRF\_GPIO1A\_P

Address: Operational Base + offset (0x0110) GPIO1A PU/PD control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0xa555             | <pre>gpio1_a_p gpio1_a_p gpio1a bit control GPIO1A PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>                                                                                                                       |

# GRF\_GPIO1B\_P

Address: Operational Base + offset (0x0114) GPIO1B PU/PD control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x56a5             | <pre>gpio1_b_p gpio1_b bit control GPIO1B PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>                                                                                                                                |

# GRF\_GPIO1C\_P

Address: Operational Base + offset (0x0118) GPIO1C PU/PD control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x9a65             | <pre>gpio1_c_p gpio1_c bit control GPIO1C PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>                                                                                                                                |

# GRF\_GPIO1D\_P

Address: Operational Base + offset (0x011c) GPIO1D PU/PD control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0xaaaa             | <pre>gpio1_d_p gpio1_d bit control GPIO1D PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>                                                                                                                                |

## GRF\_GPIO2A\_P

Address: Operational Base + offset (0x0120) GPIO2A PU/PD control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x9556             | <pre>gpio2_a_p gpio2_a bit control GPIO2A PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>                                                                                                                                |

# GRF\_GPIO2B\_P

Address: Operational Base + offset (0x0124) GPIO2B PU/PD control

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x959a      | <pre>gpio2_b_p gpio2_b bit control GPIO2B PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>                                                                                                                                |

## GRF\_GPIO2C\_P

Address: Operational Base + offset (0x0128) GPIO2C PU/PD control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x5565             | <pre>gpio2_c_p gpio2_c bit control GPIO2C PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>                                                                                                                                |

# GRF\_GPIO2D\_P

Address: Operational Base + offset (0x012c) GPIO2D PU/PD control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x55a5             | <pre>gpio2_d_p gpio2_d bit control GPIO2D PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>                                                                                                                                |

## GRF\_GPIO3A\_P

Address: Operational Base + offset (0x0130) GPIO3A PU/PD control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x55a5             | <pre>gpio3_a_p gpio3_a bit control GPIO3A PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>                                                                                                                                |

# GRF\_GPIO3B\_P

Address: Operational Base + offset (0x0134) GPIO3B PU/PD control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x5aaa             | <pre>gpio3_b_p gpio3_b bit control GPIO3B PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>                                                                                                                                |

#### GRF\_GPIO3C\_P

Address: Operational Base + offset (0x0138) GPIO3C PU/PD control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x6555             | gpio3_c_p<br>gpio3c bit control<br>GPIO3C PU/PD programmation section, every GPIO bit<br>corresponding to 2bits<br>2'b00: Z(Normal operation);<br>2'b01: weak 1(pull-up);<br>2'b10: weak 0(pull_down);<br>2'b11: Repeater(Bus keeper)                                                                                                                       |

# GRF\_GPIO0A\_E

Address: Operational Base + offset (0x0200) GPIO0A drive strength control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x8011             | gpio0_a_e<br>gpio0a bit control<br>GPIO0A drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b11: 4mA<br>2'b11: 12mA                                                                                                                                                                                         |

# GRF\_GPIO0D\_E

Address: Operational Base + offset (0x020c) GPIO0D drive strength control

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x005a      | gpio0_d_e<br>gpio0d bit control<br>GPIO0D drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b11: 4mA<br>2'b11: 12mA                                                                                                                                                                                         |

# GRF\_GPIO1A\_E

Address: Operational Base + offset (0x0210) GPIO1A drive strength control

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0xaaaa      | gpio1_a_e<br>gpio1a bit control<br>GPIO1A drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b10: 8mA<br>2'b10: 8mA                                                                                                                                                                                          |

#### **GRF\_GPIO1B\_E**

Address: Operational Base + offset (0x0214)

GPIO1B drive strength control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | WO   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0xaa2a             | gpio1_b_e<br>gpio1b bit control<br>GPIO1B drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b11: 4mA<br>2'b11: 12mA                                                                                                                                                                                         |

# GRF\_GPIO1C\_E

Address: Operational Base + offset (0x0218) GPIO1C drive strength control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0xa88a             | gpio1_c_e<br>gpio1c bit control<br>GPIO1C drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b11: 4mA<br>2'b11: 12mA                                                                                                                                                                                         |

# GRF\_GPIO1D\_E

Address: Operational Base + offset (0x021c)

GPIO1D drive strength control

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x005a      | gpio1_d_e<br>gpio1d bit control<br>GPIO1D drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b11: 4mA<br>2'b11: 12mA                                                                                                                                                                                         |

# GRF\_GPIO2A\_E

Address: Operational Base + offset (0x0220) GPIO2A drive strength control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x0000             | gpio2_a_e<br>gpio2a bit control<br>GPIO2A drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b11: 4mA<br>2'b11: 12mA                                                                                                                                                                                         |

# GRF\_GPIO2B\_E

Address: Operational Base + offset (0x0224) GPIO2B drive strength control

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x4145      | gpio2_b_e<br>gpio2b bit control<br>GPIO2B drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b11: 4mA<br>2'b11: 12mA                                                                                                                                                                                         |

# GRF\_GPIO2C\_E

Address: Operational Base + offset (0x0228) GPIO2C drive strength control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x5515             | gpio2_c_e<br>gpio2c bit control<br>GPIO2C drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b11: 4mA<br>2'b11: 12mA                                                                                                                                                                                         |

#### GRF\_GPIO2D\_E

Address: Operational Base + offset (0x022c)

GPIO2D drive strength control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0xaa01             | gpio2_d_e<br>gpio2d bit control<br>GPIO2D drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b11: 4mA<br>2'b11: 12mA                                                                                                                                                                                         |

#### GRF\_GPIO3A\_E

Address: Operational Base + offset (0x0230) GPIO3A drive strength control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0xaa22             | gpio3_a_e<br>gpio3a bit control<br>GPIO3A drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b11: 4mA<br>2'b11: 12mA                                                                                                                                                                                         |

## GRF\_GPIO3B\_E

Address: Operational Base + offset (0x0234) GPIO3B drive strength control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0×0000             | gpio3_b_e<br>gpio3b bit control<br>GPIO3B drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b01: 4mA<br>2'b10: 8mA<br>2'b11: 12mA                                                                                                                                                                           |

# GRF\_GPIO3C\_E

Address: Operational Base + offset (0x0238) GPIO3C drive strength control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0xaaaa             | gpio3_c_e<br>gpio3c bit control<br>GPIO3C drive strength control, every GPIO bit corresponding to<br>2bits<br>2'b00: 2mA<br>2'b01: 4mA<br>2'b11: 4mA<br>2'b11: 12mA                                                                                                                                                                                         |

# GRF\_GPIO0L\_SR

Address: Operational Base + offset (0x0300)

GPIO0 A/B SR control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:8  | RW   | 0x00               | grf_gpio0b_sr<br>GPIO0B slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |
| 7:0   | RW   | 0×00               | grf_gpio0a_sr<br>GPIO0A slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |

# GRF\_GPIO0H\_SR

Address: Operational Base + offset (0x0304) GPIO0 C/D SR control

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:8  | RW   | 0×00        | grf_gpio0d_sr<br>GPIO0D slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |
| 7:0   | RW   | 0×00        | grf_gpio0c_sr<br>GPIO0C slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |

## GRF\_GPIO1L\_SR

Address: Operational Base + offset (0x0308) GPIO1 A/B SR control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:8  | RW   | 0x00               | grf_gpio1b_sr<br>GPIO1B slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |
| 7:0   | RW   | 0x00               | grf_gpio1a_sr<br>GPIO1A slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |

#### GRF\_GPI01H\_SR

Address: Operational Base + offset (0x030c) GPIO1 C/D SR control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:8  | RW   | 0×00               | grf_gpio1d_sr<br>GPIO1D slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |
| 7:0   | RW   | 0×00               | grf_gpio1c_sr<br>GPIO1C slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |

## GRF\_GPIO2L\_SR

Address: Operational Base + offset (0x0310) GPIO2 A/B SR control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:8  | RW   | 0x00               | grf_gpio2b_sr<br>GPIO2B slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |
| 7:0   | RW   | 0×00               | grf_gpio2a_sr<br>GPIO2A slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |

#### GRF\_GPIO2H\_SR

Address: Operational Base + offset (0x0314) GPIO2 C/D SR control

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:8  | RW   | 0x00        | grf_gpio2d_sr<br>GPIO2D slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |
| 7:0   | RW   | 0×00        | grf_gpio2c_sr<br>GPIO2C slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |

## GRF\_GPIO3L\_SR

Address: Operational Base + offset (0x0318) GPIO3 A/B SR control

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:8  | RW   | 0x00               | grf_gpio3b_sr<br>GPIO3B slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |
| 7:0   | RW   | 0×00               | grf_gpio3a_sr<br>GPIO3A slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |

#### GRF\_GPIO3H\_SR

Address: Operational Base + offset (0x031c) GPIO3 C/D SR control

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:8  | RW   | 0×00        | grf_gpio3d_sr<br>GPIO3D slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |
| 7:0   | RW   | 0×00        | grf_gpio3c_sr<br>GPIO3C slew rate control for each bit<br>1'b0: slow(half frequency)<br>1'b1: fast                                                                                                                                                                                                                                                          |

#### GRF\_GPIOOL\_SMT

Address: Operational Base + offset (0x0380) GPIO0 A/B smitter control register

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | WO   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software. |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
|       |      |                    | grf_gpio0b_smt                                       |
|       |      |                    | gpio0b_smt bit control                               |
| 15:8  | RW   | 0x00               | Schmitt trigger control.                             |
|       |      |                    | 0: No hysteresis                                     |
|       |      |                    | 1: Schmitt trigger enabled.                          |
|       |      |                    | grf_gpio0a_smt                                       |
|       |      |                    | gpio0a_smt bit control                               |
| 7:0   | RW   | 0x00               | Schmitt trigger control.                             |
|       |      |                    | 0: No hysteresis                                     |
|       |      |                    | 1: Schmitt trigger enabled.                          |

# GRF\_GPIO0H\_SMT

Address: Operational Base + offset (0x0384)

GPIO0 C/D smitter control register

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:8  | RW   | 0×00               | grf_gpio0d_smt<br>gpio0d_smt bit control<br>Schmitt trigger control.<br>0: No hysteresis<br>1: Schmitt trigger enabled.                                                                                                                                                                                                                                     |
| 7:0   | RW   | 0×00               | grf_gpio0c_smt<br>gpio0c_smt bit control<br>Schmitt trigger control.<br>0: No hysteresis<br>1: Schmitt trigger enabled.                                                                                                                                                                                                                                     |

## GRF\_GPIO1L\_SMT

Address: Operational Base + offset (0x0388)

| GPIO1 A/B smitter control register |      |                    |              |             |  |  |  |
|------------------------------------|------|--------------------|--------------|-------------|--|--|--|
| Bit                                | Attr | <b>Reset Value</b> |              | Description |  |  |  |
|                                    |      |                    | write_enable |             |  |  |  |

|       |    |        | write_enable                                         |
|-------|----|--------|------------------------------------------------------|
|       |    |        | Bit0~15 write enable                                 |
|       |    |        | "When bit16=1, bit0 can be written by software.      |
|       |    |        | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | WO | 0x0000 | When bit 17=1, bit 1 can be written by software.     |
|       |    |        | When bit 17=0, bit 1 cannot be written by software;  |
|       |    |        |                                                      |
|       |    |        | When bit 31=1, bit 15 can be written by software.    |
|       |    |        | When bit 31=0, bit 15 cannot be written by software; |
|       |    |        | grf_gpio1b_smt                                       |
|       |    |        | gpio1b_smt bit control                               |
| 15:8  | RW | 0x00   | Schmitt trigger control.                             |
|       |    |        | 0: No hysteresis                                     |
|       |    |        | 1: Schmitt trigger enabled.                          |
|       |    |        | grf_gpio1a_smt                                       |
|       |    |        | gpio1a_smt bit control                               |
| 7:0   | RW | 0x00   | Schmitt trigger control.                             |
|       |    |        | 0: No hysteresis                                     |
|       |    |        | 1: Schmitt trigger enabled.                          |

# GRF\_GPIO1H\_SMT

Address: Operational Base + offset (0x038c) GPIO1 C/D smitter control register

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                            |
|-------|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software.</pre> |
| 15:8  | RW   | 0x00               | When bit 31=0, bit 15 cannot be written by software;<br>grf_gpio1d_smt<br>gpio1d_smt bit control<br>Schmitt trigger control.<br>0: No hysteresis<br>1: Schmitt trigger enabled.                                                                                                                        |
| 7:0   | RW   | 0×00               | grf_gpio1c_smt<br>gpio1c_smt bit control<br>Schmitt trigger control.<br>0: No hysteresis<br>1: Schmitt trigger enabled.                                                                                                                                                                                |

#### GRF\_GPIO2L\_SMT

Address: Operational Base + offset (0x0390) GPIO2 A/B smitter control register

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | WO   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software. |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
|       |      |                    | grf_gpio2b_smt                                       |
|       |      |                    | gpio2b_smt bit control                               |
| 15:8  | RW   | 0x00               | Schmitt trigger control.                             |
|       |      |                    | 0: No hysteresis                                     |
|       |      |                    | 1: Schmitt trigger enabled.                          |

| Bit | Attr | <b>Reset Value</b> | Description                 |
|-----|------|--------------------|-----------------------------|
|     |      |                    | grf_gpio2a_smt              |
|     |      |                    | gpio2a_smt bit control      |
| 7:0 | RW   | 0x00               | Schmitt trigger control.    |
|     |      |                    | 0: No hysteresis            |
|     |      |                    | 1: Schmitt trigger enabled. |

## GRF\_GPIO2H\_SMT

Address: Operational Base + offset (0x0394) GPIO2 C/D smitter control register

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:8  | RW   | 0×00               | grf_gpio2d_smt<br>gpio2d_smt bit control<br>Schmitt trigger control.<br>0: No hysteresis<br>1: Schmitt trigger enabled.                                                                                                                                                                                                                                     |
| 7:0   | RW   | 0x00               | grf_gpio2c_smt<br>gpio2c_smt bit control<br>Schmitt trigger control.<br>0: No hysteresis<br>1: Schmitt trigger enabled.                                                                                                                                                                                                                                     |

# GRF\_GPIO3L\_SMT

Address: Operational Base + offset (0x0398) GPIO3 A/B smitter control register

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |

| Bit  | Attr | Reset Value | Description                 |
|------|------|-------------|-----------------------------|
|      |      |             | grf_gpio3b_smt              |
|      |      |             | gpio3b_smt bit control      |
| 15:8 | RW   | 0×00        | Schmitt trigger control.    |
|      |      |             | 0: No hysteresis            |
|      |      |             | 1: Schmitt trigger enabled. |
|      |      |             | grf_gpio3a_smt              |
|      |      | 0×00        | gpio3a_smt bit control      |
| 7:0  | RW   |             | Schmitt trigger control.    |
|      |      |             | 0: No hysteresis            |
|      |      |             | 1: Schmitt trigger enabled. |

#### GRF\_GPIO3H\_SMT

Address: Operational Base + offset (0x039c) GPIO3 C/D smitter control register

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:8  | RW   | 0×00               | grf_gpio3d_smt<br>gpio3d_smt bit control<br>Schmitt trigger control.<br>0: No hysteresis<br>1: Schmitt trigger enabled.                                                                                                                                                                                                                                     |
| 7:0   | RW   | 0x00               | grf_gpio3c_smt<br>gpio3c_smt bit control<br>Schmitt trigger control.<br>0: No hysteresis<br>1: Schmitt trigger enabled.                                                                                                                                                                                                                                     |

# GRF\_SOC\_CON0

Address: Operational Base + offset (0x0400) SOC control register0

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RO   | 0x0000      | soc_con0<br>Reserved<br>reserved                                                                                                                                                                                                                                                                                                                            |

Address: Operational Base + offset (0x0404) SOC control register1

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | WO   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software. |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
|       |      |                    | soc_con1                                             |
| 15:0  | RW   | 0x0000             | Reserved                                             |
|       |      |                    | reserved                                             |

# GRF\_SOC\_CON2

Address: Operational Base + offset (0x0408) SOC control register2

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 |      | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |

| Bit | Attr         | <b>Reset Value</b> | Description                                              |
|-----|--------------|--------------------|----------------------------------------------------------|
|     |              |                    | grf_con_i2s1_src_sel                                     |
| 15  | <b>D</b> 14/ |                    | i2s1_src_sel bit control                                 |
|     | RW           | 0×0                | 1'b1 I2S1 is controll is connected with ACODEC PHY;      |
|     |              |                    | 1'b0: I2S1 is connected with IO                          |
|     |              |                    | grf_con_i2s_acodec_en                                    |
|     |              |                    | i2s_acodec_en bit control                                |
| 14  | RW           | 0x0                | i2s_8ch iomux control                                    |
|     |              |                    | 1:connect with acodec                                    |
|     |              |                    | 0:connect with external io                               |
|     |              |                    | grf_con_ddrphy_bufferen_sel                              |
| 10  |              |                    | ddrphy_bufferen_sel bit control                          |
| 13  | RW           | 0×0                | 1'b1: ddrphy_bufferen from grf_con_ddrphy_bufferen_core; |
|     |              |                    | 1'b0: ddrphy_bufferen from pmu                           |
|     |              |                    | grf_con_ddrphy_bufferen_core                             |
| 10  |              |                    | ddrphy_bufferen_core bit control                         |
| 12  | RW           | 0×1                | 1'b1: enable ddrphy_bufferen;                            |
|     |              |                    | 1'b0: disable ddrphy_bufferen                            |
|     |              |                    | grf_con_hdmi_sdain_msk                                   |
|     |              |                    | hdmi_sdain_msk bit control                               |
| 11  | RW           | 0×0                | hdmi_sdain mask control                                  |
|     |              |                    | 1: mask disable                                          |
|     |              |                    | 0: mask enable                                           |
|     |              |                    | grf_con_hdmi_sclin_msk                                   |
|     |              |                    | hdmi_sclin_msk bit control                               |
| 10  | RW           | 0x0                | hdmi_sclin mask control                                  |
|     |              |                    | 1: mask disable                                          |
|     |              |                    | 0: mask enable                                           |
|     |              |                    | grf_con_hdmi_cecin_msk                                   |
|     |              |                    | hdmi_cecin_msk bit control                               |
| 9   | RW           | 0×0                | hdmi_cecin mask control                                  |
|     |              |                    | 0: mask disable                                          |
|     |              |                    | 1: mask enable                                           |
|     |              |                    | grf_con_saradc_sel                                       |
|     |              |                    | saradc_sel bit control                                   |
| 8   | RW           | 0×0                | SARADC controller selection                              |
|     |              |                    | 1'b1: select saradc auto controller                      |
|     |              |                    | 1'b0: select orignal saradc controller                   |
|     |              |                    | grf_con_hdmisda5v_gpio_iout                              |
|     |              | 0×0                | hdmisda5v_gpio_iout bit control                          |
| 7   | RW           |                    | IO PAD output data                                       |
|     |              |                    | 1'b0: set IO output to 0;                                |
|     |              |                    | 1'b1: set IO output to 1;                                |

| Bit | Attr | <b>Reset Value</b> | Description                      |
|-----|------|--------------------|----------------------------------|
|     |      |                    | grf_con_hdmisda5v_gpio_ioe_      |
|     |      |                    | hdmisda5v_gpio_ioe_ bit control  |
| 6   | RW   | 0x0                | IO Pad output enable bit control |
|     |      |                    | 1'b1: set IO as input;           |
|     |      |                    | 1'b0: set IO as output;          |
|     |      |                    | grf_con_hdmiscl5v_gpio_iout      |
|     |      |                    | hdmiscl5v_gpio_iout bit control  |
| 5   | RW   | 0x0                | IO PAD output data               |
|     |      |                    | 1'b0: set IO output to 0;        |
|     |      |                    | 1'b1: set IO output to 1;        |
|     |      |                    | grf_con_hdmiscl5v_gpio_ioe_      |
|     |      |                    | hdmiscl5v_gpio_ioe_ bit control  |
| 4   | RW   | 0x0                | IO Pad output enable bit control |
|     |      |                    | 1'b1: set IO as input;           |
|     |      |                    | 1'b0: set IO as output;          |
|     |      |                    | grf_con_hdmihpd5v_gpio_iout      |
|     |      |                    | hdmihpd5v_gpio_iout bit control  |
| 3   | RW   | 0x0                | IO PAD output data               |
|     |      |                    | 1'b0: set IO output to 0;        |
|     |      |                    | 1'b1: set IO output to 1;        |
|     |      |                    | grf_con_hdmihpd5v_gpio_ioe_      |
|     |      |                    | hdmihpd5v_gpio_ioe_ bit control  |
| 2   | RW   | 0x0                | IO Pad output enable bit control |
|     |      |                    | 1'b1: set IO as input;           |
|     |      |                    | 1'b0: set IO as output;          |
|     |      |                    | grf_con_hdmicec5v_gpio_iout      |
|     |      |                    | hdmicec5v_gpio_iout bit control  |
| 1   | RW   | 0x0                | IO PAD output data               |
|     |      |                    | 1'b0: set IO output to 0;        |
|     |      |                    | 1'b1: set IO output to 1;        |
|     |      |                    | grf_con_hdmicec5v_gpio_ioe_      |
|     |      |                    | hdmicec5v_gpio_ioe_ bit control  |
| 0   | RW   | 0x0                | IO Pad output enable bit control |
|     |      |                    | 1'b1: set IO as input;           |
|     |      |                    | 1'b0: set IO as output;          |

Address: Operational Base + offset (0x040c) SOC control register3

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre>                                                                      |
| 15    | RW   | 0×0         | <pre>grf_con_hdmisda5v_gpio_sel<br/>hdmisda5v_gpio_sel bit control<br/>"if grf_con_hdmisda5v_gpio_sel == 0 and grf_con_i2c3_sda5v<br/>== 0, SDA5V is controlled by HDMI controller;<br/>if grf_con_hdmisda5v_gpio_sel == 0 and grf_con_i2c3_sda5v ==<br/>1, SDA5V is controlled by I2C3 controller;<br/>if grf_con_hdmisda5v_gpio_sel == 1 and no matter<br/>grf_con_i2c3_sda5v what is, SDA5V is controlled by grf;<br/>"</pre> |
| 14    | RW   | 0×0         | <pre>grf_con_hdmiscl5v_gpio_sel<br/>hdmiscl5v_gpio_sel bit control<br/>"if grf_con_hdmiscl5v_gpio_sel == 0 and grf_con_i2c3_scl5v ==<br/>0, SCL5V is controlled by HDMI controller;<br/>if grf_con_hdmiscl5v_gpio_sel == 0 and grf_con_i2c3_scl5v ==<br/>1, SCL5V is controlled by I2C3 controller;<br/>if grf_con_hdmiscl5v_gpio_sel == 1 and no matter<br/>grf_con_i2c3_scl5v what is, SCL5V is controlled by grf;<br/>"</pre> |
| 13    | RW   | 0×0         | grf_con_hdmihpd5v_gpio_sel<br>hdmihpd5v_gpio_sel bit control<br>1'b1: HPD5V io is controlled by grf_con_hdmihpd5v_gpio_ioe_<br>and grf_con_hdmihpd5v_gpio_iout;<br>1'b0: HPD5V is controlled by HDMI controller                                                                                                                                                                                                                  |
| 12    | RW   | 0×0         | grf_con_hdmicec5v_gpio_sel<br>hdmicec5v_gpio_sel bit control<br>1'b1: CEC5V io is controlled by grf_con_hdmicec5v_gpio_ioe_<br>and grf_con_hdmicec5v_gpio_iout;<br>1'b0: CEC5V is controlled by HDMI controller                                                                                                                                                                                                                  |
| 11    | RW   | 0×0         | grf_con_h265enc_work_flag<br>h265enc_work_flag bit control<br>1'b1: sram is controlled by h265 encoder<br>1'b0: sram is controlled by h264 encoder                                                                                                                                                                                                                                                                               |

| Bit  | Attr | Reset Value | Description                                                        |
|------|------|-------------|--------------------------------------------------------------------|
|      |      |             | grf_vop_standby_sel                                                |
|      |      |             | vop_standby select                                                 |
|      |      |             | dcf vop standby source                                             |
| 10:9 | RW   | 0x0         | 2'b00: from vop standby;                                           |
|      |      |             | 2'b01: from vop aclk en;                                           |
|      |      |             | 2'b10: from vop aclk en or vop standby;                            |
|      |      |             | 2'b11 Reserved                                                     |
|      |      |             | grf_hdmiphy_pll_pd                                                 |
| 8    | RW   | 0x0         | hdmiphy_pll_pd                                                     |
|      |      |             | hdmiphy pll power down, active high                                |
|      |      |             | grf_hdmip_pdata_en                                                 |
|      |      |             | hdmip_pdata enable                                                 |
| 7    | RW   | 0x0         | hdmiphy input parallel data enable                                 |
|      |      |             | 1:enable                                                           |
|      |      |             | 0:disable                                                          |
| 6    | RO   | 0x0         | reserved                                                           |
|      |      |             | grf_uart_rts_sel                                                   |
|      |      |             | uart_rts select                                                    |
|      |      |             | UART polarity selection for rts_n                                  |
| 5:3  | RW   | 0×0         | Every bit for one UART, bit2 is for UART2, bit1 is for UART1, bit0 |
|      |      |             | is for UARTO                                                       |
|      |      |             | 1:cts_n is high active                                             |
|      |      |             | 0:cts_n is low active                                              |
|      |      |             | grf_uart_cts_sel                                                   |
|      |      |             | uart_cts select                                                    |
|      | RW   | 0×0         | UART polarity selection for cts_n                                  |
| 2:0  |      |             | Every bit for one UART, bit2 is for UART2, bit1 is for UART1, bit0 |
|      |      |             | is for UART0                                                       |
|      |      |             | 1:cts_n is high active                                             |
|      |      |             | 0:cts_n is low active                                              |

Address: Operational Base + offset (0x0410) SOC control register4

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 |      | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |

| Bit | Attr | <b>Reset Value</b> | Description                                      |
|-----|------|--------------------|--------------------------------------------------|
|     |      |                    | cif_pclkin_inv_sel                               |
| . – |      |                    | pclkin_inv select                                |
| 15  | RW   | 0×0                | 0: inveter disable                               |
|     |      |                    | 1: inverter enable                               |
|     |      |                    | grf_con_gmac2io_mac_clk_output_en                |
| 14  | RW   | 0x0                | 0: output                                        |
|     |      |                    | 1: input                                         |
|     |      |                    | grf_con_hdmi_hpd_src_sel                         |
| 12  |      | 0.40               | hdmi_hpd source select                           |
| 13  | RW   | 0x0                | 0:from gpio of 3.3V or 5V                        |
|     |      |                    | 1:from SARADC CH0                                |
|     |      |                    | grf_force_jtag                                   |
|     |      |                    | force jtag                                       |
| 12  | RW   | 0x0                | Force select jtag function from sdmmc0 IO        |
|     |      |                    | 1:IO used for JTAG.                              |
|     |      |                    | 0:IO used for SDMMC                              |
|     |      |                    | grf_hdmi_cec_vsel                                |
|     |      |                    | grf_hdmi_cec_vsel                                |
| 11  | RW   | 0x0                | hdmi cec port 3.3V/5V io select                  |
|     |      |                    | 0:IO is 3.3V                                     |
|     |      |                    | 1:IO is 5V                                       |
|     |      |                    | grf_hdmi_sda_vsel                                |
|     |      |                    | grf_hdmi_sda_vsel                                |
| 10  | RW   | 0x0                | hdmi sda port 3.3V/5V io select                  |
|     |      |                    | 0:IO is 3.3V                                     |
|     |      |                    | 1:IO is 5V                                       |
|     |      |                    | grf_hdmi_scl_vsel                                |
|     |      |                    | grf_hdmi_scl_vsel                                |
| 9   | RW   | 0x0                | hdmi scl port 3.3V/5V io select                  |
|     |      |                    | 0:IO is 3.3V                                     |
|     |      |                    | 1:IO is 5V                                       |
|     |      |                    | grf_hdmi_hdp_vsel                                |
|     |      |                    | grf_hdmi_hdp_vsel                                |
| 8   | RW   | 0x0                | hdmi hpd port 3.3V/5V io select                  |
|     |      |                    | 0:IO is 3.3V                                     |
|     |      |                    | 1:IO is 5V                                       |
| 7   |      |                    | grf_vccio2_vsel_src                              |
|     | RW   | 0x0                | grf_vccio2_vsel_src                              |
|     |      |                    | 1'b1: vccio2 vsel controlled by grf_vccio2_vsel; |
|     |      |                    | 1'b0: vccio2 vsel controlled by GPIO2B4 IO       |
|     |      |                    | grf_pmuio_vsel                                   |
| 6   | RW   | 0x0                | VCC IO voltage select                            |
| -   |      |                    | 1'b0:3.3V                                        |
|     |      |                    | 1'b1:1.8V                                        |

| Bit | Attr | <b>Reset Value</b> | Description           |
|-----|------|--------------------|-----------------------|
|     | RW   | 0x0                | grf_vccio6_vsel       |
| 5   |      |                    | VCC IO voltage select |
| 5   |      | 0,00               | 1'b0:3.3V             |
|     |      |                    | 1'b1:1.8V             |
|     |      |                    | grf_vccio5_vsel       |
| 4   | RW   | 0x0                | VCC IO voltage select |
| Ţ   |      | 0.00               | 1'b0:3.3V             |
|     |      |                    | 1'b1:1.8V             |
|     |      |                    | grf_vccio4_vsel       |
| 3   | RW   | 0×0                | VCC IO voltage select |
| J   | KVV  |                    | 1'b0:3.3V             |
|     |      |                    | 1'b1:1.8V             |
|     |      |                    | grf_vccio3_vsel       |
| 2   | RW   | 0×0                | VCC IO voltage select |
| 2   |      |                    | 1'b0:3.3V             |
|     |      |                    | 1'b1:1.8V             |
|     | RW   | 0×0                | grf_vccio2_vsel       |
| 1   |      |                    | VCC IO voltage select |
| 1   |      |                    | 1'b0:3.3V             |
|     |      |                    | 1'b1:1.8V             |
|     | RW   | 0×0                | grf_vccio1_vsel       |
| 0   |      |                    | VCC IO voltage select |
| U   |      |                    | 1'b0:3.3V             |
|     |      |                    | 1'b1:1.8V             |

Address: Operational Base + offset (0x0414) SOC control register5

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                            |
|-------|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software.</pre> |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software;                                                                                                                                                                                                                                                   |
| 15    | RW   | 0×0                | vpu_fwr_link_pwrDiscTargPwrStall<br>Response type when NIU is set Idle<br>0:error response<br>1:stall response                                                                                                                                                                                         |

| Bit      | Attr | <b>Reset Value</b> | Description                               |
|----------|------|--------------------|-------------------------------------------|
|          |      |                    | vop_fwr_link_pwrDiscTargPwrStall          |
| 1.4      |      | 00                 | Response type when NIU is set Idle        |
| 14       | RW   | 0x0                | 0:error response                          |
|          |      |                    | 1:stall response                          |
|          |      |                    | usb_fwr_link_pwrDiscTargPwrStall          |
| 13       | RW   | 0x0                | Response type when NIU is set Idle        |
| 12       | ĸvv  | UXU                | 0:error response                          |
|          |      |                    | 1:stall response                          |
|          |      |                    | subvio_fwr_link_pwrDiscTargPwrStall       |
| 12       | RW   | 0x0                | Response type when NIU is set Idle        |
|          |      | UNU                | 0:error response                          |
|          |      |                    | 1:stall response                          |
|          |      |                    | rkvenc_fwr_link_pwrDiscTargPwrStall       |
| 11       | RW   | 0x0                | Response type when NIU is set Idle        |
|          |      |                    | 0:error response                          |
|          |      |                    | 1:stall response                          |
|          |      | 0×0                | rkvdec_fwr_link_pwrDiscTargPwrStall       |
| 10       | RW   |                    | Response type when NIU is set Idle        |
|          |      |                    | 0:error response                          |
|          |      |                    | 1:stall response                          |
|          |      |                    | vpu_pwr_IdleReq                           |
| 9        | RW   | 0x0                | send idle request to vpu niu<br>0:disable |
|          |      |                    | 1:enable                                  |
|          |      |                    | vio_pwr_IdleReq                           |
|          |      | 0×0                | send idle request to vio niu              |
| 8        | RW   |                    | 0:disable                                 |
|          |      |                    | 1:enable                                  |
|          |      |                    | sys_pwr_IdleReq                           |
|          |      | 0×0                | send idle request to bus niu              |
| 7        | RW   |                    | 0:disable                                 |
|          |      |                    | 1:enable                                  |
| <i>.</i> |      |                    | rkvenc_pwr_IdleReq                        |
| 6        | RW   | 0x0                | rkvenc_pwr_IdleReq                        |
|          |      |                    | rkvdec_pwr_IdleReq                        |
| 5        | RW   | 0x0                | send idle request to rkvdec niu           |
|          |      |                    | 0:disable                                 |
|          |      |                    | 1:enable                                  |
|          |      | 0x0                | peri_pwr_IdleReq                          |
| 4        | RW   |                    | send idle request to peri niu             |
| 4        |      |                    | 0:disable                                 |
|          |      |                    | 1:enable                                  |

| Bit | Attr | <b>Reset Value</b> | Description                      |
|-----|------|--------------------|----------------------------------|
|     |      |                    | msch_pwr_IdleReq                 |
| 3   | RW   | 0x0                | send idle request to msch niu    |
| 5   |      | 0.00               | 0:disable                        |
|     |      |                    | 1:enable                         |
|     |      |                    | msch_apb_pwr_IdleReq             |
| 2   | RW   | 0x0                | send idle request to mschapb niu |
| Z   | ĸw   | 0.00               | 0:disable                        |
|     |      |                    | 1:enable                         |
|     |      | N 0x0              | gpu_pwr_IdleReq                  |
| 1   | RW ( |                    | send idle request to gpu niu     |
| 1   |      |                    | 0:disable                        |
|     |      |                    | 1:enable                         |
|     |      | RW 0x0             | core_pwr_IdleReq                 |
| 0   |      |                    | send idle request to core niu    |
| U   | ĸw   |                    | 0:disable                        |
|     |      |                    | 1:enable                         |

## GRF\_SOC\_CON6

Address: Operational Base + offset (0x0418) SOC control register6

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15    | RW   | 0×0                | peri_fwr_link_pwrDiscTargPwrStall<br>Response type when NIU is set Idle<br>0:error response<br>1:stall response                                                                                                                                                                                                                                             |
| 14    | RW   | 0x0                | nv_fwr_link_pwrDiscTargPwrStall<br>Response type when NIU is set Idle<br>0:error response<br>1:stall response                                                                                                                                                                                                                                               |
| 13    | RW   | 0x0                | msch_srv_fw_fwr_pwrDiscTargPwrStall<br>Response type when NIU is set Idle<br>0:error response<br>1:stall response                                                                                                                                                                                                                                           |

| Attr     | Reset Value          | Description                                                                                                                                                                                                                                                                                                                                         |
|----------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        |                      | msch_fwr_link_pwrDiscTargPwrStall                                                                                                                                                                                                                                                                                                                   |
|          |                      | Response type when NIU is set Idle                                                                                                                                                                                                                                                                                                                  |
| RW       | 0x0                  | 0:error response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | 1:stall response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | gpu_fwr_link_pwrDiscTargPwrStall                                                                                                                                                                                                                                                                                                                    |
|          | 0.40                 | Response type when NIU is set Idle                                                                                                                                                                                                                                                                                                                  |
| RW       | UXU                  | 0:error response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | 1:stall response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | gmac_fwr_link_pwrDiscTargPwrStall                                                                                                                                                                                                                                                                                                                   |
| DW/      | 0×0                  | Response type when NIU is set Idle                                                                                                                                                                                                                                                                                                                  |
|          | 0.00                 | 0:error response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | 1:stall response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | core_fwr_bus_link_pwrDiscTargPwrStall                                                                                                                                                                                                                                                                                                               |
| RW       | 0x0                  | Response type when NIU is set Idle                                                                                                                                                                                                                                                                                                                  |
|          | 0,0                  | 0:error response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | 1:stall response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | vcodec_req_link_pwrDiscTargPwrStall                                                                                                                                                                                                                                                                                                                 |
| RW       | 0x0                  | Response type when NIU is set Idle                                                                                                                                                                                                                                                                                                                  |
|          |                      | 0:error response                                                                                                                                                                                                                                                                                                                                    |
| <u> </u> |                      | 1:stall response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | gpu_req_link_pwrDiscTargPwrStall                                                                                                                                                                                                                                                                                                                    |
| RW       | 0x0                  | Response type when NIU is set Idle                                                                                                                                                                                                                                                                                                                  |
|          |                      | 0:error response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | 1:stall response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | core_req_link_pwrDiscTargPwrStall                                                                                                                                                                                                                                                                                                                   |
| RW       | 0x0                  | Response type when NIU is set Idle                                                                                                                                                                                                                                                                                                                  |
|          |                      | 0:error response                                                                                                                                                                                                                                                                                                                                    |
| <u> </u> |                      | 1:stall response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | bus_req_link_pwrDiscTargPwrStall                                                                                                                                                                                                                                                                                                                    |
| RW       | 0x0                  | Response type when NIU is set Idle                                                                                                                                                                                                                                                                                                                  |
|          |                      | 0:error response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | 1:stall response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | vop_req_link_pwrDiscTargPwrStall<br>Response type when NIU is set Idle                                                                                                                                                                                                                                                                              |
| RW       | 0x0                  |                                                                                                                                                                                                                                                                                                                                                     |
|          |                      | 0:error response<br>1:stall response                                                                                                                                                                                                                                                                                                                |
| 1        |                      | vio_req_link_pwrDiscTargPwrStall                                                                                                                                                                                                                                                                                                                    |
|          |                      | Response type when NIU is set Idle                                                                                                                                                                                                                                                                                                                  |
| RW       | 0x0                  | 0:error response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | 1:stall response                                                                                                                                                                                                                                                                                                                                    |
|          |                      | rkvenc_req_link_pwrDiscTargPwrStall                                                                                                                                                                                                                                                                                                                 |
|          |                      | Response type when NIU is set Idle                                                                                                                                                                                                                                                                                                                  |
| RW       | 0x0                  | incopolise type when nio is set fulle                                                                                                                                                                                                                                                                                                               |
| RW       | 0x0                  | 0:error response                                                                                                                                                                                                                                                                                                                                    |
|          | RW RW RW RW RW RW RW | RW         0×0           RW         0×0 |

| Bit | Attr                                     | Reset Value      | Description                         |
|-----|------------------------------------------|------------------|-------------------------------------|
|     |                                          |                  | rkvdec_req_link_pwrDiscTargPwrStall |
| 1   |                                          | 0.40             | Response type when NIU is set Idle  |
| 1   | RW                                       | 0×0              | 0:error response                    |
|     |                                          |                  | 1:stall response                    |
|     |                                          |                  | peri_req_pwrDiscTargPwrStall        |
|     |                                          | 00               | Response type when NIU is set Idle  |
| 0   | RW 0x0 0:error response 1:stall response | 0:error response |                                     |
|     |                                          |                  | 1:stall response                    |

## GRF\_SOC\_CON7

Address: Operational Base + offset (0x041c) SOC control register7

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                            |
|------|------|--------------------|--------------------------------------------------------------------------------------------------------|
| 31:3 | RO   | 0x0                | reserved                                                                                               |
| 2    | RW   | 0×0                | grf_con_otp_usr_clk_mux<br>otp user mode clock source mux<br>0: bypass clock<br>1: divide by 2         |
| 1    | RW   | 0×0                | grf_con_newpll_clamp_en<br>newpll clamp enable<br>0: disable<br>1: enable                              |
| 0    | RW   | 0x0                | grf_con_scr_sim_detect_inv_sel<br>scr detect inveter select<br>0: inveter disable<br>1: inveter enable |

### GRF\_SOC\_CON8

Address: Operational Base + offset (0x0420) SOC control register8

| Bit   | Attr | <b>Reset Value</b>                                   | Description                                          |
|-------|------|------------------------------------------------------|------------------------------------------------------|
|       |      |                                                      | write_enable<br>Bit0~15 write enable                 |
|       |      |                                                      | "When bit16=1, bit0 can be written by software.      |
|       |      |                                                      | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | WO   | 0×0000                                               | When bit 17=1, bit 1 can be written by software.     |
|       |      |                                                      | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                                                      |                                                      |
|       |      | When bit $31=1$ , bit 15 can be written by software. |                                                      |
|       |      |                                                      | When bit 31=0, bit 15 cannot be written by software; |
|       |      |                                                      | grf_tsadc_testbit_h                                  |
| 15:0  | RW   | 0×0000                                               | tsadc_testbit_h bit register                         |
|       |      |                                                      | tsadc_testbit_h bit register                         |

### GRF\_SOC\_CON9

Address: Operational Base + offset (0x0424) SOC control register9

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0×0000             | grf_tsadc_testbit_l<br>tsadc_testbit_l bit register<br>tsadc_testbit_l bit register                                                                                                                                                                                                                                                                         |

## GRF\_SOC\_CON10

Address: Operational Base + offset (0x0428)

SOC control register10

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15    | RW   | 0x1                | grf_con_hdmi_sda5v_smt<br>hdmi_sda5v_smt bit control<br>hdmi_sda5v_smt bit control                                                                                                                                                                                                                                                                          |
| 14    | RW   | 0x1                | grf_con_hdmi_scl5v_smt<br>hdmi_scl5v_smt bit control<br>hdmi_scl5v_smt bit control                                                                                                                                                                                                                                                                          |
| 13    | RW   | 0x1                | grf_con_hdmi_hpd5v_smt<br>hdmi_hpd5v_smt bit control<br>hdmi_hpd5v_smt bit control                                                                                                                                                                                                                                                                          |
| 12    | RW   | 0x1                | grf_con_hdmi_cec5v_smt<br>hdmi_cec5v_smt bit control<br>hdmi_cec5v_smt bit control                                                                                                                                                                                                                                                                          |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                 |
|-----|------|--------------------|-------------------------------------------------------------------------------------------------------------|
| 11  |      | 0x1                | grf_con_gpiomut_pmuio_p2                                                                                    |
|     | RW   |                    | gpiomut_pmuio_p2 bit control                                                                                |
|     |      |                    | gpiomut_pmuio pull bit 2                                                                                    |
|     |      |                    | grf_con_gpiomut_pmuio_p1                                                                                    |
| 10  | RW   | 0x0                | gpiomut_pmuio_p1 bit control                                                                                |
|     |      |                    | gpiomut_pmuio pull bit 1                                                                                    |
|     |      |                    | grf_con_sdmmc_pwren_sel                                                                                     |
|     |      |                    | iomux select                                                                                                |
| 9   | RW   | 0x0                | GPIO2A7 sdmmc power selection                                                                               |
|     |      |                    | 1'b0: from sdmmc_ext                                                                                        |
|     |      |                    | 1'b1: from sdmmc0                                                                                           |
|     |      |                    | grf_con_i2c3_sda5v                                                                                          |
|     |      |                    | iomux select                                                                                                |
|     |      |                    | "if grf_con_hdmisda5v_gpio_sel == 0 and grf_con_i2c3_sda5v                                                  |
|     |      |                    | == 0, SDA5V is controlled by HDMI controller;                                                               |
| 8   | RW   | 0x0                | if grf_con_hdmisda5v_gpio_sel == 0 and grf_con_i2c3_sda5v ==                                                |
|     |      |                    | 1, SDA5V is controlled by I2C3 controller;                                                                  |
|     |      |                    | if grf_con_hdmisda5v_gpio_sel == 1 and no matter                                                            |
|     |      |                    | grf_con_i2c3_sda5v what is, SDA5V is controlled by grf;                                                     |
|     |      |                    | "                                                                                                           |
|     |      |                    | grf_con_i2c3_scl5v                                                                                          |
|     |      |                    | iomux select                                                                                                |
|     |      |                    | "if grf_con_hdmiscl5v_gpio_sel == 0 and grf_con_i2c3_scl5v ==                                               |
|     |      |                    | 0, SCL5V is controlled by HDMI controller;                                                                  |
| 7   | RW   | 0×0                | if grf_con_hdmiscl5v_gpio_sel == 0 and grf_con_i2c3_scl5v ==                                                |
|     |      |                    | 1, SCL5V is controlled by I2C3 controller;                                                                  |
|     |      |                    | if grf_con_hdmiscl5v_gpio_sel == 1 and no matter<br>grf_con_i2c3_scl5v what is, SCL5V is controlled by grf; |
|     |      |                    | "                                                                                                           |
|     |      |                    | grf con tsadc ch inv                                                                                        |
|     |      |                    | tsadc_ch_inv bit control                                                                                    |
|     |      | 0×0                | The enable signal of the clock inverter for the analog to digital                                           |
| 6   | RW   |                    | interface                                                                                                   |
|     |      |                    | 0:invert                                                                                                    |
|     |      |                    | 1:don't invert                                                                                              |
|     |      |                    | 5 RW 0x0 grf_con_clk_wifi_sel                                                                               |
|     |      |                    | clk_wifi_sel bit control                                                                                    |
| 5   | RW   | 0x0                | <br>clk_wifi (GPIO1D3/GPIO0A0) source selection                                                             |
|     |      |                    | 1'b0: from clk_wifi;                                                                                        |
|     |      |                    | 1'b1: from 24M OSC                                                                                          |
|     |      |                    | grf_con_i2s1_8ch_sdio3_oen                                                                                  |
|     |      |                    | i2s1_8ch_sdio3_oen bit control                                                                              |
| 4   | RW   | 0x0                |                                                                                                             |
|     |      |                    | 1:output disable                                                                                            |
|     |      |                    | 2:output enable                                                                                             |

| Bit | Attr | <b>Reset Value</b> | Description                     |
|-----|------|--------------------|---------------------------------|
|     |      |                    | grf_con_i2s1_8ch_sdio2_oen      |
|     |      |                    | i2s1_8ch_sdio2_oen bit control  |
| 3   | RW   | 0x0                | i2s1_8ch_sdio2_oen              |
|     |      |                    | 1:output disable                |
|     |      |                    | 1:output enable                 |
|     |      |                    | grf_con_i2s1_8ch_sdio1_oen      |
|     |      |                    | i2s1_8ch_sdio1_oen bit control  |
| 2   | RW   | 0x0                | i2s1_8ch_sdio1_oen              |
|     |      |                    | 1:output disable                |
|     |      |                    | 0:output enable                 |
|     |      |                    | gpiomut_pmuio_iout              |
|     |      |                    | gpiomut_pmuio_iout bit register |
| 1   | RW   | 0x0                | gpiomut output value            |
|     |      |                    | 1'b1: output 1;                 |
|     |      |                    | 1'b1: output 0                  |
|     |      |                    | gpiomut_pmuio_ioe_              |
|     |      |                    | gpiomut_pmuio_ioe_ bit register |
| 0   | RW   | 0x0                | gpiomut output enable           |
|     |      |                    | 1'b1: output disable;           |
|     |      |                    | 1'b0: output enable             |

## GRF\_SOC\_STATUS0

Address: Operational Base + offset (0x0480) SOC status register0

| Bit   | Attr | Reset Value | Description                   |    |    |    |    |    |      |
|-------|------|-------------|-------------------------------|----|----|----|----|----|------|
| 31:28 | RO   | 0x0         | reserved                      |    |    |    |    |    |      |
| 27    | RO   | 0x0         | h265enc_vpu_idle              |    |    |    |    |    |      |
| 27    | ĸŬ   | 0.00        | h265enc_vpu_idle bit register |    |    |    |    |    |      |
|       |      |             | hdmicec5v_gpio_masked_pin     |    |    |    |    |    |      |
| 26    | RO   | 0x0         | hdmicec5v_gpio_masked_pin     |    |    |    |    |    |      |
|       |      |             | IO PAD input status           |    |    |    |    |    |      |
|       |      | O 0x0       | hdmihpd5v_gpio_masked_pin     |    |    |    |    |    |      |
| 25    | RO   |             | hdmihpd5v_gpio_masked_pin     |    |    |    |    |    |      |
|       |      |             | IO PAD input status           |    |    |    |    |    |      |
| 24    | RO   | .O 0x0      | hdmisda5v_gpio_masked_pin     |    |    |    |    |    |      |
| 24    |      | 0.00        | IO PAD input status           |    |    |    |    |    |      |
| 23    | RO   | 0x0         | hdmiscl5v_gpio_masked_pin     |    |    |    |    |    |      |
| 25    |      | κυ          | ĸŬ                            | ĸŬ | NO | κυ | κυ | κυ | 0.00 |
| 22    | PO   | .O 0x0      | gpiomut_pmuio_pin             |    |    |    |    |    |      |
| 22    | κU   |             | IO PAD input status           |    |    |    |    |    |      |
|       | RO   | O 0x0       | grf_st_acodec_master_en       |    |    |    |    |    |      |
| 21    |      |             | st_acodec_master enable       |    |    |    |    |    |      |
|       |      |             | st_acodec_master enable       |    |    |    |    |    |      |

| Bit | Attr | Reset Value | Description                                        |                               |
|-----|------|-------------|----------------------------------------------------|-------------------------------|
|     |      |             | gmac2phy_portselect                                |                               |
|     |      |             | gmac2phy_port select                               |                               |
| 20  | RO   | 0x0         | signal indicating the default PHY interface of MAC |                               |
|     |      |             | 1:MII                                              |                               |
|     |      |             | 0:GMII                                             |                               |
|     |      |             | grf_stat_vdac_dispdet                              |                               |
| 19  | RO   | 0x0         | grf_stat_vdac_dispdet bit register                 |                               |
|     |      |             | vdac cable detection output status                 |                               |
|     |      |             | vop_dma_finish                                     |                               |
| 18  | RO   | 0x0         | vop_dma_finish bit register                        |                               |
|     |      |             | vop_dma_finish_status                              |                               |
| 17  | RO   | 0x0         | reserved                                           |                               |
| 16  | RO   | 0x0         | timer_en_status5                                   |                               |
| 10  | Ň    | 0,0         | timer_en_status5 bit register                      |                               |
| 15  | RO   | 0x0         | timer_en_status4                                   |                               |
|     |      |             | timer_en_status4 bit register                      |                               |
| 14  | RO   | 0x0         | timer_en_status3                                   |                               |
|     |      |             | timer_en_status3 bit register                      |                               |
| 13  | RO   | 0x0         | timer_en_status2                                   |                               |
|     |      |             | timer_en_status2 bit register                      |                               |
| 12  | RO   | 0×0         | timer_en_status1                                   |                               |
|     |      |             | timer_en_status1 bit register                      |                               |
| 11  | RO   | 0x0         | timer_en_status0                                   |                               |
|     |      | 0.00        | timer_en_status0 bit register                      |                               |
| 10  | RO   | 0x0         | gmac2io_portselect                                 |                               |
|     |      |             | gmac2io_port select                                |                               |
| 9   | RO   | 0x0         | opt_sbpi_busy_ns                                   |                               |
|     |      |             |                                                    | opt_sbpi_busy_ns bit register |
| 8   | RO   | 0x0         | opt_user_busy_ns                                   |                               |
|     |      |             | opt_user_busy_ns bit register                      |                               |
| 7   | RO   | 0x0         | opt_sbpi_busy_s                                    |                               |
|     |      |             | opt_sbpi_busy_s bit register                       |                               |
| 6   | RO   | 0x0         | opt_user_busy_s                                    |                               |
|     |      |             | opt_user_busy_s bit register                       |                               |
| _   |      | 00          | ddr_plllock                                        |                               |
| 5   | RO   | 0x0         | ddr_plllock bit register                           |                               |
|     |      |             | DDRPLL of DDRPHY lock status.                      |                               |
| 1   |      |             | apll_lock                                          |                               |
| 4   | RO   | 0×0         | pll_lock bit register                              |                               |
|     |      |             | APLL lock status.                                  |                               |
| 2   |      |             | dpll_lock                                          |                               |
| 3   | RO   | 0x0         | pll_lock bit register                              |                               |
|     |      |             | DPLL lock status.                                  |                               |

#### RK3328 TRM-Part1

| Bit | Attr | Reset Value | Description           |
|-----|------|-------------|-----------------------|
|     |      |             | cpll_lock             |
| 2   | RO   | 0x0         | pll_lock bit register |
|     |      |             | CPLL lock status.     |
|     |      |             | gpll_lock             |
| 1   | RO   | 0x0         | pll_lock bit register |
|     |      |             | GPLL lock status.     |
|     |      |             | npll_lock             |
| 0   | WO   | 0x0         | pll_lock bit register |
|     |      |             | NPLL lock status      |

## GRF\_SOC\_STATUS1

Address: Operational Base + offset (0x0484) SOC status register1

| Bit   | Attr | <b>Reset Value</b> | Description                  |
|-------|------|--------------------|------------------------------|
| 31:20 | RO   | 0x0                | reserved                     |
|       |      |                    | vpu_pwr_Idle                 |
|       |      |                    | vpu_pwr_Idle bit register    |
| 19    | RO   | 0x0                | idle status of vpu niu       |
|       |      |                    | 0: idle is asserted          |
|       |      |                    | 1: idle is de-asserted       |
|       |      |                    | vio_pwr_Idle                 |
|       |      |                    | vio_pwr_Idle bit register    |
| 18    | RO   | 0x0                | idle status of vio niu       |
|       |      |                    | 0: idle is asserted          |
|       |      |                    | 1: idle is de-asserted       |
|       |      |                    | sys_pwr_Idle                 |
|       |      |                    | sys_pwr_Idle bit register    |
| 17    | RO   | 0x0                | idle status of bus niu       |
|       |      |                    | 0: idle is asserted          |
|       |      |                    | 1: idle is de-asserted       |
|       |      |                    | rkvenc_pwr_Idle              |
|       |      |                    | rkvenc_pwr_Idle bit register |
| 16    | RO   | 0x0                | idle status of rkvdec niu    |
|       |      |                    | 0: idle is asserted          |
|       |      |                    | 1: idle is de-asserted       |
|       |      |                    | rkvdec_pwr_Idle              |
|       |      |                    | rkvdec_pwr_Idle bit register |
| 15    | RO   | 0x0                | rkvdec_pwr_Idle bit register |
|       |      |                    | 0: idle is asserted          |
|       |      |                    | 1: idle is de-asserted       |

|    |                      | neuri essus Idle                                                                                                                                                                              |
|----|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                      | peri_pwr_Idle                                                                                                                                                                                 |
|    |                      | peri_pwr_Idle bit register                                                                                                                                                                    |
| RO | 0x0                  | idle status of peri niu                                                                                                                                                                       |
|    |                      | 0: idle is asserted                                                                                                                                                                           |
|    |                      | 1: idle is de-asserted                                                                                                                                                                        |
|    |                      | msch_pwr_Idle                                                                                                                                                                                 |
|    |                      | msch_pwr_Idle bit register                                                                                                                                                                    |
| RO | 0x0                  | idle status of msch niu                                                                                                                                                                       |
|    |                      | 0: idle is asserted                                                                                                                                                                           |
|    |                      | 1: idle is de-asserted                                                                                                                                                                        |
|    |                      | msch_apb_pwr_Idle                                                                                                                                                                             |
|    |                      | msch_apb_pwr_Idle bit register                                                                                                                                                                |
| RO | 0x0                  | idle status of mschapb niu                                                                                                                                                                    |
|    |                      | 0: idle is asserted                                                                                                                                                                           |
|    |                      | 1: idle is de-asserted                                                                                                                                                                        |
|    |                      | gpu_pwr_Idle                                                                                                                                                                                  |
|    |                      | gpu_pwr_Idle bit register                                                                                                                                                                     |
| RO | 0x0                  | idle status of gpu niu                                                                                                                                                                        |
| -  |                      | 0: idle is asserted                                                                                                                                                                           |
|    |                      | 1: idle is de-asserted                                                                                                                                                                        |
|    |                      | core_pwr_Idle                                                                                                                                                                                 |
|    |                      | core_pwr_Idle bit register                                                                                                                                                                    |
| RO | 0x0                  | idle status of core niu                                                                                                                                                                       |
|    |                      | 0: idle is asserted                                                                                                                                                                           |
|    |                      | 1: idle is de-asserted                                                                                                                                                                        |
|    |                      | vpu_pwr_IdleAck                                                                                                                                                                               |
|    |                      | vpu_pwr_IdleAck bit register                                                                                                                                                                  |
| RO | 0x0                  | idle acknowledge status from bus vpu                                                                                                                                                          |
|    |                      | 0: idle_ack asserted                                                                                                                                                                          |
|    |                      | 1: idle_ack de-asserted                                                                                                                                                                       |
|    |                      | vio_pwr_IdleAck                                                                                                                                                                               |
|    |                      | vio_pwr_IdleAck bit register                                                                                                                                                                  |
| RO | 0x0                  | idle acknowledge status from bus vio                                                                                                                                                          |
|    |                      | 0: idle_ack asserted                                                                                                                                                                          |
|    |                      | 1: idle_ack de-asserted                                                                                                                                                                       |
|    |                      | sys_pwr_IdleAck                                                                                                                                                                               |
|    |                      | sys_pwr_IdleAck bit register                                                                                                                                                                  |
| RO | 0x0                  | idle acknowledge status from bus niu                                                                                                                                                          |
|    |                      | 0: idle_ack asserted                                                                                                                                                                          |
|    |                      | 1: idle_ack de-asserted                                                                                                                                                                       |
|    |                      | rkvenc_pwr_IdleAck                                                                                                                                                                            |
|    |                      | rkvenc_pwr_IdleAck bit register                                                                                                                                                               |
| RO | 0x0                  | rkvenc_pwr_IdleAck bit register                                                                                                                                                               |
|    |                      | 0: idle_ack asserted                                                                                                                                                                          |
|    |                      | 1: idle_ack de-asserted                                                                                                                                                                       |
|    | RO<br>RO<br>RO<br>RO | RO         0×0           RO         0×0 |

| Bit | Attr | <b>Reset Value</b> | Description                              |
|-----|------|--------------------|------------------------------------------|
|     |      |                    | rkvdec_pwr_IdleAck                       |
|     |      |                    | rkvdec_pwr_IdleAck bit register          |
| 5   | RO   | 0x0                | idle acknowledge status from rkvdec niu  |
|     |      |                    | 0: idle_ack asserted                     |
|     |      |                    | 1: idle_ack de-asserted                  |
|     |      |                    | peri_pwr_IdleAck                         |
|     |      |                    | peri_pwr_IdleAck bit register            |
| 4   | RO   | 0x0                | idle acknowledge status from peri niu    |
|     |      |                    | 0: idle_ack asserted                     |
|     |      |                    | 1: idle_ack de-asserted                  |
|     |      |                    | msch_pwr_IdleAck                         |
|     |      |                    | msch_pwr_IdleAck bit register            |
| 3   | RO   | 0x0                | idle acknowledge status from msch niu    |
|     |      |                    | 0: idle_ack asserted                     |
|     |      |                    | 1: idle_ack de-asserted                  |
|     |      |                    | msch_apb_pwr_IdleAck                     |
|     |      |                    | msch_apb_pwr_IdleAck bit register        |
| 2   | RO   | 0x0                | idle acknowledge status from mschapb niu |
|     |      |                    | 0: idle_ack asserted                     |
|     |      |                    | 1: idle_ack de-asserted                  |
|     |      |                    | gpu_pwr_IdleAck                          |
|     |      |                    | gpu_pwr_IdleAck bit register             |
| 1   | RO   | 0x0                | idle acknowledge status from gpu niu     |
|     |      |                    | 0: idle_ack asserted                     |
|     |      |                    | 1: idle_ack de-asserted                  |
|     |      |                    | core_pwr_IdleAck                         |
|     |      |                    | core_pwr_IdleAck bit register            |
| 0   | RO   | 0×0                | idle acknowledge status from core niu    |
| ľ   |      |                    | 0: idle_ack asserted                     |
|     |      |                    | 1: idle_ack de-asserted                  |
|     |      |                    |                                          |

## GRF\_SOC\_STATUS2

Address: Operational Base + offset (0x0488) SOC status register2

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                 |
|------|------|--------------------|---------------------------------------------------------------------------------------------|
| 31:0 | RO   | 0X000000000        | grf_sta_usb3otg_logic_analyzer_trace[31:0]<br>usb3otg_logic_analyzer_trace[31:0] bit status |

## GRF\_SOC\_STATUS3

Address: Operational Base + offset (0x048c) SOC status register3

#### RK3328 TRM-Part1

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                   |
|------|------|--------------------|-----------------------------------------------------------------------------------------------|
| 31:0 | RO   | 0X000000000        | grf_sta_usb3otg_logic_analyzer_trace[63:32]<br>usb3otg_logic_analyzer_trace[63:32] bit status |

## GRF\_SOC\_STATUS4

Address: Operational Base + offset (0x0490)

SOC status register4

| Bit   | Attr | <b>Reset Value</b> | Description                                                                           |
|-------|------|--------------------|---------------------------------------------------------------------------------------|
| 31:12 | RO   | 0x0                | reserved                                                                              |
| 11:0  | RO   | 0x000              | grf_sta_usb3otg_host_current_belt[11:0]<br>usb3otg_host_current_belt[11:0] bit status |

## GRF\_USB30TG\_CON0

Address: Operational Base + offset (0x04c0) USB3OTG control register0

| Bit   | Attr | <b>Reset Value</b> | Description                                                       |
|-------|------|--------------------|-------------------------------------------------------------------|
|       |      |                    | write_enable                                                      |
|       |      |                    | Bit0~15 write enable                                              |
|       |      |                    | "When bit16=1, bit0 can be written by software.                   |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;                |
| 31:16 | WO   | 0x0000             | When bit $17=1$ , bit 1 can be written by software.               |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;               |
|       |      |                    |                                                                   |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software.              |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software;              |
|       |      |                    | grf_con_usb3otg_host_u2_port_disable                              |
|       |      |                    | USB2.0 Port Disable control.                                      |
| 15    | RW   | 0x0                | 0: Port Enabled                                                   |
| 15    |      |                    | 1: Port Disabled When 1, this signal stops reporting              |
|       |      |                    | connect/disconnect events the port and keeps the port in disabled |
|       |      |                    | state.                                                            |
|       |      | V 0x0              | grf_con_usb3otg_host_port_power_control_present                   |
|       |      |                    | This indicates whether the host controller implementation         |
| 14    | RW   |                    | includes port power control.                                      |
|       |      |                    | 0: Indicates that the port does not have port power switches.     |
|       |      |                    | 1: Indicates that the port has port power switches                |
| 13:8  | RW   | 0x20               | grf_con_usb3otg_fladj_30mhz_reg                                   |
| 15.0  | 1    | 0,20               | usb3otg_fladj_30mhz_reg bit control                               |
|       |      |                    | grf_con_usb3otg_hub_port_perm_attach                              |
|       |      |                    | Indicates if the device attached to a downstream port is          |
| 7:6   | RW   | / 0x0              | permanently attached or not.                                      |
| 7.0   | 1    |                    | 0: Not permanently attached                                       |
|       |      |                    | 1: Permanently attached                                           |
|       |      |                    | Bit0 is for USB2.0 port and bit1 are for USB 3.0 SS port.         |

| Bit | Attr | <b>Reset Value</b> | Description                                                        |
|-----|------|--------------------|--------------------------------------------------------------------|
|     |      |                    | grf_con_usb3otg_hub_port_overcurrent                               |
|     |      |                    | This is the per port Overcurrent indication of the root-hub ports: |
| 5:4 | RW   | 0x0                | 0: No Overcurrent                                                  |
|     |      |                    | 1: Overcurrent                                                     |
|     |      |                    | Bit0 is for USB 2.0 port and bit1 are for USB 3.0 SS port.         |
|     |      |                    | grf_con_usb3otg_bus_filter_bypass                                  |
|     |      |                    | It is expected that this signal is set or reset at power-on reset  |
|     |      |                    | and is not changed during the normal                               |
|     |      |                    | operation of the core. The function of each bit is:                |
|     |      |                    | bus_filter_bypass[3]: Bypass the filter for utmiotg_iddig          |
|     |      |                    | bus_filter_bypass[2]: Bypass the filters for utmisrp_bvalid and    |
|     |      |                    | utmisrp_sessend                                                    |
| 3:0 | RW   | 0x0                | bus_filter_bypass[1]: Bypass the filter for pipe3_PowerPresent all |
|     |      |                    | U3 ports                                                           |
|     |      |                    | bus_filter_bypass[0]: Bypass the filter for utmiotg_vbusvalid all  |
|     |      |                    | U2 ports                                                           |
|     |      |                    | In non-OTG Host-only mode, internal bus filters are not needed.    |
|     |      |                    | Values:                                                            |
|     |      |                    | 1'b0: Bus filter(s) enabled                                        |
|     |      |                    | 1'b1: Bus filter(s) disabled (bypassed)                            |

## GRF\_USB30TG\_CON1

Address: Operational Base + offset (0x04c4) USB3OTG control register1

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:12 | RW   | 0×1         | grf_con_usb3otg_host_num_u3_port<br>usb3otg_host_num_u3_port bit control<br>xHCI usb3 port number, default as 1.                                                                                                                                                                                                                                            |
| 11:8  | RW   | 0x1         | grf_con_usb3otg_host_num_u2_port<br>usb3otg_host_num_u2_port bit control<br>xHCI host USB2 Port number, default as 1.                                                                                                                                                                                                                                       |
| 7:6   | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                    |

| Bit | Attr | <b>Reset Value</b> | Description                                                          |
|-----|------|--------------------|----------------------------------------------------------------------|
|     |      |                    | grf_con_usb3otg_host_legacy_smi_bar                                  |
|     |      |                    | usb3otg_host_legacy_smi_bar bit control                              |
| 5   | RW   | 0x0                | Use this register to support SMI on BAR defined in xHCI spec.        |
|     |      |                    | SW must set this register, then clear this register to indicate Base |
|     |      |                    | Address Register written                                             |
|     |      |                    | grf_con_usb3otg_host_legacy_smi_pci_cmd                              |
|     |      | 0x0                | usb3otg_host_legacy_smi_pci_cmd bit control                          |
| 4   | RW   |                    | Use this register to support SMI on PCI Command defined in xHCI      |
| -   |      |                    | spec.                                                                |
|     |      |                    | SW must set this register, then clear this register to indicate PCI  |
|     |      |                    | command register written.                                            |
| 3:2 | RO   | 0x0                | reserved                                                             |
|     |      | V 0×0              | grf_con_usb3otg_pme_en                                               |
| 1   | RW   |                    | usb3otg_pme_en bit control                                           |
| 1   |      |                    | Enable signal for the pme_generation. Enable the core to assert      |
|     |      |                    | pme_generation.                                                      |
|     |      |                    | grf_con_usb3otg_host_u3_port_disable                                 |
| 0   | RW   | W 0×0              | USB 3.0 SS Port Disable control.                                     |
|     | R VV |                    | 0: Port Enabled                                                      |
|     |      |                    | 1: Port Disabled                                                     |

## GRF\_CPU\_CON0

Address: Operational Base + offset (0x0500) CPU control register0

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0x0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:12 | RW   | 0x0         | grf_con_cfgte<br>cfgte bit control                                                                                                                                                                                                                                                                                                                          |
| 11:8  | RW   | 0x0         | grf_con_cfgend<br>cfgend bit control                                                                                                                                                                                                                                                                                                                        |
| 7:5   | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                    |
| 4     | RW   | 0x0         | grf_con_l2rstdisable<br>l2rstdisable bit control                                                                                                                                                                                                                                                                                                            |
| 3:0   | RW   | 0x0         | grf_con_l1rstdisable<br>l1rstdisable bit control                                                                                                                                                                                                                                                                                                            |

## GRF\_CPU\_CON1

Address: Operational Base + offset (0x0504) CPU control register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:6  | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |
| 5     | RW   | 0×0                | grf_con_evento_clear<br>vento_clear bit control                                                                                                                                                                                                                                                                                                             |
| 4     | RW   | 0x0                | grf_con_eventi<br>eventi bit control                                                                                                                                                                                                                                                                                                                        |
| 3     | RW   | 0x1                | grf_con_dbgselfaddrv<br>dbgselfaddrv bit control                                                                                                                                                                                                                                                                                                            |
| 2     | RW   | 0x1                | grf_con_dbgromaddrv<br>dbgromaddrv bit control                                                                                                                                                                                                                                                                                                              |
| 1     | RW   | 0x0                | grf_con_cfgsdisable<br>cfgsdisable bit control                                                                                                                                                                                                                                                                                                              |
| 0     | RW   | 0x0                | grf_con_clrexmonreq<br>clrexmonreq bit control                                                                                                                                                                                                                                                                                                              |

### **GRF\_CPU\_STATUS0**

Address: Operational Base + offset (0x0520) CPU status register0

| Bit   | Attr | <b>Reset Value</b> | Description                                         |
|-------|------|--------------------|-----------------------------------------------------|
| 31:13 | RO   | 0x0                | reserved                                            |
| 12    | RO   | 0×0                | grf_st_l2flushdone<br>l2flushdone bit status        |
| 11    | RO   | 0×0                | grf_st_clrexmonack<br>clrexmonack bit status        |
| 10    | RO   | 0x0                | grf_st_jtagnsw<br>jtagnsw bit status                |
| 9     | RO   | 0×0                | grf_st_jtagtop<br>jtagtop bit status                |
| 8     | RO   | 0×0                | evento_rising_edge<br>evento_rising_edge bit status |
| 7:4   | RO   | 0×0                | power_state<br>power_state bit status               |

#### RK3328 TRM-Part1

| Bit | Attr | Reset Value | Description        |
|-----|------|-------------|--------------------|
| 3:0 | RO   | UXU         | grf_st_smpnamp     |
| 3:0 |      |             | smpnamp bit status |

### **GRF\_CPU\_STATUS1**

Address: Operational Base + offset (0x0524)

CPU status register1

| Bit   | Attr | <b>Reset Value</b> | Description             |                       |
|-------|------|--------------------|-------------------------|-----------------------|
| 31:13 | RO   | 0x0                | reserved                |                       |
| 12    | RO   | 0×0                | grf_st_standbywfil2     |                       |
| 12    | кU   | 0x0                | standbywfil2 bit status |                       |
| 11:8  | RO   | 0×0                | cpu_state               |                       |
| 11.0  | ĸŪ   |                    | cpu state status        |                       |
| 7:4   | RO   | 0x0                | grf_st_standbywfi       |                       |
| 7.4   |      |                    | standbywfi bit status   |                       |
| 3:0   |      | 0 0.0              | grf_st_standbywfe       |                       |
| 5.0   | ĸŪ   | RO                 | 0x0                     | standbywfe bit status |

### GRF\_OS\_REG0

Address: Operational Base + offset (0x05c8)

os register0

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
|      |      |                    | os_reg0     |
| 31:0 | RW   | 0x00000000         | Reserved    |
|      |      |                    | reserved    |

### GRF\_OS\_REG1

Address: Operational Base + offset (0x05cc)

os register1

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
|      |      |                    | os_reg1     |
| 31:0 | RW   | 0x00000000         | Reserved    |
|      |      |                    | reserved    |

### GRF\_OS\_REG2

Address: Operational Base + offset (0x05d0) os register2

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
|      |      |                    | os_reg2     |
| 31:0 | RW   | 0x00000000         | Reserved    |
|      |      |                    | reserved    |

### GRF\_OS\_REG3

Address: Operational Base + offset (0x05d4)

os register3

| Bit  | Attr | <b>Reset Value</b> | Description         |
|------|------|--------------------|---------------------|
| 31:0 | RW   |                    | os_reg3<br>Reserved |
|      |      |                    | reserved            |

#### GRF\_OS\_REG4

Address: Operational Base + offset (0x05d8)

os register4

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
|      |      |                    | os_reg4     |
| 31:0 | RW   | 0x00000000         | Reserved    |
|      |      |                    | reserved    |

#### GRF\_OS\_REG5

Address: Operational Base + offset (0x05dc)

os register5

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
|      |      |                    | os_reg5     |
| 31:0 | RW   | 0x00000000         | Reserved    |
|      |      |                    | reserved    |

#### GRF\_OS\_REG6

Address: Operational Base + offset (0x05e0) os register6

| Bit  | Attr | <b>Reset Value</b> | Description                     |
|------|------|--------------------|---------------------------------|
| 31:0 | RW   | 0x00000000         | os_reg6<br>Reserved<br>reserved |

#### GRF\_OS\_REG7

Address: Operational Base + offset (0x05e4) os register7

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
|      |      |                    | os_reg7     |
| 31:0 | RW   | 0x00000000         | Reserved    |
|      |      |                    | reserved    |

## **GRF\_SIG\_DETECT\_CON**

Address: Operational Base + offset (0x0680) External signal detect configue register

| Bit  | Attr  | <b>Reset Value</b> | Description                      |
|------|-------|--------------------|----------------------------------|
| 31:4 | RO    | 0x0                | reserved                         |
|      |       |                    | sdmmc_ext_detectn_neg_irq_en     |
| 3    | RW    | 0x0                | sdmmc_ext_detectn_neg_irq enable |
| 5    | r vv  | 0.00               | 1'b1: enable irq;                |
|      |       |                    | 1'b0: disable irq.               |
|      |       |                    | sdmmc_ext_detectn_pos_irq_en     |
| 2    | RW    | 0x0                | sdmmc_ext_detectn_pos_irq enable |
| 2    | κw    |                    | 1'b1: enable irq;                |
|      |       |                    | 1'b0: disable irq.               |
|      |       | W 0×0              | sdmmc_detectn_neg_irq_en         |
| 1    | DW    |                    | sdmmc_detectn_neg_irq enable     |
| 1    | r vv  |                    | 1'b1: enable irq;                |
|      |       |                    | 1'b0: disable irq.               |
|      |       | RW 0x0             | sdmmc_detectn_pos_irq_en         |
| 0    | DW    |                    | sdmmc_detectn_pos_irq enable     |
| 0    | r\ vv |                    | 1'b1: enable irq;                |
|      |       |                    | 1'b0: disable irq.               |

## GRF\_SIG\_DETECT\_STATUS

Address: Operational Base + offset (0x0690) External signal detect status register

| Bit  | Attr | <b>Reset Value</b> | Description                          |
|------|------|--------------------|--------------------------------------|
| 31:4 | RO   | 0x0                | reserved                             |
|      |      |                    | sdmmc_ext_detectn_neg_irq            |
| 3    | RO   | 0x0                | sdmmc_detectn_ext_neg irq status bit |
| 2    |      | W 0×0              | sdmmc_ext_detectn_pos_irq            |
| Z    | ĸvv  |                    | sdmmc_detectn_ext_pos irq status bit |
| 1    | RW   | W 0×0              | sdmmc_detectn_neg_irq                |
| T    |      |                    | sdmmc_detectn_neg irq status bit     |
| 0    | DW/  | W 0x0              | sdmmc_detectn_pos_irq                |
| 0    | RW   | 0.00               | sdmmc_detectn_pos irq status bit     |

## **GRF\_SIG\_DETECT\_STATUS\_CLEAR**

Address: Operational Base + offset (0x06a0) External signal detect status clear register

| Bit  | Attr | <b>Reset Value</b> | Description                                                          |
|------|------|--------------------|----------------------------------------------------------------------|
| 31:4 | RO   | 0x0                | reserved                                                             |
| 3    | WO   | $(0\mathbf{X}0)$   | sdmmc_ext_detectn_neg_irq_clr<br>sdmmc_ext_detectn_neg_irq clear bit |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

#### RK3328 TRM-Part1

| Bit | Attr | <b>Reset Value</b> | Description                         |
|-----|------|--------------------|-------------------------------------|
| 2   | RW   | / 0×0              | sdmmc_ext_detectn_pos_irq_clr       |
| Z   | RVV  |                    | sdmmc_ext_detectn_pos_irq clear bit |
| 1   |      | / 0x0              | sdmmc_detectn_neg_irq_clr           |
| L . | RW   |                    | sdmmc_detectn_neg_irq clear bit     |
|     | עים  |                    | sdmmc_detectn_pos_irq_clr           |
| U   | RW   |                    | sdmmc_detectn_pos_irq clear bit     |

### **GRF\_SDMMC\_DET\_COUNTER**

Address: Operational Base + offset (0x06b0) SDMMC detect counter register

| Bit   | Attr | <b>Reset Value</b> | Description                      |
|-------|------|--------------------|----------------------------------|
| 31:20 | RO   | 0x0                | reserved                         |
|       |      |                    | sdmmc_detectn_count              |
| 19:0  | RW   | 0x30100            | sdmmc_detectn_count bit register |
|       |      |                    | sdmmc_detectn_count bit register |

#### GRF\_HOST0\_CON0

Address: Operational Base + offset (0x0700) host0 control register0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:12 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |
| 11:6  | RW   | 0x20               | grf_con_host0_fladj_val_common<br>host0_fladj_val_common bit control                                                                                                                                                                                                                                                                                        |
| 5:0   | RW   | 0x20               | grf_con_host0_fladj_val<br>host0_fladj_val bit control                                                                                                                                                                                                                                                                                                      |

### GRF\_HOST0\_CON1

Address: Operational Base + offset (0x0704) host0 control register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 |      | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:14 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |
| 13    | RW   | 0x0                | grf_con_host0_arb_pause<br>host0_arb_pause bit control                                                                                                                                                                                                                                                                                                      |
| 12    | RW   | 0x0                | grf_con_host0_ohci_susp_lgcy<br>host0_ohci_susp_lgcy bit control                                                                                                                                                                                                                                                                                            |
| 11    | RW   | 0x0                | grf_con_host0_ohci_cntsel<br>host0_ohci_cntsel bit control                                                                                                                                                                                                                                                                                                  |
| 10    | RW   | 0x1                | grf_con_host0_ohci_clkcktrst<br>host0_ohci_clkcktrst bit control                                                                                                                                                                                                                                                                                            |
| 9     | RW   | 0x0                | grf_con_host0_app_prt_ovrcur<br>host0_app_prt_ovrcur bit control                                                                                                                                                                                                                                                                                            |
| 8     | RW   | 0x0                | grf_con_host0_autoppd_on_overcur_en<br>host0_autoppd_on_overcur_en bit control                                                                                                                                                                                                                                                                              |
| 7     | RW   | 0x1                | grf_con_host0_word_if<br>host0_word_if bit control                                                                                                                                                                                                                                                                                                          |
| 6     | RW   | 0x0                | grf_con_host0_sim_mode<br>host0_sim_mode bit control                                                                                                                                                                                                                                                                                                        |
| 5     | RW   | 0×1                | grf_con_host0_incrx_en<br>host0_incrx_en bit control                                                                                                                                                                                                                                                                                                        |
| 4     | RW   | 0x1                | grf_con_host0_incr8_en<br>host0_incr8_en bit control                                                                                                                                                                                                                                                                                                        |
| 3     | RW   | 0x1                | grf_con_host0_incr4_en<br>host0_incr4_en bit control                                                                                                                                                                                                                                                                                                        |
| 2     | RW   | 0x1                | grf_con_host0_incr16_en<br>host0_incr16_en bit control                                                                                                                                                                                                                                                                                                      |
| 1     | RW   | 0x0                | grf_con_host0_hubsetup_min<br>host0_hubsetup_min bit control                                                                                                                                                                                                                                                                                                |
| 0     | RW   | 0x0                | grf_con_host0_app_start_clk<br>host0_app_start_clk bit control                                                                                                                                                                                                                                                                                              |

## GRF\_HOST0\_CON2

Address: Operational Base + offset (0x0708) host0 control register2

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
| 31:0 | RO   | 0x0                | reserved    |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

### GRF\_OTG\_CON0

Address: Operational Base + offset (0x0880) OTG control register

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:3  | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |
| 2     | RW   | 0×0                | otg_dbnce_fltr_bypass<br>otg_dbnce_fltr_bypass bit control                                                                                                                                                                                                                                                                                                  |
| 1:0   | RW   | 0×0                | otg_scaledown_mode<br>otg_scaledown_mode bit control                                                                                                                                                                                                                                                                                                        |

## GRF\_HOST0\_STATUS

Address: Operational Base + offset (0x0890) HOST0 status register

| Bit | Attr | <b>Reset Value</b> | Description                           |
|-----|------|--------------------|---------------------------------------|
| 31  | RO   | 0x0                | reserved                              |
| 30  | RO   | 0x0                | host0_ehci_power_state_ack            |
| 50  | ĸo   | 0.00               | host0_ehci_power_state_ack bit status |
| 29  | RO   | 0x0                | host0_ehci_pme_status                 |
| 29  | ĸo   | 0.00               | host0_ehci_pme_status bit status      |
| 28  | RO   | 0x0                | grf_stat_host0_ehci_bufacc            |
| 20  | ĸo   | 0.00               | host0_ehci_bufacc bit status          |
| 27  | RO   | 0×0                | grf_stat_host0_ehci_xfer_prdc         |
| 27  |      |                    | host0_ehci_xfer_prdc bit status       |
| 26  | RO   | 0×0                | grf_stat_host0_ohci_ccs               |
| 20  |      |                    | host0_ohci_ccs bit status             |
| 25  | RO   | 0x0                | grf_stat_host0_ohci_rwe               |
| 25  |      | 0.00               | host0_ohci_rwe bit status             |
| 24  | RO   | 0x0                | grf_stat_host0_ohci_drwe              |
| 27  | ĸo   | 0 000              | host0_ohci_drwe bit status            |
| 23  | RO   | 0x0                | grf_stat_host0_ohci_globalsuspend     |
| 25  |      | 0.0                | host0_ohci_globalsuspend bit status   |
| 22  | RO   | 0x0                | grf_stat_host0_ohci_bufacc            |
| ~~  |      | 0.0                | host0_ohci_bufacc bit status          |

| Bit   | Attr | <b>Reset Value</b> | Description                       |
|-------|------|--------------------|-----------------------------------|
| 21    | RO   | ()X()              | grf_stat_host0_ohci_rmtwkp        |
| 21    | кU   |                    | host0_ohci_rmtwkp bit status      |
| 20.17 | RO   | 0x0                | grf_stat_host0_ehci_lpsmc_state   |
| 20:17 |      |                    | host0_ehci_lpsmc_state bit status |
| 16.11 |      | RO 0x00            | grf_stat_host0_ehci_usbsts        |
| 16:11 | ĸŪ   |                    | host0_ehci_usbsts bit status      |
| 10.0  |      | 2O 10x000          | grf_stat_host0_ehci_xfer_cnt      |
| 10:0  | RO   |                    | host0_ehci_xfer_cnt bit status    |

## GRF\_MAC\_CON0

Address: Operational Base + offset (0x0900) MAC control register0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:14 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |
| 13:7  | RW   | 0x00               | gmac2io_clk_rx_dl_cfg<br>gmac2io_clk_rx_dl_cfg bit control                                                                                                                                                                                                                                                                                                  |
| 6:0   | RO   | 0x00               | gmac2io_clk_tx_dl_cfg<br>gmac2io_clk_tx_dl_cfg bit control                                                                                                                                                                                                                                                                                                  |

## GRF\_MAC\_CON1

Address: Operational Base + offset (0x0904) MAC control register1

| Bit                  | Attr | Reset Value | Description                                                                                                                                                                                                                                              |  |  |  |
|----------------------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <b>ВІ</b> Т<br>31:16 |      | 0×0000      | write_enable<br>Bit0~15 write enable<br>"When bit16=1, bit0 can be written by software.<br>When bit16=0, bit 0 cannot be written by software;<br>When bit 17=1, bit 1 can be written by software.<br>When bit 17=0, bit 1 cannot be written by software; |  |  |  |
|                      |      |             | When bit 31=1, bit 15 can be written by software.<br>When bit 31=0, bit 15 cannot be written by software;                                                                                                                                                |  |  |  |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit   | Attr | Reset Value | Description                                                 |
|-------|------|-------------|-------------------------------------------------------------|
| 15:13 | RO   | 0x0         | reserved                                                    |
|       |      |             | gmac2io_gmii_clk_sel                                        |
|       |      |             | gmac2io_gmii_clk_sel bit control                            |
| 12:11 |      | 0.40        | GMII clock selection                                        |
|       | KVV  | 0x0         | 2'b00:125MHz                                                |
|       |      |             | 2'b11:25MHz                                                 |
|       |      |             | 2'b10:2.5MHz                                                |
|       |      |             | gmac2io_rmii_extclk_sel                                     |
| 10    | RW   | 0x0         | gmac2io_rmii_extclk_sel bit control                         |
|       |      |             | gmac2io_rmii_mode                                           |
|       |      |             | gmac2io_rmii_mode bit control                               |
|       |      |             | RMII mode selection                                         |
| 9     | RW   | 0x0         | 2'b11:RMII mode                                             |
|       |      |             | 2'b00:MII mode                                              |
|       |      |             | 2'b01:reserved                                              |
|       |      |             | 2'b10:reserved                                              |
| 8     | RO   | 0x0         | reserved                                                    |
|       |      |             | gmac2io_rmii_clk_sel                                        |
|       |      |             | gmac2io_rmii_clk_sel bit control                            |
| 7     | RW   | 0x0         | RMII clock selection                                        |
|       |      |             | 1'b1:25MHz                                                  |
|       |      |             | 1'b0:2.5MHz                                                 |
|       |      |             | gmac2io_phy_intf_sel                                        |
|       |      |             | gmac2io_phy_intf_sel bit control                            |
| 6:4   | RW   | 0x0         | PHY interface select                                        |
| 0.4   | 1    | W 0x0       | 3'b001:RGMII                                                |
|       |      |             | 3'b100:RMII                                                 |
|       |      |             | All others:Reserved                                         |
|       |      |             | gmac2io_flowctrl                                            |
|       |      |             | gmac2io_flowctrl bit control                                |
|       |      |             | GMAC transmit flow control                                  |
| 3     | RW   | 0x0         | When set high, instructs the GMAC to transmit PAUSE Control |
|       |      |             | frame in                                                    |
|       |      |             | Full-duplex mode. In Half-duplex mode, the GMAC enables the |
|       |      |             | Back-pressure                                               |
|       |      |             | function until this signal is made low again                |
|       |      |             | gmac2io_mac_speed                                           |
|       |      |             | gmac2io_mac_speed bit control                               |
| 2     | RW   | 0×0         | MAC speed                                                   |
|       |      |             | 1'b1:100-Mbps                                               |
|       |      |             | 1'b0:10-Mbps                                                |

| Bit | Attr | Reset Value | Description                       |  |  |  |
|-----|------|-------------|-----------------------------------|--|--|--|
|     |      |             | gmac2io_rxclk_dly_ena             |  |  |  |
|     |      |             | gmac2io_rxclk_dly_ena bit control |  |  |  |
| 1   | RW   | 0x0         | RGMII RX clock delayline enable   |  |  |  |
|     |      |             | 1'b1:enable                       |  |  |  |
|     |      |             | 1'b0:disable                      |  |  |  |
|     |      |             | gmac2io_txclk_dly_ena             |  |  |  |
|     |      |             | gmac2io_txclk_dly_ena bit control |  |  |  |
| 0   | RW   |             | RGMII TX clock delayline enable   |  |  |  |
|     |      |             | 1'b1:enable                       |  |  |  |
|     |      |             | 1'b0:disable                      |  |  |  |

## GRF\_MAC\_CON2

Address: Operational Base + offset (0x0908) MAC control register2

| Bit   | Attr | <b>Reset Value</b> | Description                                          |  |  |  |
|-------|------|--------------------|------------------------------------------------------|--|--|--|
|       |      |                    | write_enable                                         |  |  |  |
|       |      |                    | Bit0~15 write enable                                 |  |  |  |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |  |  |  |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |  |  |  |
| 31:16 | WO   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |  |  |  |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |  |  |  |
|       |      |                    |                                                      |  |  |  |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software. |  |  |  |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |  |  |  |
| 15:12 | RO   | 0x0                | reserved                                             |  |  |  |
|       |      |                    | gmac2phy_use_inter_phy_txrx                          |  |  |  |
| 11    | RW   | 0×0                | gmac2phy_use_inter_phy_txrx bit control              |  |  |  |
|       |      |                    | gmac2phy_use_inter_phy_txrx bit control              |  |  |  |
|       |      | 0x0                | gmac2phy_rmii_extclk_sel                             |  |  |  |
| 10    | RW   |                    | gmac2phy_rmii_extclk_sel bit control                 |  |  |  |
|       |      |                    | gmac2phy_rmii_extclk_sel bit control                 |  |  |  |
|       |      |                    | gmac2phy_rmii_mode                                   |  |  |  |
|       |      |                    | gmac2phy_rmii_mode bit control                       |  |  |  |
|       |      |                    | RMII mode selection                                  |  |  |  |
| 9     | RW   | 0x0                | 2'b11:RMII mode                                      |  |  |  |
|       |      |                    | 2'b00:MII mode                                       |  |  |  |
|       |      |                    | 2'b01:reserved                                       |  |  |  |
|       |      |                    | 2'b10:reserved                                       |  |  |  |
| 8     | RO   | 0x0                | reserved                                             |  |  |  |

| Bit | Attr | Reset Value | Description                                                 |
|-----|------|-------------|-------------------------------------------------------------|
|     |      |             | gmac2phy_rmii_clk_sel                                       |
|     |      |             | gmac2phy_rmii_clk_sel bit control                           |
| -   |      | 0.40        | PHY interface select                                        |
| 7   | RW   | 0x0         | 3'b001:RGMII                                                |
|     |      |             | 3'b100:RMII                                                 |
|     |      |             | All others:Reserved                                         |
|     |      |             | gmac2phy_phy_intf_sel                                       |
|     |      |             | gmac2phy_phy_intf_sel bit control                           |
| 6:4 | RW   | 0x0         | PHY interface select                                        |
| 0.4 | KW   | 0.00        | 3'b001:RGMII                                                |
|     |      |             | 3'b100:RMII                                                 |
|     |      |             | All others:Reserved                                         |
|     |      |             | gmac2phy_flowctrl                                           |
|     |      |             | gmac2phy_flowctrl bit control                               |
|     |      |             | GMAC transmit flow control                                  |
| 3   | RW   | 0x0         | When set high, instructs the GMAC to transmit PAUSE Control |
| J   |      |             | frame in                                                    |
|     |      |             | Full-duplex mode. In Half-duplex mode, the GMAC enables the |
|     |      |             | Back-pressure                                               |
|     |      |             | function until this signal is made low again                |
|     |      |             | gmac2phy_mac_speed                                          |
|     |      |             | gmac2phy_mac_speed bit control                              |
| 2   | RW   | 0x0         | MAC speed                                                   |
|     |      |             | 1'b1:100-Mbps                                               |
|     |      |             | 1'b0:10-Mbps                                                |
| 1:0 | RO   | 0x0         | reserved                                                    |

### **GRF\_MACPHY\_CON0**

Address: Operational Base + offset (0x0b00) MACPHY control register0

| Bit                        | Attr                                           | <b>Reset Value</b>         | Description                                                  |  |
|----------------------------|------------------------------------------------|----------------------------|--------------------------------------------------------------|--|
|                            |                                                |                            | write_enable                                                 |  |
| 31:16                      | RW                                             | 0x0000                     | Reserved                                                     |  |
|                            |                                                |                            |                                                              |  |
| 15                         | 15RW0x0macphy_ref_clk_selTie to same level asr |                            | macphy_ref_clk_sel                                           |  |
| 15                         |                                                |                            | Tie to same level as macphy_clk_freq                         |  |
|                            | macphy_clk_freq                                |                            | macphy_clk_freq                                              |  |
| 14                         | RW                                             | V 0x0                      | 0: for 25 MHz clock input;                                   |  |
| 1: for 50 MHz clock input. |                                                | 1: for 50 MHz clock input. |                                                              |  |
| 13                         | RW                                             | W 0×1                      | macphy_automodix_en                                          |  |
| 13                         |                                                |                            | Enables auto-detection of MDI/MDIX mode. Refer to "cfg_mode" |  |

| Bit | Attr   | Reset Value | Description                                                                    |  |  |  |
|-----|--------|-------------|--------------------------------------------------------------------------------|--|--|--|
|     |        |             | macphy_en_high                                                                 |  |  |  |
| 10  |        | 00          | Defines polarity of output enable signals.                                     |  |  |  |
| 12  | RW     | 0×0         | "0" for active low output enable signal.                                       |  |  |  |
|     |        |             | "mdio_dir, rxdz,miiz,rxerz" signal polarity control.                           |  |  |  |
| 4.4 |        | 00          | macphy_fx_mode                                                                 |  |  |  |
| 11  | RW 0x0 |             | Enables FX mode                                                                |  |  |  |
| 10  | RW     | 0x0         | macphy_adc_bp                                                                  |  |  |  |
| 10  | r, vv  |             | Puts the ADC by default in bypass mode                                         |  |  |  |
| 9   | RW     | 0x0         | macphy_pll_bp                                                                  |  |  |  |
| 3   | r, vv  | UXU         | Puts the PLL by default in bypass mode                                         |  |  |  |
| 8   | RW     | 0x0         | macphy_smii_soure_sync                                                         |  |  |  |
| o   | ΓVV    | 0.20        | smii source sync register field. Only relevant for SMII mode                   |  |  |  |
|     |        |             | macphy_mii_mode                                                                |  |  |  |
|     |        |             | MII mode register field.                                                       |  |  |  |
| 7:6 | RW     | 0x0         | "00" for MII mode,                                                             |  |  |  |
| /.0 | 1      | 0x0         | "01" for RMII mode,                                                            |  |  |  |
|     |        |             | "10" for SMII,                                                                 |  |  |  |
|     |        |             | "11" reserved                                                                  |  |  |  |
|     |        |             | macphy_mode                                                                    |  |  |  |
|     |        |             | MODE register file.                                                            |  |  |  |
|     |        |             | "000" - 10BaseT, Half Duplex, Auto negotiation disabled                        |  |  |  |
|     |        |             | "001" - 10Base-T, Full Duplex, Auto negotiation disabled                       |  |  |  |
|     |        |             | "010" - 100Base-TX, Half Duplex, Auto-negotiation disabled                     |  |  |  |
|     | ,      |             | "011" - 100Base-TX, Full Duplex, Auto-negotiation disabled                     |  |  |  |
| 5:3 | RW     | 0x7         | "100" - 100Base-Tx, Half Duplex, Auto-negotaition Enabled                      |  |  |  |
|     |        |             | "101" - Repeater mode, 100Base-Tx, Half Duplex, Auto-                          |  |  |  |
|     |        |             | negotiation Enabled                                                            |  |  |  |
|     |        |             | "110" - Power down mode, In this mode phy wake up in power fown mode           |  |  |  |
|     |        |             |                                                                                |  |  |  |
|     |        |             | "111" - All capable, Full Duplex, 10 & 100 BT, Auto negotiation                |  |  |  |
|     |        |             | enabled, AutoMDIX enable                                                       |  |  |  |
|     |        |             | macphy_powerup_reset<br>Power Up Reset bit. Default value of powerup_reset bit |  |  |  |
| 2   | RW     | 0x0         | 0 - Power up reset disabled by default                                         |  |  |  |
|     |        |             | 1- Power up reset enabled by default                                           |  |  |  |
|     |        |             | macphy_power_down                                                              |  |  |  |
|     |        |             | Power Down bit. Default value of True power down bit                           |  |  |  |
| 1   | RW     | 0x0         | 1 - True power down is active by default                                       |  |  |  |
|     |        |             | 0 - True power down is not active by default                                   |  |  |  |
|     |        |             | macphy_enable                                                                  |  |  |  |
|     |        |             | PHY enable signal (active high).                                               |  |  |  |
| 0   | RW     | 0×1         | 1 = Enable MACHY IP                                                            |  |  |  |
|     |        |             | 0 = Disable MACHY IP                                                           |  |  |  |

## **GRF\_MACPHY\_CON1**

Address: Operational Base + offset (0x0b04) MACPHY control register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                     |  |  |  |                  |
|-------|------|--------------------|-----------------------------------------------------------------|--|--|--|------------------|
|       |      |                    | write_enable                                                    |  |  |  |                  |
| 31:16 | RW   | 0x0000             | Reserved                                                        |  |  |  |                  |
|       |      |                    | reserved                                                        |  |  |  |                  |
| 15    | RW   | 0x0                | polarity_stat_tx                                                |  |  |  |                  |
| 15    | 1    | 0.00               | polarity control of tx status                                   |  |  |  |                  |
| 14    | RW   | 0x0                | polarity_stat_rx                                                |  |  |  |                  |
| 14    | 1    | 0.00               | polarity control of rx status                                   |  |  |  |                  |
| 13    | RW   | 0x0                | polarity_stat_duplex                                            |  |  |  |                  |
| 12    |      | 0.00               | polarity control of duplex status                               |  |  |  |                  |
| 12    | RW   | 0x0                | polarity_stat_link                                              |  |  |  |                  |
| 12    |      | 0.00               | polarity control of link status                                 |  |  |  |                  |
| 11    | RW   | 0×0                | polarity_stat_speed10                                           |  |  |  |                  |
| 11    |      |                    | polarity control of speed10 status                              |  |  |  |                  |
| 10    | RW   | 0x0                | polarity_stat_speed100                                          |  |  |  |                  |
| 10    |      | 0.00               | polarity control of speed100 status                             |  |  |  |                  |
| 9     | RW   | W 0x0              | grf_con_rmii_mode                                               |  |  |  |                  |
| 9     |      | 0.00               | rmii_mode bit control                                           |  |  |  |                  |
|       |      |                    |                                                                 |  |  |  | macphy_speed_sel |
| 8     | RW   | 0x0                | 0: speed 100                                                    |  |  |  |                  |
|       |      |                    | 1: speed 10                                                     |  |  |  |                  |
|       |      |                    | macphy_phy_addr                                                 |  |  |  |                  |
| 7:3   | RW   | W 0x00             | PHY ADD register field. Must be unique in multi-PHY environment |  |  |  |                  |
|       |      |                    | (like repeater).                                                |  |  |  |                  |
|       |      |                    | macphy_np_msg_code                                              |  |  |  |                  |
| 2:0   | RW   | RW 0x0             | Next Page Message Code. Automatic generation of Next page       |  |  |  |                  |
|       |      |                    | with fault code                                                 |  |  |  |                  |

### GRF\_MACPHY\_CON2

Address: Operational Base + offset (0x0b08) MACPHY control register2

| Bit   | Attr | Reset Value  | Description                           |  |  |  |  |
|-------|------|--------------|---------------------------------------|--|--|--|--|
|       |      |              | write_enable                          |  |  |  |  |
| 31:16 | RW   | 0×0000       | Reserved                              |  |  |  |  |
|       |      |              | reserved                              |  |  |  |  |
| 15.0  |      | RM 10x0000 1 | macphy_id                             |  |  |  |  |
| 15:0  | K VV |              | PHY ID Number,macphy_cfg_phy_id[15:0] |  |  |  |  |

### GRF\_MACPHY\_CON3

Address: Operational Base + offset (0x0b0c) MACPHY control register3

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

#### RK3328 TRM-Part1

| Bit                                  | Attr | Reset Value        | Description                            |  |  |  |
|--------------------------------------|------|--------------------|----------------------------------------|--|--|--|
|                                      |      |                    | write_enable                           |  |  |  |
| 31:16                                | RW   | 0x0000             | Reserved                               |  |  |  |
|                                      |      |                    | reserved                               |  |  |  |
| 15.12                                |      | 0x0                | macphy_cfg_rev_nr                      |  |  |  |
| 15:12                                | RW   |                    | Manufacturer's Revision Number         |  |  |  |
| 11.0                                 | עע   | 0.400              | macphy_model_nr                        |  |  |  |
| 11:6 RW 0x00 Manufacturer's Model Nu |      | 0x00               | Manufacturer's Model Number            |  |  |  |
| E.0                                  |      | $W = 0 \times 0 0$ | macphy_id                              |  |  |  |
| 5:0                                  | ĸw   |                    | PHY ID Number,macphy_cfg_phy_id[21:16] |  |  |  |

## **GRF\_MACPHY\_STATUS**

Address: Operational Base + offset (0x0b10)

MACPHY status register

| Bit  | Attr | <b>Reset Value</b> | Description                                                      |  |  |
|------|------|--------------------|------------------------------------------------------------------|--|--|
| 31:7 | RO   | 0x0                | reserved                                                         |  |  |
|      |      |                    | macphy_stat_speed100                                             |  |  |
| 6    | RO   | 0x0                | macphy_stat_speed100 bit status                                  |  |  |
|      |      |                    | Speed100 indication. Output driven low                           |  |  |
|      |      |                    | macphy_stat_speed10                                              |  |  |
| 5    | RO   | 0x0                | macphy_stat_speed10 bit status                                   |  |  |
|      |      |                    | Speed10 indication. Output is driven low                         |  |  |
|      |      |                    | macphy_stat_duplex                                               |  |  |
| 4    | RO   | 0x0                | macphy_stat_duplex bit status                                    |  |  |
|      |      |                    | Duplex indication (low = full-duplex mode).Output is driven low  |  |  |
|      |      |                    | macphy_stat_rx                                                   |  |  |
| 3    | RO   | 0x0                | macphy_stat_rx bit status                                        |  |  |
|      |      |                    | RX activity indication.Output is driven low                      |  |  |
|      |      |                    | macphy_stat_link                                                 |  |  |
| 2    | RO   | 0x0                | macphy_stat_link bit status                                      |  |  |
|      |      |                    | Link ON indication. Output is driven low                         |  |  |
|      |      |                    | macphy_stat_tx                                                   |  |  |
| 1    | RO   | 0x0                | macphy_stat_tx bit status                                        |  |  |
|      |      |                    | TX activity indication.Output is driven low                      |  |  |
|      |      |                    | macphy_stat_powerup_reset                                        |  |  |
| 0    | RO   | 0x0                | macphy_stat_powerup_reset bit status                             |  |  |
|      |      |                    | Power up reset state signal. To signal to the system that PHY is |  |  |
|      |      |                    | out of power down mode                                           |  |  |

# 3.4 DDR\_GRF Register Description

## 3.4.1 Registers Summary

| Name                     | Offset | Size | Reset<br>Value | Description           |
|--------------------------|--------|------|----------------|-----------------------|
| DDR_GRF_DDR_CON0         | 0x0000 | W    | 0x00000000     | DDR Control Register0 |
| DDR_GRF_DDR_CON1         | 0x0004 | W    | 0x00000000     | DDR Control Register1 |
| DDR_GRF_DDR_CON2         | 0x0008 | W    | 0x00000000     | DDR Control Register2 |
| DDR_GRF_DDR_CON3         | 0x000c | W    | 0x00000000     | DDR Control Register3 |
| DDR_GRF_DDR_STATUS0      | 0x0100 | W    | 0x00000000     | DDR Status Register0  |
| DDR_GRF_DDR_STATUS1      | 0x0104 | W    | 0x00000000     | DDR Status Register1  |
| DDR_GRF_DDR_STATUS2      | 0x0108 | W    | 0x00000000     | DDR Status Register2  |
| DDR_GRF_DDR_STATUS3      | 0x010c | W    | 0x00000000     | DDR Status Register3  |
| DDR_GRF_DDR_STATUS4      | 0x0110 | W    | 0x00000000     | DDR Status Register4  |
| DDR_GRF_DDR_STATUS5      | 0x0114 | W    | 0x00000000     | DDR Status Register5  |
| DDR_GRF_DDR_STATUS6      | 0x0118 | W    | 0x00000000     | DDR Status Register6  |
| DDR_GRF_DDR_STATUS7      | 0x011c | W    | 0x00000000     | DDR Status Register7  |
| DDR_GRF_DDR_STATUS8      | 0x0120 | W    | 0x00000000     | DDR Status Register8  |
| DDR_GRF_DDR_STATUS9      | 0x0124 | W    | 0x00000000     | DDR Status Register9  |
| DDR_GRF_DDR_STATUS1<br>0 | 0x0128 | W    | 0x00000000     | DDR Status Register10 |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 3.4.2 Detail Register Description

## DDR\_GRF\_DDR\_CON0

Address: Operational Base + offset (0x0000) DDR Control Register0

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | WO   | 0×0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit 31=1, bit 15 can be written by software.    |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
|       | DW   | RW 0x0             | grf_con_csysreq_upctl_ddrstdby                       |
| 1 5   |      |                    | csysreq_upctl_ddrstdby bit control                   |
| 15    | RVV  |                    | 1'b0: Let ddrstdby to control csysreq of upctl.      |
|       |      |                    | 1'b1: Disable ddrstdby to control scysreq of upctl   |

| Bit   | Attr | Reset Value | Description                                                        |
|-------|------|-------------|--------------------------------------------------------------------|
|       |      |             | grf_con_csysreq_upctl_pmu                                          |
|       | D14/ |             | csysreq_upctl_pmu bit control                                      |
| 14    | RW   | 0x0         | 1'b0: Let pmu to control csysreq of upctl.                         |
|       |      |             | 1'b1: Disable pmu to control scysreq of upctl                      |
|       |      |             | grf_con_dfi_phymstr_type                                           |
|       |      |             | dfi_phymstr_type bit control                                       |
|       |      |             | Indicates which of the 4 types of PHY master interface times the   |
|       |      |             | dfi_phymstr_req signal is requesting:                              |
| 13:12 | RW   | 0x0         | 00 - tphymstr_type0                                                |
|       |      |             | 01 - tphymstr_type1                                                |
|       |      |             | 10 - tphymstr_type2                                                |
|       |      |             | 11 - tphymstr_type3                                                |
|       |      |             | For debug only.                                                    |
|       |      |             | grf_con_dfi_phymstr_state_sel                                      |
|       |      |             | dfi_phymstr_state_sel bit control                                  |
|       |      |             | DFI PHY Master State Select: Indicates the state requested by      |
| 11    | RW   | 0x0         | the PHY:                                                           |
|       |      |             | 0 - IDLE                                                           |
|       |      |             | 1 - Self-Refresh                                                   |
|       |      |             | For debug only.                                                    |
|       |      |             | grf_con_dfi_phymstr_cs_state                                       |
|       |      |             | dfi_phymstr_cs_state bit control                                   |
|       |      |             | Indicates the state of the DRAM when the PHY becomes the           |
|       |      |             | master:                                                            |
| 10:9  | RW   | 0x0         | 0 - the PHY specifies the required state, using the                |
|       |      |             | dfi_phymstr_state_sel signal                                       |
|       |      |             | 1 - the PHY does not specify the state                             |
|       |      |             | This signal is valid only when dfi_phymstr_req is asserted. Each   |
|       |      |             | memory rank uses one bit. For debug only.                          |
|       |      |             | grf_con_dfi_phymstr_req                                            |
| 8     | RW   | 0x0         | dfi_phymstr_req bit control                                        |
|       |      |             | Indicates if set that the PHY requests control on the DFI bus. For |
|       |      |             | debug only.                                                        |
|       |      |             | grf_con_upctl_axi                                                  |
| 7     | RW   | 0x0         | upctl_axi bit control                                              |
|       |      |             | AXI Low-Power Request. Active low, it requests upctl to enter a    |
|       |      |             | low-power state.                                                   |
|       |      |             | grf_con_upctl_arurgent_0<br>upctl_arurgent_0 bit control           |
|       | RW   |             | AXI Read Urgent. Sideband signal to indicate a read urgent         |
| 6     |      | W 0×0       | transaction. When asserted, if rd_port_urgent_en register is set,  |
|       |      |             | causes the port arbiter to switch immediately to read. It can be   |
|       |      |             | asserted anytime, it's not associated to any particular command    |
|       |      |             | asserted anythine, it's not associated to any particular command   |

| Bit | Attr         | Reset Value | Description                                                                                                      |
|-----|--------------|-------------|------------------------------------------------------------------------------------------------------------------|
|     |              |             | grf_con_upctl_arposion                                                                                           |
| -   | <b>D</b> 144 |             | upctl_arposion bit control                                                                                       |
| 5   | RW           | 0x0         | AXI Read poison. Sideband signal to indicate an invalid read                                                     |
|     |              |             | transaction. When asserted, all zeros are returned at the output.<br>If not needed, signal must be tied to zero. |
|     |              |             | grf_con_upctl_awposion                                                                                           |
|     |              |             | upctl_awposion bit control                                                                                       |
| 4   | RW           | 0x0         | AXI Write poison. Sideband signal to indicate an invalid write                                                   |
|     |              |             | transaction. When asserted, no data is written to the memory. If                                                 |
|     |              |             | not needed, signal must be tied to zero.                                                                         |
|     |              |             | grf_con_upctl_awurgent                                                                                           |
|     |              | 0x0         | upctl_awurgent bit control                                                                                       |
| 3   | RW           |             | AXI Write Urgent. Sideband signal to indicate a write urgent                                                     |
| 5   | ĸw           |             | transaction. When asserted, if wr_port_urgent_en register is set,                                                |
|     |              |             | causes the port arbiter to switch immediately to write. It can be                                                |
|     |              |             | asserted anytime, it's not associated to any particular command                                                  |
|     |              | W 0×0       | grf_con_pa_wmask                                                                                                 |
|     |              |             | pa_wmask bit control                                                                                             |
| 2   | RW           |             | When asserted (active high), it will mask (prevent) the                                                          |
|     |              |             | corresponding application port write address channel from                                                        |
|     |              |             | requesting to the PA. For debug only.                                                                            |
|     |              |             | grf_con_pa_rmask                                                                                                 |
|     |              |             | pa_rmask bit control                                                                                             |
| 1:0 | RW           | W 0×0       | When asserted (active high), it will mask (prevent) the                                                          |
| 1.0 |              |             | corresponding application port read address channel from                                                         |
|     |              |             | requesting to the PA. There are 2 bits for each port, first one for                                              |
|     |              |             | the blue queue, second for the red queue. For debug only.                                                        |

## DDR\_GRF\_DDR\_CON1

Address: Operational Base + offset (0x0004)

DDR Control Register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <ul> <li>write_enable</li> <li>Bit0~15 write enable</li> <li>"When bit16=1, bit0 can be written by software.</li> <li>When bit16=0, bit 0 cannot be written by software;</li> <li>When bit 17=1, bit 1 can be written by software.</li> <li>When bit 17=0, bit 1 cannot be written by software;</li> <li></li> <li>When bit 31=1, bit 15 can be written by software.</li> <li>When bit 31=0, bit 15 cannot be written by software;</li> </ul> |

| Bit   | Attr | <b>Reset Value</b> | Description                                                    |
|-------|------|--------------------|----------------------------------------------------------------|
|       |      |                    | grf_con_upctl_awregion                                         |
| 15:12 | DW   | 0x0                | upctl_awregion bit control                                     |
| 13.12 |      | 0.00               | AXI 4 Write Address REGION signal. This signals is not used by |
|       |      |                    | the Controller.                                                |
|       |      |                    | grf_con_upctl_arregion                                         |
| 11:8  | RW   | 0×0                | upctl_arregion bit control                                     |
| 11:0  | RVV  |                    | AXI 4 Read Address REGION signal. This signals is not used by  |
|       |      |                    | the Controller.                                                |
|       |      | W 0x0              | grf_con_upctl_arqos                                            |
|       |      |                    | upctl_arqos bit control                                        |
| 7:4   | RW   |                    | AXI Read Quality of Service. Sideband signal to indicate the   |
|       |      |                    | quality of service attributes of the write transaction. For    |
|       |      |                    | singleport configurations, this signal has no effect.          |
|       |      |                    | grf_con_upctl_awqos                                            |
|       |      |                    | upctl_awqos bit control                                        |
| 3:0   | RW   | W 0x0              | AXI Write Quality of Service. Sideband signal to indicate the  |
|       |      |                    | quality of service attributes of the write transaction. For    |
|       |      |                    | singleport configurations, this signal has no effect.          |

## DDR\_GRF\_DDR\_CON2

Address: Operational Base + offset (0x0008)

DDR Control Register2

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15    | RW   | 0×0                | grf_dfi_init_start<br>dfi_init_start bit control                                                                                                                                                                                                                                                                                                            |
| 14    | RW   | 0x0                | grf_dfi_init_start_sel<br>dfi_init_start_sel control<br>1: set ddrphy dfi init start controlled by grf_dfi_init_start<br>0: set ddrphy dif init start controlled by by upctl                                                                                                                                                                                |
| 13    | RW   | 0x0                | grf_upctl_apb_gate_en<br>upctl_apb_gate_en bit control<br>When set to 1 and axi_cg_en=1 and axi_cactive_0=0, axi clock<br>of upctl will be auto gated when there is no axi traffic and apb<br>traffic.                                                                                                                                                      |

| Bit  | Attr | <b>Reset Value</b> | Description                                                       |
|------|------|--------------------|-------------------------------------------------------------------|
|      |      |                    | grf_ddrc_idle_sel                                                 |
|      |      |                    | ddrc_idle_sel control                                             |
| 12   | RW   | 0x0                | 1: select the ~ddrc_cactive as ddrcstdby ctl_idle                 |
|      |      |                    | 0: select ctl_idel of upctl as ddrcstdby ctl_idle.                |
|      |      |                    | It should set to 0x1.                                             |
| 11:9 | RO   | 0x0                | reserved                                                          |
|      |      |                    | grf_con_dfi_lp_ack                                                |
| 8    | RW   | 0x0                | dfi_lp_ack bit control                                            |
|      |      |                    | The control signal of auto gated ddrc_core_clk. It should be 0x0. |
|      |      |                    | grf_con_dfi_lp_req                                                |
| 7    | RW   | 0x0                | dfi_lp_req bit control                                            |
|      |      |                    | The control signal of auto gated ddrc_core_clk. It should be 0x0. |
|      |      |                    | grf_con_dfi_phyupd_req                                            |
| 6    | RW   | 0x0                | dfi_phyupd_req bit control                                        |
|      |      |                    | The control signal of auto gated ddrc_core_clk. It should be 0x0. |
|      |      |                    | grf_con_ddrc_auto_sr_dly                                          |
| 5:2  | RW   | 0x0                | ddrc_auto_sr_dly bit control                                      |
|      |      |                    | The delay of auto gated ddrc_core_clk. It should be to be 0x6.    |
|      |      |                    | grf_con_ddrc_cg_en                                                |
| 1    | RW   | V 0×0              | ddrc_cg_en bit control                                            |
| 1    |      |                    | when ddrc_cg_en=1, ddrc_cactive=0 and in auto self-refresh        |
|      |      |                    | state, ddrc_core_clock of upctl will be auto gated.               |
|      |      |                    | grf_con_axi_cg_en                                                 |
| 0    | RW   | 0×0                | axi_cg_en bit control                                             |
|      |      |                    | when axi_cg_en=1 and axi_cactive_0=0, axi clock of upctl will     |
|      |      |                    | be auto gated when there is no axi traffic.                       |

### DDR\_GRF\_DDR\_CON3

Address: Operational Base + offset (0x000c) DDR Control Register3

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | wo   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:13 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |

| Bit | Attr | Reset Value | Description                                                          |
|-----|------|-------------|----------------------------------------------------------------------|
|     |      |             | dfi_ctrlupd_ack2                                                     |
| 10  | RW   | 0x0         | dfi_ctrlupd_ack2 bit control                                         |
| 12  | RVV  | UXU         | Second acknowledgement signal for the Controller initiated           |
|     |      |             | update request. This is to be used for legacy PHYs.                  |
|     |      |             | dfi_ctrlupd_ack                                                      |
|     |      |             | dfi_ctrlupd_ack bit control                                          |
| 11  | RW   | 0x0         | This signal is asserted to acknowledge a Controller initiated        |
|     |      |             | update request. The PHY is not required to acknowledge this          |
|     |      |             | request.                                                             |
|     |      |             | dfi_phyupd_req                                                       |
|     |      |             | dfi_phyupd_req bit control                                           |
| 10  | RW   | 0x0         | DFI PHY-initiated Update Request: Indicates if set that the PHY      |
|     |      |             | requires the DFI to be idle, i.e. DFI command, read data and         |
|     |      |             | write data channels to be inactive, for a specified period of time.  |
|     |      |             | dfi_phyupd_type                                                      |
|     |      |             | dfi_phyupd_type bit control                                          |
|     |      |             | DFI PHY-initiated Update Select: Indicates which one of the 4        |
|     |      |             | types of PHY update times is being requested by the                  |
| 9:8 | RW   | 0x0         | dfi_phyupd_req signal. Valid values are:                             |
|     |      |             | 00 - Tphyupd_type0                                                   |
|     |      |             | 01 - Tphyupd_type1                                                   |
|     |      |             | 10 - Tphyupd_type2                                                   |
|     |      |             | 11 - Tphyupd_type3                                                   |
|     |      |             | dfi_wrlvl_mode                                                       |
|     |      |             | dfi_wrlvl_mode bit control                                           |
|     |      |             | Defines responsibility over the write leveling operation.            |
|     |      |             | The following modes are supported:                                   |
|     |      |             | 00 - Write leveling is not supported by the PHY                      |
| 7:6 | RW   | 0x0         | 10 - PHY WrLvl evaluation mode. The Controller enables and           |
| /.0 | 1    | 0,0         | disables the write leveling logic in the PHY. The PHY contains logic |
|     |      |             | to evaluate the results and set new delay values;                    |
|     |      |             | 11 - PHY WrLvl independent mode. The PHY performs all write          |
|     |      |             | leveling operations; Controller WrLvl evaluation mode is not         |
|     |      |             | supported.                                                           |
|     |      |             | 01 - Not supported (MC WrLvl evaluation mode).                       |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:4 | RW   | 0×0                | dfi_rdlvl_gate_mode<br>dfi_rdlvl_gate_mode bit control<br>Defines responsibility over the read gate training operation. Read<br>gate training is available for all modes:<br>DDR2/DDR3/DDR4/mDDR/LPDDR2/LPDDR3.<br>The following modes are supported:<br>00 - Gate training is not supported by the PHY<br>10 - PHY RdLvl evaluation mode. The Controller enables and<br>disables the gate training logic in the PHY. The PHY contains logic<br>to evaluate the results and to set new delay values<br>11 - PHY RdLvl independent mode. The PHY performs all read<br>DQS eye training operations<br>01 - Not supported (MC RdLvl evaluation mode).<br>It should be 0x3. |
| 3:2 | RW   | 0×0                | dfi_rdlvl_mode<br>dfi_rdlvl_mode bit control<br>Defines responsibility over the read DQS eye training leveling<br>operation. Read DQS eye training is available for DDR3/DDR4 or<br>LPDDR2/LPDDR3 designs.<br>The following modes are supported:<br>00 - Read leveling is not supported by the PHY;<br>10 - PHY RdLvl evaluation mode. The Controller enables and<br>disables the read leveling logic in the PHY. The PHY contains logic<br>to evaluate the results and set new delay values.<br>11 - PHY RdLvl independent mode. The PHY performs all read<br>leveling operations.<br>01 - Not supported (MC RdLvl evaluation mode).<br>It should be set to 0x3.       |
| 1:0 | RW   | 0x0                | dfi_alert_n<br>dfi_alert_n bit control<br>CRC or Parity error signal. It should be set to 0x3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## DDR\_GRF\_DDR\_STATUS0

Address: Operational Base + offset (0x0100)

DDR Status Register0

| Bit   | Attr | <b>Reset Value</b> | Description |
|-------|------|--------------------|-------------|
| 31:29 | RO   | 0x0                | reserved    |

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                            |
|-------|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28    | RO   | 0×0                | ctl_idle_upctl<br>ctl_idle_upctl bit status<br>Signal to be used in conjunction with certain PHYs only - to<br>trigger the PHY's Anti-Aging feature. This signal is not part of the<br>DFI interface.                                                                                                  |
| 20    |      |                    | ctl_idle is asserted at same time as dfi_lp_req - therefore is<br>asserted only if DFI Low Power Interface is enabled via<br>DFILPCFG0.dfi_lp_en_pd or DFILPCFG0.dfi_lp_en_sr or<br>DFILPCFG0.dfi_lp_en_dpd or DFILPCFG1.dfi_lp_en_mpsm.<br>It is enabled via DFIMISC.ctl_idle_en.                     |
| 27    | RO   | 0x0                | grf_st_dfi_phymstr_ack<br>upctl_dfi_phymstr_ack bit status<br>When asserted, the PHY is the master of DRAM bus.                                                                                                                                                                                        |
| 26    | RO   | 0×0                | grf_st_upctl_raq_pop_0<br>upctl_raq_pop_0 bit status<br>Transaction read from the Read address FIFO (synchronous to<br>core_ddrc_core_clk).                                                                                                                                                            |
| 25    | RO   | 0×0                | grf_st_upctl_raq_push_0<br>upctl_raq_push_0 bit status<br>Transaction written to the Read address FIFO (synchronous to<br>aclk_0).                                                                                                                                                                     |
| 24    | RO   | 0×0                | grf_st_upctl_raq_split_0<br>upctl_raq_split_0 bit status<br>First portion of a wrap burst going to the Read address FIFO<br>(synchronous to aclk_0).                                                                                                                                                   |
| 23    | RO   | 0x0                | grf_st_upctl_waq_pop_0<br>upctl_waq_split_0 bit status<br>Transaction read from the Write address FIFO (synchronous to<br>core_ddrc_core_clk).                                                                                                                                                         |
| 22    | RO   | 0×0                | grf_st_upctl_waq_push_0<br>upctl_waq_split_0 bit status<br>Transaction written to the Write address FIFO (synchronous to<br>aclk_0).                                                                                                                                                                   |
| 21    | RO   | 0x0                | grf_st_upctl_waq_split_0<br>upctl_waq_split_0 bit status<br>First portion of a wrap burst going to the Write address FIFO<br>(synchronous to aclk_0).                                                                                                                                                  |
| 20:14 | RO   | 0×00               | grf_st_lpr_credit_cnt<br>lpr_credit_cnt bit status<br>Number of available Low priority read CAM slots (free<br>positions).Each slots holds a DRAM burst Synchronous to core<br>clock (core_ddrc_core_clk). Value is decremented/incremented as<br>the commands flow in out of the read CAM (LPR store) |

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                               |
|------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13:7 | RO   | 0x00               | grf_st_hpr_credit_cnt<br>hpr_credit_cnt bit status<br>Number of available High priority read CAM slots (free positions).<br>Each slots holds a DRAM burst Synchronous to core clock<br>(core_ddrc_core_clk). Value is decremented/incremented as the<br>commands flow in out of the read CAM (HPR store). |
| 6:0  | RO   | 0x00               | grf_st_wr_credit_cnt<br>wr_credit_cnt bit status<br>Number of available write CAM slots (free positions). Each slots<br>holds a DRAM burst Synchronous to core clock<br>(core_ddrc_core_clk). Value is decremented/incremented as the<br>commands flow in out of the write CAM.                           |

## DDR\_GRF\_DDR\_STATUS1

Address: Operational Base + offset (0x0104)

DDR Status Register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                         |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                            |
| 15:14 | RO   | 0×0                | hif_refresh_req_bank<br>hif_refresh_req_bank bit status<br>Indicates the next bank which will be refreshed; for multi-rank<br>configurations, the bank number is reported independently for<br>each rank, and the information for all ranks is concatenated to<br>form this signal. |
| 13:12 | RO   | 0×0                | stat_upctl_reg_selfref_type<br>stat_upctl_reg_selfref_type bit status<br>DDRC Self Refresh status and type. Equivalent to<br>STAT.selfref_type register.                                                                                                                            |
| 11    | RO   | 0×0                | csysack_upctl_axi<br>csysack_upctl_axi bit status<br>AXI Low-Power Request Acknowledge. Acknowledgement from<br>the peripheral (Port 0) of a grf request.                                                                                                                           |
| 10    | RO   | 0×0                | cactive_upctl_axi<br>cactive_upctl_axi bit status<br>AXI Clock Active. Indicates that the peripheral (Port 0) requires<br>its clock signal                                                                                                                                          |
| 9:8   | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                            |
| 7:4   | RO   | 0x0                | grf_st_upctl_raq_wcount_0<br>upctl_raq_wcount_0 bit status<br>Number of used positions in the Read address FIFO (synchronous<br>to core_ddrc_core_clk).                                                                                                                             |

| Bit | Attr | <b>Reset Value</b> | Description                                                     |  |  |  |  |  |  |
|-----|------|--------------------|-----------------------------------------------------------------|--|--|--|--|--|--|
|     |      | 0×0                | grf_st_upctl_waq_wcount_0                                       |  |  |  |  |  |  |
| 3:0 | RO   |                    | upctl_waq_wcount_0 bit status                                   |  |  |  |  |  |  |
| 5.0 | ĸŪ   |                    | Number of used positions in the Write address FIFO (synchronous |  |  |  |  |  |  |
|     |      |                    | to core_ddrc_core_clk)                                          |  |  |  |  |  |  |

### DDR\_GRF\_DDR\_STATUS2

Address: Operational Base + offset (0x0108)

DDR Status Register2

| Bit                                                                                                                                                           | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                               |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 31:21                                                                                                                                                         | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                                                                                               |      | 0×00               | grf_st_wr_credit_cnt<br>wr_credit_cnt bit status<br>Number of available write CAM slots (free positions). Each slots                                                                                                                                                                                      |  |  |  |  |
| 20:14                                                                                                                                                         | RO   |                    | holds a DRAM burst Synchronous to core clock<br>(core_ddrc_core_clk). Value is decremented/incremented as the<br>commands flow in out of the write CAM.                                                                                                                                                   |  |  |  |  |
| 13:7                                                                                                                                                          | RO   | 0×00               | grf_st_hpr_credit_cnt<br>hpr_credit_cnt bit status<br>Number of available High priority read CAM slots (free positions).<br>Each slots holds a DRAM burst Synchronous to core clock<br>(core_ddrc_core_clk). Value is decremented/incremented as the<br>commands flow in out of the read CAM (HPR store). |  |  |  |  |
| 6:0 RO 0x00 grf_st_lpr_credit_cnt<br>Number of available Low priority read<br>positions).Each slots holds a DRAM bu<br>clock (core_ddrc_core_clk). Value is c |      | 0×00               |                                                                                                                                                                                                                                                                                                           |  |  |  |  |

### DDR\_GRF\_DDR\_STATUS3

Address: Operational Base + offset (0x010c)

DDR Status Register3

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|------|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 31:0 | RO   | 0×00000000         | mrr_data0[31:0]<br>DDR_STATUS3~DDR_STATUS10 are Mode Register Read Data.<br>mrr_data0[31:0] data status.<br>(LPDDR2/3/4): Mode register read data.<br>(DDR4): Multi-purpose register (MPR) read data. Valid when<br>hif_mrr_data_valid is high.<br>Present only in designs configured to support<br>LPDDR2/LPDDR3/LPDDR4 or DDR4<br>For DDR4, the width of this signal is equal to the width of the<br>dfi_rddata signal. DDR4 MPR read data received on the DFI<br>interface can be read on hif_mrr_data when hif_mrr_data_valid is<br>asserted. |  |  |  |  |  |

#### DDR\_GRF\_DDR\_STATUS4

Address: Operational Base + offset (0x0110) DDR Status Register4

| Bit    | Attr | <b>Reset Value</b> | Description                                    |  |  |  |  |  |
|--------|------|--------------------|------------------------------------------------|--|--|--|--|--|
| 21.0   |      | 10x000000000       | mrr_data0[63:32]                               |  |  |  |  |  |
| 31:0 F | ĸŬ   |                    | mrr_data0[63:32] data status. See DDR_STATUS3. |  |  |  |  |  |

#### DDR\_GRF\_DDR\_STATUS5

Address: Operational Base + offset (0x0114)

DDR Status Register5

| Bit  | Attr | <b>Reset Value</b> | Description                                    |  |  |  |  |  |
|------|------|--------------------|------------------------------------------------|--|--|--|--|--|
| 31:0 | RO   | )  0x000000000     | mrr_data0[95:64]                               |  |  |  |  |  |
| 51.0 | ĸŬ   |                    | mrr_data0[95:64] data status. See DDR_STATUS3. |  |  |  |  |  |

### DDR\_GRF\_DDR\_STATUS6

Address: Operational Base + offset (0x0118)

DDR Status Register6

| Bit  | Attr | <b>Reset Value</b> | Description                                     |  |  |  |  |
|------|------|--------------------|-------------------------------------------------|--|--|--|--|
| 31:0 |      | RO  0x000000000    | mrr_data0[127:96]                               |  |  |  |  |
| 51.0 | ĸŪ   |                    | mrr_data0[127:96] data status. See DDR_STATUS3. |  |  |  |  |

#### DDR\_GRF\_DDR\_STATUS7

Address: Operational Base + offset (0x011c)

DDR Status Register7

| Bit  | Attr | <b>Reset Value</b> | Description                                   |  |  |  |  |
|------|------|--------------------|-----------------------------------------------|--|--|--|--|
| 31:0 | RO   | 0x00000000         | mrr_data1[31:0]                               |  |  |  |  |
| 51.0 | ĸŪ   | 0x00000000         | mrr_data1[31:0] data status. See DDR_STATUS3. |  |  |  |  |

#### DDR\_GRF\_DDR\_STATUS8

Address: Operational Base + offset (0x0120)

DDR Status Register8

| Bit  | Attr | <b>Reset Value</b>                      | Description                                    |  |  |  |  |
|------|------|-----------------------------------------|------------------------------------------------|--|--|--|--|
| 31:0 | PO   | 0x00000000                              | mrr_data1[63:32]                               |  |  |  |  |
| 51.0 | κυ   | 0.0000000000000000000000000000000000000 | mrr_data1[63:32] data status. See DDR_STATUS3. |  |  |  |  |

#### DDR\_GRF\_DDR\_STATUS9

Address: Operational Base + offset (0x0124) DDR Status Register9

| Bit  | Attr | <b>Reset Value</b> | Description                                                        |  |  |  |  |  |
|------|------|--------------------|--------------------------------------------------------------------|--|--|--|--|--|
| 31:0 | RO   | 0x000000000        | mrr_data1[95:64]<br>mrr_data1[95:64] data status. See DDR_STATUS3. |  |  |  |  |  |

### DDR\_GRF\_DDR\_STATUS10

Address: Operational Base + offset (0x0128)

| DDR S   | DDR Status Register10 |                    |                                                 |  |  |  |  |
|---------|-----------------------|--------------------|-------------------------------------------------|--|--|--|--|
| Bit     | Attr                  | <b>Reset Value</b> | Description                                     |  |  |  |  |
| 31:0    |                       | 0,000,000,000      | mrr_data1[127:96]                               |  |  |  |  |
| 31:0 RO |                       | 0x00000000         | mrr_data1[127:96] data status. See DDR_STATUS3. |  |  |  |  |

## 3.5 USB2PHY\_GRF Register Description

## 3.5.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

## 3.5.2 Registers Summary

| Name         | Offset | Size | Reset<br>Value | Description        |
|--------------|--------|------|----------------|--------------------|
| USBPHY_REG0  | 0x0000 | W    | 0x00002146     | USB PHY Register0  |
| USBPHY_REG1  | 0x0004 | W    | 0x00000000     | USB PHY Register1  |
| USBPHY_REG2  | 0x0008 | W    | 0x0000002      | USB PHY Register2  |
| USBPHY_REG3  | 0x000c | W    | 0x00000c8      | USB PHY Register3  |
| USBPHY_REG4  | 0x0010 | W    | 0x000015b4     | USB PHY Register4  |
| USBPHY_REG5  | 0x0014 | W    | 0x000011cb     | USB PHY Register5  |
| USBPHY_REG6  | 0x0018 | W    | 0x0000022b     | USB PHY Register6  |
| USBPHY_REG7  | 0x001c | W    | 0x00000044     | USB PHY Register7  |
| USBPHY_REG8  | 0x0020 | W    | 0x00000000     | USB PHY Register8  |
| USBPHY_REG9  | 0x0024 | W    | 0x00000000     | USB PHY Register9  |
| USBPHY_REG10 | 0x0028 | W    | 0x00000000     | USB PHY Register10 |
| USBPHY_REG11 | 0x002c | W    | 0x00000000     | USB PHY Register11 |
| USBPHY_REG12 | 0x0030 | W    | 0x00002146     | USB PHY Register12 |
| USBPHY_REG13 | 0x0034 | W    | 0x00000000     | USB PHY Register13 |
| USBPHY_REG14 | 0x0038 | W    | 0x0000002      | USB PHY Register14 |
| USBPHY_REG15 | 0x003c | W    | 0x00000c8      | USB PHY Register15 |
| USBPHY_REG16 | 0x0040 | W    | 0x000015b4     | USB PHY Register16 |
| USBPHY_REG17 | 0x0044 | W    | 0x000011cb     | USB PHY Register17 |
| USBPHY_REG18 | 0x0048 | W    | 0x0000005      | USB PHY Register18 |
| USBPHY_REG19 | 0x004c | W    | 0x00000044     | USB PHY Register19 |
| USBPHY_REG20 | 0x0050 | W    | 0x00000000     | USB PHY Register20 |
| USBPHY_REG21 | 0x0054 | W    | 0x00000000     | USB PHY Register21 |
| USBPHY_REG22 | 0x0058 | W    | 0x00000000     | USB PHY Register22 |
| USBPHY_REG23 | 0x005c | W    | 0x0000000      | USB PHY Register23 |

| Name                 | Offset | Size | Reset<br>Value | Description                |
|----------------------|--------|------|----------------|----------------------------|
| USBPHY_CON0          | 0x0100 | W    | 0x00000052     | USB PHY control register0  |
| USBPHY_CON1          | 0x0104 | W    | 0x000001d2     | USB PHY control register1  |
| USBPHY_CON2          | 0x0108 | W    | 0x00000000     | USB PHY control register2  |
| USBPHY_CON3          | 0x010c | W    | 0x0000019      | USB PHY control register3  |
| SIG_DETECT_USB2PHY_C | 0x0110 | w    | 0x00000000     | SIG DETECT USB2PHY control |
| ON0                  | 0X0110 | vv   | 0x00000000     | register0                  |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 3.5.3 Detail Register Description

### USBPHY\_REG0

Address: Operational Base + offset (0x0000)

USB PHY Register0

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software. |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
|       |      |                    | usbphy_reg0                                          |
| 15:0  | RW   | 0x2146             | usbcomb phy control reg. BIT15 to 0                  |
|       |      |                    | usbcomb phy control reg. BIT15 to 0                  |

### USBPHY\_REG1

Address: Operational Base + offset (0x0004) USB PHY Register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x0000             | usbphy_reg1<br>usbcomb phy control reg. BIT31 to 16<br>usbcomb phy control reg. BIT31 to 16                                                                                                                                                                                                                                                                 |

## USBPHY\_REG2

Address: Operational Base + offset (0x0008) USB PHY Register2

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x0002             | usbphy_reg2<br>usbcomb phy control reg. BIT47 to 32<br>usbcomb phy control reg. BIT47 to 32                                                                                                                                                                                                                                                                 |

#### USBPHY\_REG3

Address: Operational Base + offset (0x000c)

USB PHY Register3

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x00c8             | usbphy_reg3<br>usbcomb phy control reg. BIT63 to 48<br>usbcomb phy control reg. BIT63 to 48                                                                                                                                                                                                                                                                 |

### USBPHY\_REG4

Address: Operational Base + offset (0x0010) USB PHY Register4

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                            |
|-------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software.</pre> |
|       |      |             | When bit 31=0, bit 15 cannot be written by software;                                                                                                                                                                                                                                                   |
| 15:0  | RW   | 0x15b4      | usbphy_reg4<br>usbcomb phy control reg. BIT79 to 64<br>usbcomb phy control reg. BIT79 to 64                                                                                                                                                                                                            |

## USBPHY\_REG5

Address: Operational Base + offset (0x0014) USB PHY Register5

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit 31=1, bit 15 can be written by software.    |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
|       |      |                    | usbphy_reg5                                          |
| 15:0  | RW   | 0x11cb             | usbcomb phy control reg. BIT95 to 80                 |
|       |      |                    | usbcomb phy control reg. BIT95 to 80                 |

## USBPHY\_REG6

Address: Operational Base + offset (0x0018) USB PHY Register6

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 |      | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                   |
|------|------|--------------------|-----------------------------------------------------------------------------------------------|
| 15:0 | RW   | 0x022b             | usbphy_reg6<br>usbcomb phy control reg. BIT111 to 96<br>usbcomb phy control reg. BIT111 to 96 |

### USBPHY\_REG7

Address: Operational Base + offset (0x001c) USB PHY Register7

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software. |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
|       |      |                    | usbphy_reg7                                          |
| 15:0  | RW   | 0x0044             | usbcomb phy control reg. BIT127 to 112               |
|       |      |                    | usbcomb phy control reg. BIT127 to 112               |

### USBPHY\_REG8

Address: Operational Base + offset (0x0020) USB PHY Register8

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0×0000             | usbphy_reg8<br>usbcomb phy control reg. BIT143 to 128<br>usbcomb phy control reg. BIT143 to 128                                                                                                                                                                                                                                                             |

### USBPHY\_REG9

Address: Operational Base + offset (0x0024) USB PHY Register9

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x0000      | usbphy_reg9<br>usbcomb phy control reg. BIT159 to 144<br>usbcomb phy control reg. BIT159 to 144                                                                                                                                                                                                                                                             |

## USBPHY\_REG10

Address: Operational Base + offset (0x0028) USB PHY Register10

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0×0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software. |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
|       |      |                    | usbphy_reg10                                         |
| 15:0  | RW   | 0x0000             | usbcomb phy control reg. BIT175 to 160               |
|       |      |                    | usbcomb phy control reg. BIT175 to 160               |

## USBPHY\_REG11

Address: Operational Base + offset (0x002c) USB PHY Register11

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                      |
|------|------|--------------------|--------------------------------------------------------------------------------------------------|
| 15:0 | RW   | 0x0000             | usbphy_reg11<br>usbcomb phy control reg. BIT191 to 176<br>usbcomb phy control reg. BIT191 to 176 |

### USBPHY\_REG12

Address: Operational Base + offset (0x0030) USB PHY Register12

| Bit   | Attr                                                                                                       | <b>Reset Value</b>                               | Description                                          |
|-------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|
|       |                                                                                                            |                                                  | write_enable                                         |
|       |                                                                                                            |                                                  | Bit0~15 write enable                                 |
|       |                                                                                                            |                                                  | "When bit16=1, bit0 can be written by software.      |
|       |                                                                                                            |                                                  | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | When bit 17=0, bit 1 cannot be written by software<br><br>When bit 31=1, bit 15 can be written by software | When bit 17=1, bit 1 can be written by software. |                                                      |
|       |                                                                                                            |                                                  | When bit 17=0, bit 1 cannot be written by software;  |
|       |                                                                                                            |                                                  |                                                      |
|       |                                                                                                            |                                                  | When bit 31=1, bit 15 can be written by software.    |
|       |                                                                                                            |                                                  | When bit 31=0, bit 15 cannot be written by software; |
|       |                                                                                                            |                                                  | usbphy_reg12                                         |
| 15:0  | RW                                                                                                         | 0x2146                                           | usbcomb phy control reg. BIT207 to 192               |
|       |                                                                                                            |                                                  | usbcomb phy control reg. BIT207 to 192               |

### USBPHY\_REG13

Address: Operational Base + offset (0x0034) USB PHY Register13

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                          |
|-------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | V 0×0000           | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software;</pre> |
|       |      |                    | When bit 31=1, bit 15 can be written by software.<br>When bit 31=0, bit 15 cannot be written by software;                                                                                                                                            |
| 15:0  | RW   | 0x0000             | usbphy_reg13<br>usbcomb phy control reg. BIT223 to 208<br>usbcomb phy control reg. BIT223 to 208                                                                                                                                                     |

### USBPHY\_REG14

Address: Operational Base + offset (0x0038) USB PHY Register14

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x0002      | usbphy_reg14<br>usbcomb phy control reg. BIT239 to 224<br>usbcomb phy control reg. BIT239 to 224                                                                                                                                                                                                                                                            |

## USBPHY\_REG15

Address: Operational Base + offset (0x003c) USB PHY Register15

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | W 0x0000           | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software. |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
|       |      |                    | usbphy_reg15                                         |
| 15:0  | RW   | 0x00c8             | usbcomb phy control reg. BIT255 to 240               |
|       |      |                    | usbcomb phy control reg. BIT255 to 240               |

## USBPHY\_REG16

Address: Operational Base + offset (0x0040) USB PHY Register16

| write_enable                                                                                                                                                                                                                                                                                                                                                |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Bit0~15 write enable"When bit16=1, bit0 can be written by software.<br>When bit16=0, bit 0 cannot be written by software;31:16 RW0x0000When bit 17=1, bit 1 can be written by software.<br>When bit 17=0, bit 1 cannot be written by software;<br>When bit 31=1, bit 15 can be written by software.<br>When bit 31=0, bit 15 cannot be written by software; | e; |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                      |
|------|------|--------------------|--------------------------------------------------------------------------------------------------|
| 15:0 | RW   | 0x15b4             | usbphy_reg16<br>usbcomb phy control reg. BIT271 to 256<br>usbcomb phy control reg. BIT271 to 256 |

### USBPHY\_REG17

Address: Operational Base + offset (0x0044) USB PHY Register17

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x11cb             | usbphy_reg17<br>usbcomb phy control reg. BIT287 to 272<br>usbcomb phy control reg. BIT287 to 272                                                                                                                                                                                                                                                            |

### USBPHY\_REG18

Address: Operational Base + offset (0x0048) USB PHY Register18

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x0005             | usbphy_reg18<br>usbcomb phy control reg. BIT303 to 288<br>usbcomb phy control reg. BIT303 to 288                                                                                                                                                                                                                                                            |

### USBPHY\_REG19

Address: Operational Base + offset (0x004c) USB PHY Register19

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x0044      | usbphy_reg19<br>usbcomb phy control reg. BIT319 to 304<br>usbcomb phy control reg. BIT319 to 304                                                                                                                                                                                                                                                            |

## USBPHY\_REG20

Address: Operational Base + offset (0x0050) USB PHY Register20

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software. |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
|       |      |                    | usbphy_reg20                                         |
| 15:0  | RW   | 0x0000             | usbcomb phy control reg. BIT335 to 320               |
|       |      |                    | usbcomb phy control reg. BIT335 to 320               |

## USBPHY\_REG21

Address: Operational Base + offset (0x0054) USB PHY Register21

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 |      | 0x0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                      |
|------|------|--------------------|--------------------------------------------------------------------------------------------------|
| 15:0 | RW   | 0x0000             | usbphy_reg21<br>usbcomb phy control reg. BIT351 to 336<br>usbcomb phy control reg. BIT351 to 336 |

### USBPHY\_REG22

Address: Operational Base + offset (0x0058) USB PHY Register22

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0x0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:0  | RW   | 0x0000      | usbphy_reg22<br>usbcomb phy control reg. BIT367 to 352<br>usbcomb phy control reg. BIT367 to 352                                                                                                                                                                                                                                                            |

### USBPHY\_REG23

Address: Operational Base + offset (0x005c) USB PHY Register23

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
|       |      |                    | usbphy_reg23                                                                                                                                                                                                                                                                                                                                                |
| 15:0  | RW   | 0x0000             | usbcomb phy control reg. BIT383 to 368<br>usbcomb phy control reg. BIT383 to 368                                                                                                                                                                                                                                                                            |

### USBPHY\_CON0

Address: Operational Base + offset (0x0100) USB PHY control register0

| Bit   | Attr         | Reset Value | Description                                                                                |
|-------|--------------|-------------|--------------------------------------------------------------------------------------------|
|       |              |             | write_enable                                                                               |
|       |              |             | Bit0~15 write enable                                                                       |
|       |              |             | "When bit16=1, bit0 can be written by software.                                            |
|       |              |             | When bit16=0, bit 0 cannot be written by software;                                         |
| 31:16 | RW           | 0x0000      | When bit 17=1, bit 1 can be written by software.                                           |
|       |              |             | When bit 17=0, bit 1 cannot be written by software;                                        |
|       |              |             |                                                                                            |
|       |              |             | When bit $31=1$ , bit 15 can be written by software.                                       |
|       |              |             | When bit 31=0, bit 15 cannot be written by software;                                       |
| 15:10 | RO           | 0x0         | reserved                                                                                   |
|       |              |             | usbotg_utmi_iddig                                                                          |
| 9     | RW           | 0x0         | usbotg_utmi_iddig bit control                                                              |
|       |              |             | USB Plug Indicator Ooutput                                                                 |
|       |              |             | usbotg_utmi_dmpulldown                                                                     |
| 8     | RW           | 0x0         | usbotg_utmi_dmpulldown bit control                                                         |
|       |              |             | Enable DMINUS Pull Down resistor                                                           |
|       |              |             | usbotg_utmi_dppulldown                                                                     |
| 7     | RW           | 0×0         | usbotg_utmi_dppulldown bit control                                                         |
|       |              |             | Enable DPLUS Pull Down resistor                                                            |
| ~     | <b>D</b> 144 |             | usbotg_utmi_termselect                                                                     |
| 6     | RW           | 0x1         | usbotg_utmi_termselect bit control                                                         |
|       |              |             | Termination select between FS/LS and HS Terminations                                       |
| E. 4  |              | 0.21        | usbotg_utmi_xcvrselect                                                                     |
| 5:4   | RW           | 0x1         | usbotg_utmi_xcvrselect bit control<br>Transceiver Select between FS/LS and HS Transceivers |
|       |              |             |                                                                                            |
| 3:2   | RW           | 0x0         | usbotg_utmi_opmode<br>usbotg_utmi_opmode bit control                                       |
| 5.2   |              | 0.00        | Operational mode selector between various modes                                            |
|       |              |             | usbotg_utmi_suspend_n                                                                      |
|       |              |             | usbotg_utmi_suspend_n bit control                                                          |
| 1     | RW           | 0x1         | Suspend Mode enable                                                                        |
| 1     |              |             | 1'b0:suspend                                                                               |
|       |              |             | 1'b1:normal                                                                                |
| 0     | RO           | 0x0         | reserved                                                                                   |
| ι     |              | -           |                                                                                            |

Address: Operational Base + offset (0x0104) USB PHY control register1

| Bit   | Attr | Reset Value | Description                                          |
|-------|------|-------------|------------------------------------------------------|
|       |      |             | write_enable                                         |
|       |      |             | Bit0~15 write enable                                 |
|       |      |             | "When bit16=1, bit0 can be written by software.      |
|       |      |             | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0x0000      | When bit 17=1, bit 1 can be written by software.     |
|       |      |             | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |             | When bit 31=1, bit 15 can be written by software.    |
|       |      |             | When bit 31=0, bit 15 cannot be written by software; |
| 15:9  | RO   | 0x0         | reserved                                             |
|       |      |             | usbhost_utmi_dmpulldown                              |
| 8     | RW   | 0x1         | usbhost_utmi_dmpulldown bit control                  |
|       |      |             | Enable DMINUS Pull Down resistor                     |
|       |      |             | usbhost_utmi_dppulldown                              |
| 7     | RW   | 0x1         | usbhost_utmi_dppulldown bit control                  |
|       |      |             | Enable DPLUS Pull Down resistor                      |
|       |      |             | usbhost_utmi_termselect                              |
| 6     | RW   | 0x1         | usbhost_utmi_termselect bit control                  |
|       |      |             | Termination select between FS/LS and HS Terminations |
|       |      |             | usbhost_utmi_xcvrselect                              |
| 5:4   | RW   | 0x1         | usbhost_utmi_xcvrselect bit control                  |
|       |      |             | Transceiver Select between FS/LS and HS Transceivers |
|       |      |             | usbhost_utmi_opmode                                  |
| 3:2   | RW   | 0x0         | usbhost_utmi_opmode bit control                      |
|       |      |             | Operational mode selector between various modes      |
|       |      |             | usbhost_utmi_suspend_n                               |
|       |      |             | usbhost_utmi_suspend_n bit control                   |
| 1     | RW   | 0x1         | Suspend Mode enable                                  |
|       |      |             | 1'b0: suspend                                        |
|       |      |             | 1'b1: normal                                         |
| 0     | RO   | 0x0         | reserved                                             |

Address: Operational Base + offset (0x0108) USB PHY control register2

| Attr    | <b>Reset Value</b>                           | Description                                                                                        |
|---------|----------------------------------------------|----------------------------------------------------------------------------------------------------|
|         |                                              | write_enable                                                                                       |
|         |                                              | Bit0~15 write enable                                                                               |
|         |                                              | "When bit16=1, bit0 can be written by software.                                                    |
|         |                                              | When bit16=0, bit 0 cannot be written by software;                                                 |
| RW      | 0x0000                                       | When bit 17=1, bit 1 can be written by software.                                                   |
|         |                                              | When bit 17=0, bit 1 cannot be written by software;                                                |
|         |                                              | · · · · · · · · · · · · · · · · · · ·                                                              |
|         |                                              | When bit 31=1, bit 15 can be written by software.                                                  |
|         |                                              | When bit 31=0, bit 15 cannot be written by software;                                               |
| RO      | 0x0                                          | reserved                                                                                           |
|         |                                              | vdm_src_en_usbotg                                                                                  |
| RW      | 0x0                                          | vdm_src_en_usbotg bit control                                                                      |
|         |                                              | open dm voltage source                                                                             |
|         |                                              | vdp_src_en_usbotg                                                                                  |
| RW      | 0x0                                          | vdp_src_en_usbotg bit control                                                                      |
|         |                                              | open dp voltage source                                                                             |
|         |                                              | rdm_pdwn_en_usbotg                                                                                 |
| RW      | 0x0                                          | rdm_pdwn_en_usbotg bit control                                                                     |
|         |                                              | open dm pull down resistor                                                                         |
|         |                                              | idp_src_en_usbotg                                                                                  |
| RW      | 0x0                                          | idp_src_en_usbotg bit control                                                                      |
|         | 0,0                                          | open dm source current                                                                             |
|         |                                              | idm_sink_en_usbotg                                                                                 |
| RW      | 0x0                                          | idm_sink_en_usbotg bit control                                                                     |
|         |                                              | open dm sink current                                                                               |
|         |                                              | idp_sink_en_usbotg                                                                                 |
| RW      | 0x0                                          | idp_sink_en_usbotg bit control                                                                     |
|         |                                              | open dp sink current                                                                               |
| RO      | 0x0                                          | reserved                                                                                           |
|         |                                              | usbphy_commononn                                                                                   |
| RW      | 0x0                                          | usbphy_commononn bit control                                                                       |
|         |                                              | configure PLL clock output in suspend mode                                                         |
|         |                                              | bypasssel_usbotg                                                                                   |
| RW      | 0x0                                          | bypasssel_usbotg bit control                                                                       |
|         |                                              | bypass select                                                                                      |
|         |                                              | bypassdmen_usbotg                                                                                  |
| RW      | 0x0                                          | bypassdmen_usbotg bit control                                                                      |
|         |                                              | bypass dm enable                                                                                   |
|         |                                              | usbotg_disable_1                                                                                   |
| RW      | 0x0                                          | usbotg_disable_1 bit control                                                                       |
|         |                                              | bypass OTG function                                                                                |
|         |                                              | usbotg_disable_0                                                                                   |
| <b></b> | 00                                           | -                                                                                                  |
| RW      | 0x0                                          | usbotg_disable_0 bit control                                                                       |
|         | RW<br>RW<br>RW<br>RW<br>RW<br>RW<br>RW<br>RW | RW0×0000RO0×0RW0×0RW0×0RW0×0RW0×0RW0×0RW0×0RW0×0RW0×0RW0×0RW0×0RW0×0RW0×0RW0×0RW0×0RW0×0RW0×0RW0×0 |

Address: Operational Base + offset (0x010c) USB PHY control register3

| Bit   | Attr | Reset Value | Description                                          |
|-------|------|-------------|------------------------------------------------------|
|       |      |             | write_enable                                         |
|       |      |             | Bit0~15 write enable                                 |
|       |      |             | "When bit16=1, bit0 can be written by software.      |
|       |      |             | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0x0000      | When bit 17=1, bit 1 can be written by software.     |
|       |      |             | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |             |                                                      |
|       |      |             | When bit 31=1, bit 15 can be written by software.    |
|       |      |             | When bit 31=0, bit 15 cannot be written by software; |
| 15:12 | RO   | 0x0         | reserved                                             |
|       |      |             | usbhost_utmi_drvvbus                                 |
| 11    | RW   | 0x0         | usbhost_utmi_drvvbus bit control                     |
|       |      |             | USB HOST utmi_fs_drvvbus bit control                 |
|       |      |             | usbhost_utmi_drvvbus_sel                             |
| 10    | RW   | 0x0         | usbhost_utmi_drvvbus_sel bit control                 |
|       |      |             | USB HOST utmi_drvvbus_sel bit control                |
|       |      |             | usbhost_utmi_fs_se0                                  |
| 9     | RW   | 0x0         | usbhost_utmi_fs_se0 bit control                      |
|       |      |             | USB HOST utmi_fs_se0 bit control                     |
|       |      | 0x0         | usbhost_utmi_fs_data                                 |
| 8     | RW   |             | usbhost_utmi_fs_data bit control                     |
|       |      |             | USB HOST utmi_fs_data bit control                    |
|       |      |             | usbhost_utmi_fs_oe                                   |
| 7     | RW   | 0x0         | usbhost_utmi_fs_oe bit control                       |
|       |      |             | USB HOST utmi_fs_oe bit control                      |
|       |      |             | usbhost_utmi_fs_xver_own                             |
| 6     | RW   | 0x0         | usbhost_utmi_fs_xver_own bit control                 |
|       |      |             | USB HOST utmi_fs_xver_own bit control                |
|       |      |             | usbhost_utmi_idpullup                                |
| 5     | RW   | 0x0         | usbhost_utmi_idpullup bit control                    |
|       |      |             | USB HOST utmi_idpullup bit control                   |
|       |      |             | usbhost_utmi_dmpulldown                              |
| 4     | RW   | 0x1         | usbhost_utmi_dmpulldown bit control                  |
|       |      |             | Enable DMINUS Pull Down resistor                     |
|       |      |             | usbhost_utmi_dppulldown                              |
| 3     | RW   | 0x1         | usbhost_utmi_dppulldown bit control                  |
|       |      |             | Enable DPLUS Pull Down resistor                      |
|       |      |             | usbhost_utmi_dischrgvbus                             |
| 2     | RW   | 0x0         | usbhost_utmi_dischrgvbus bit control                 |
|       |      |             | USB HOST utmi_dischrgvbus bit control                |

| Bit | Attr | Reset Value | Description                        |
|-----|------|-------------|------------------------------------|
|     |      |             | usbhost_utmi_chrgvbus              |
| 1   | RW   | 0x0         | usbhost_utmi_chrgvbus bit control  |
|     |      |             | USB HOST utmi_chrgvbus bit control |
|     |      |             | usbhost_utmi_drvvbus               |
| 0   | RW   | 0x1         | usbhost_utmi_drvvbus bit control   |
|     |      |             | USB HOST utmi_drvvbus bit control  |

## SIG\_DETECT\_USB2PHY\_CON0

Address: Operational Base + offset (0x0110) SIG DETECT USB2PHY control register0

| Bit   | Attr | <b>Reset Value</b> | Description                             |
|-------|------|--------------------|-----------------------------------------|
| 31:26 | RO   | 0x0                | reserved                                |
|       |      |                    | grf_stat_usbphy_dp_detected             |
| 25    | RO   | 0x0                | grf_stat_usbphy_dp_detected bit status  |
|       |      |                    | grf_stat_usbphy_dp_detected bit status  |
|       |      |                    | grf_stat_usbphy_cp_detected             |
| 24    | RO   | 0x0                | grf_stat_usbphy_cp_detected bit status  |
|       |      |                    | grf_stat_usbphy_cp_detected bit status  |
|       |      |                    | grf_stat_usbphy_dcp_detected            |
| 23    | RO   | 0x0                | grf_stat_usbphy_dcp_detected bit status |
|       |      |                    | grf_stat_usbphy_dcp_detected bit status |
|       |      |                    | usbhost_phy_ls_fs_rcv                   |
| 22    | RO   | 0x0                | usbhost_phy_ls_fs_rcv bit status        |
|       |      |                    | host_phy_ls_fs_rcv status               |
|       |      |                    | usbhost_utmi_avalid                     |
| 21    | RO   | 0x0                | usbhost_utmi_avalid bit status          |
|       |      |                    | host_utmi_avalid status                 |
|       |      |                    | usbhost_utmi_bvalid                     |
| 20    | RO   | 0x0                | usbhost_utmi_bvalid bit status          |
|       |      |                    | host_utmi_bvalid status                 |
|       |      |                    | usbhost_utmi_hostdisconnect             |
| 19    | RO   | 0x0                | usbhost_utmi_hostdisconnect bit status  |
|       |      |                    | host_utmi_hostdisconnect status         |
|       |      |                    | usbhost_utmi_iddig_o                    |
| 18    | RO   | 0x0                | usbhost_utmi_iddig_o bit status         |
|       |      |                    | host_utmi_iddig_o status                |
|       |      |                    | usbhost_utmi_linestate                  |
| 17:16 | RO   | 0x0                | usbhost_utmi_linestate bit status       |
|       |      |                    | host_utmi_linestate status              |

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit 31=1, bit 15 can be written by software.    |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
|       |      |                    | usbhost_utmi_sessend                                 |
| 15    | RO   | 0x0                | usbhost_utmi_sessend bit status                      |
|       |      | 0,0                | host_utmi_sessend status                             |
|       |      |                    | usbhost_utmi_vbusvalid                               |
| 14    | RO   | 0x0                | usbhost utmi vbusvalid bit status                    |
| 14    | ĸo   | 0.00               | host utmi vbusvalid status                           |
|       |      |                    | usbhost_utmi_vmi                                     |
| 13    | RO   | 0x0                | usbhost_utmi_vmi bit status                          |
| 13    | κυ   | 0.00               | host_utmi_vmi status                                 |
|       |      |                    |                                                      |
| 12    | RO   | 0.20               | usbhost_utmi_vpi<br>usbhost_utmi_vpi bit status      |
| 12    | ĸŪ   | 0x0                | host_utmi_vpi status                                 |
|       |      |                    |                                                      |
|       |      |                    | host0_ls_filter_time_sel                             |
|       |      |                    | host0_ls_filter_time_sel bit control                 |
| 13:12 |      | 0.40               | host0_ls_lfiter time select                          |
| 13:12 | RW   | 0x0                | 00:100us                                             |
|       |      |                    | 01:500us                                             |
|       |      |                    | 10:1ms                                               |
|       |      |                    | 11:10ms                                              |
|       |      | 00                 | usbotg_phy_ls_fs_rcv                                 |
| 11    | RO   | 0x0                | usbotg_phy_ls_fs_rcv bit status                      |
|       |      |                    | utmi_phy_ls_fs_rcv_out status                        |
|       |      |                    | usbotg_utmi_avalid                                   |
| 10    | RO   | 0x0                | usbotg_utmi_avalid bit status                        |
|       |      |                    | otg_utmi avalid bit status                           |
|       |      |                    | otg0_ls_filter_time_sel                              |
|       |      |                    | otg0_ls_filter_time_sel bit control                  |
|       |      |                    | otg0_ls_lfiter time select                           |
| 11:10 | RW   | 0x0                | 00:100us                                             |
|       |      |                    | 01:500us                                             |
|       |      |                    | 10:1ms                                               |
|       |      |                    | 11:10ms                                              |
|       |      |                    | usbotg_utmi_bvalid                                   |
| 9     | RO   | 0x0                | usbotg_utmi_bvalid bit status                        |
|       |      |                    | otg_utmi bvalid bit status                           |

| Bit | Attr | <b>Reset Value</b> | Description                                  |
|-----|------|--------------------|----------------------------------------------|
|     |      |                    | usbotg_utmi_fs_xver_own                      |
| 8   | RO   | 0x0                | usbotg_utmi_fs_xver_own bit status           |
|     |      |                    | OTG utmi_fs_xver_own bit control             |
|     |      |                    | otg0_id_filter_time_sel                      |
|     |      |                    | otg0_id_filter_time_sel bit control          |
|     |      |                    | otg0_id_filter_time_select                   |
| 9:8 | RW   | 0x0                | 00:5ms                                       |
|     |      |                    | 01:15ms                                      |
|     |      |                    | 10:35ms                                      |
|     |      |                    | usbotg_utmi_hostdisconnect                   |
| 7   | RO   | 0x0                | usbotg_utmi_hostdisconnect bit status        |
|     |      |                    | otg_utmi_hostdisconnect status               |
|     |      |                    | usbotg_utmi_iddig                            |
|     |      |                    | usbotg_utmi_iddig bit status                 |
| 6   | RO   | 0x0                | usbotg_utmi_iddig select between grf and phy |
|     |      |                    | 1:from grf                                   |
|     |      |                    | 0:from phy                                   |
|     |      |                    | usbotg_utmi_linestate                        |
| 5:4 | RO   | 0x0                | usbotg_utmi_linestate bit status             |
|     |      |                    | otg_utmi_linestate bit status                |
|     |      |                    | otg0_id_irq                                  |
| 5:4 | RO   | 0x0                | otg0_id_irq bit status                       |
|     |      |                    | otg0_id bit status                           |
|     |      |                    | otg0_id_irq                                  |
| 5:4 | RW   | 0x0                | otg0_id_irq bit control                      |
|     |      |                    | otg0_id bit status                           |
|     |      |                    | usbotg_utmi_sessend                          |
| 3   | RO   | 0x0                | usbotg_utmi_sessend bit status               |
|     |      |                    | otg_utmi_sessend bit status                  |
|     |      |                    | usbotg_utmi_vbusvalid                        |
| 2   | RO   | 0x0                | usbotg_utmi_vbusvalid bit status             |
|     |      |                    | otg_utmi_vbusvalid bit status                |
|     |      |                    | otg0_bvalid_irg                              |
| 3:2 | RO   | 0x0                | otg0_bvalid_irq bit status                   |
|     |      |                    | otg0_bvalid bit status                       |
|     |      |                    | otg0_bvalid_irg                              |
| 3:2 | RW   | 0×0                | otg0_bvalid_irq bit control                  |
|     |      |                    | otg0_bvalid bit status                       |
|     |      |                    | usbotg_utmi_vmi                              |
| 1   | RO   | 0x0                | usbotg_utmi_vmi bit status                   |
|     |      |                    | otg_utmi_vmi bit status                      |
|     |      |                    | host0_linestate_irq                          |
| 1   | RW   | 0×0                | host0_linestate_irq bit control              |
|     |      |                    | host0_linestate bit status                   |

| Bit | Attr | Reset Value | Description                    |
|-----|------|-------------|--------------------------------|
|     |      |             | host0_linestate_irq            |
| 1   | RO   | 0x0         | host0_linestate_irq bit status |
|     |      |             | host0_linestate bit status     |
|     |      |             | usbotg_utmi_vpi                |
| 0   | RO   | 0x0         | usbotg_utmi_vpi bit status     |
|     |      |             | otg_utmi_vpi bit status        |
|     |      |             | otg0_linestate_irq             |
| 0   | RO   | O 0x0       | otg0_linestate_irq bit status  |
|     |      |             | otg0_linestate bit status      |
|     |      |             | otg0_linestate_irq             |
| 0   | RW   | 0x0         | otg0_linestate_irq bit control |
|     |      |             | otg0_linestate bit status      |

# 3.6 USB3PHY\_GRF Register Description

## 3.6.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

| Name                 | Offset | Size | Reset<br>Value | Description                   |
|----------------------|--------|------|----------------|-------------------------------|
| USB3PHY_CON0         | 0x0000 | W    | 0x00000000     | USB3 PHY Control Register0    |
| USB3PHY_CON1         | 0x0004 | W    | 0x00000000     | USB3 PHY Control Register1    |
| USB3PHY_CON2         | 0x0008 | W    | 0x00000000     | USB3 PHY Control Register2    |
| USB3PHY_CON3         | 0x000c | W    | 0x0000001      | USB3 PHY Control Register3    |
| USB3PHY_CON4         | 0x0010 | W    | 0x00000000     | USB3 PHY Control Register4    |
| USB3PHY_CON5         | 0x0014 | W    | 0x00000000     | USB3 PHY Control Register5    |
| USB3PHY_CON6         | 0x0018 | W    | 0x00000000     | USB3 PHY Control Register6    |
| USB3PHY_CON7         | 0x001c | W    | 0x00000000     | USB3 PHY Control Register7    |
| USB3PHY_CON8         | 0x0020 | W    | 0x0000014      | USB3 PHY Control Register8    |
| USB3PHY_CON9         | 0x0024 | W    | 0x00000000     | USB3 PHY Control Register9    |
| USB3PHY_SIG_DETECT_C | 0x0028 | w    | 0x00000000     | USB3 PHY SIG DETECT Control   |
| ON0                  | 0X0028 | vv   | 0x00000000     | Register0                     |
| USB3PHY_STATUS1      | 0x0034 | W    | 0x00000000     | USB3 PHY STATUS1 Register1    |
| USB3_WAKEUP_CON0     | 0x0040 | W    | 0x00000000     | USB3 WAKEUP Control Register0 |

## 3.6.2 Registers Summary

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 3.6.3 Detail Register Description

### USB3PHY\_CON0

Address: Operational Base + offset (0x0000) USB3 PHY Control Register0

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                  |
|-------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 |      | 0x0000      | write_enable<br>Bit0~15 write enable<br>"When bit16=1, bit0 can be written by software.<br>When bit16=0, bit 0 cannot be written by software;<br>When bit 17=1, bit 1 can be written by software.<br>When bit 17=0, bit 1 cannot be written by software;<br> |
|       |      |             | When bit 31=1, bit 15 can be written by software.<br>When bit 31=0, bit 15 cannot be written by software;                                                                                                                                                    |
| 15:13 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                     |
| 12    | RW   | 0×0         | vdm_src_en_usb3otg<br>vdm_src_en_usb3otg bit control<br>open dm voltage source                                                                                                                                                                               |
| 11    | RW   | 0×0         | vdp_src_en_usb3otg<br>vdp_src_en_usb3otg bit control<br>open dp voltage source                                                                                                                                                                               |
| 10    | RW   | 0×0         | rdm_pdwn_en_usb3otg<br>rdm_pdwn_en_usb3otg bit control<br>open dm pull down resistor                                                                                                                                                                         |
| 9     | RW   | 0×0         | idp_src_en_usb3otg<br>idp_src_en_usb3otg bit control<br>open dm source current                                                                                                                                                                               |
| 8     | RW   | 0×0         | idm_sink_en_usb3otg<br>idm_sink_en_usb3otg bit control<br>open dm sink current                                                                                                                                                                               |
| 7     | RW   | 0x0         | idp_sink_en_usb3otg<br>idp_sink_en_usb3otg bit control<br>open dp sink current                                                                                                                                                                               |
| 6:0   | RO   | 0x0         | reserved                                                                                                                                                                                                                                                     |

Address: Operational Base + offset (0x0004) USB3 PHY Control Register1

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:1  | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |

| Bit | Attr | <b>Reset Value</b> | Description                         |
|-----|------|--------------------|-------------------------------------|
|     |      |                    | usb3otg_utmi_iddig                  |
| 0   | RW   | 0x0                | usb3otg_utmi_iddig bit control      |
|     |      |                    | usb3otg_utmi_iddig bit control      |
|     |      |                    | usb3otg_utmi_dmpulldown             |
| 0   | RW   | 0x0                | usb3otg_utmi_dmpulldown bit control |
|     |      |                    | usb3otg_utmi_dmpulldown bit control |
|     |      |                    | usb3otg_utmi_dppulldown             |
| 0   | RW   | 0x0                | usb3otg_utmi_dppulldown bit control |
|     |      |                    | usb3otg_utmi_dppulldown bit control |
|     |      |                    | usb3otg_utmi_suspend_n              |
| 0   | RW   | 0x0                | usb3otg_utmi_suspend_n bit control  |
|     |      |                    | usb3otg_utmi_suspend_n bit control  |
|     |      |                    | usb3otg_utmi_opmode                 |
| 0   | RW   | 0x0                | usb3otg_utmi_opmode bit control     |
|     |      |                    | usb3otg_utmi_opmode bit control     |
|     |      |                    | usb3otg_utmi_xcvrselect             |
| 0   | RW   | 0x0                | usb3otg_utmi_xcvrselect bit control |
|     |      |                    | usb3otg_utmi_xcvrselect bit control |
|     |      |                    | usb3otg_utmi_termselect             |
| 0   | RW   | 0x0                | usb3otg_utmi_termselect bit control |
|     |      |                    | usb3otg_utmi_termselect bit control |

Address: Operational Base + offset (0x0008) USB3 PHY Control Register2

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit 31=1, bit 15 can be written by software.    |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
| 15:1  | RO   | 0x0                | reserved                                             |
|       |      |                    | usb3phy_con2                                         |
| 0     | RW   | 0x0                | Reserved                                             |
|       |      |                    | reserved                                             |

## USB3PHY\_CON3

Address: Operational Base + offset (0x000c) USB3 PHY Control Register3

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:10 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                    |
| 9     | RW   | 0x0         | usb3otg_utmi_fs_se0<br>usb3otg_utmi_fs_se0 bit control<br>OTG utimi_fs_xver_own bit control                                                                                                                                                                                                                                                                 |
| 8     | RW   | 0×0         | usb3otg_utmi_fs_data<br>usb3otg_utmi_fs_data bit control<br>OTG utimi_fs_xver_own bit control                                                                                                                                                                                                                                                               |
| 7     | RW   | 0×0         | usb3otg_utmi_fs_oe<br>usb3otg_utmi_fs_oe bit control<br>OTG utmi_fs_xver_own bit control                                                                                                                                                                                                                                                                    |
| 6     | RW   | 0×0         | usb3otg_utmi_fs_xver_own<br>usb3otg_utmi_fs_xver_own bit control<br>OTG utmi_fs_xver_own bit control                                                                                                                                                                                                                                                        |
| 5     | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                    |
| 4     | RW   | 0×0         | usb3otg_utmi_dischrgvbus<br>usb3otg_utmi_dischrgvbus bit control<br>USB3 OTG utmi_dischrgvbus bit control                                                                                                                                                                                                                                                   |
| 3     | RW   | 0×0         | usb3otg_utmi_chrgvbus<br>usb3otg_utmi_chrgvbus bit control<br>USB3 OTG utmi_chrgvbus bit control                                                                                                                                                                                                                                                            |
| 2     | RW   | 0x0         | usb3otg_utmi_drvvbus<br>usb3otg_utmi_drvvbus bit control<br>USB3 OTG utmi_drvvbus bit control                                                                                                                                                                                                                                                               |
| 1     | RW   | 0×0         | usb3otg_utmi_drvvbus_sel<br>usb3otg_utmi_drvvbus_sel bit control<br>USB3 OTG utmi_drvvbus_sel bit control                                                                                                                                                                                                                                                   |
| 0     | RW   | 0x1         | usb3otg_utmi_idpullup<br>usb3otg_utmi_idpullup bit control<br>USB3 OTG utmi_idpullup bit control                                                                                                                                                                                                                                                            |

Address: Operational Base + offset (0x0010) USB3 PHY Control Register4

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:1  | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                    |
| 0     | RW   | 0x0         | usb3phy_con4<br>usb3phy_con4 bit control<br>reserved                                                                                                                                                                                                                                                                                                        |

Address: Operational Base + offset (0x0014) USB3 PHY Control Register5

| Bit   | Attr | Reset Value | Description                                          |
|-------|------|-------------|------------------------------------------------------|
|       |      |             | write_enable                                         |
|       |      |             | Bit0~15 write enable                                 |
|       |      |             | "When bit16=1, bit0 can be written by software.      |
|       |      |             | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0x0000      | When bit 17=1, bit 1 can be written by software.     |
|       |      |             | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |             |                                                      |
|       |      |             | When bit 31=1, bit 15 can be written by software.    |
|       |      |             | When bit 31=0, bit 15 cannot be written by software; |
| 15:1  | RO   | 0x0         | reserved                                             |
|       |      |             | usb3phy_con5                                         |
| 0     | RW   | 0x0         | usb3phy_con5 bit control                             |
|       |      |             | reserved                                             |

### USB3PHY\_CON6

Address: Operational Base + offset (0x0018) USB3 PHY Control Register6

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |
| 15:1  | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                    |
| 0     | RW   | 0x0         | usb3phy_con6<br>usb3phy_con6 bit control<br>reserved                                                                                                                                                                                                                                                                                                        |

Address: Operational Base + offset (0x001c) USB3 PHY Control Register7

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit 31=1, bit 15 can be written by software.    |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
| 15:1  | RO   | 0x0                | reserved                                             |
|       |      |                    | usb3phy_con7                                         |
| 0     | RW   | 0x0                | usb3phy_con7 bit control                             |
|       |      |                    | reserved                                             |

### USB3PHY\_CON8

Address: Operational Base + offset (0x0020) USB3 PHY Control Register8

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    | When bit 31=1, bit 15 can be written by software.    |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
|       |      |                    | usb3phy_usb2only                                     |
| 15    | RW   | 0x0                | usb3phy_usb2only bit control                         |
|       |      |                    | usb3phy_usb2only bit control                         |
|       |      |                    | usb3otg_pipe3_powerpresent                           |
| 14    | RW   | 0x0                | usb3otg_pipe3_powerpresent bit control               |
|       |      |                    | usb3otg_pipe3_powerpresent bit control               |
| 13:6  | RO   | 0x0                | reserved                                             |
|       |      |                    | usb3otg_pipe3_txdetectrxloopbk                       |
| 5     | RW   | 0x0                | usb3otg_pipe3_txdetectrxloopbk bit control           |
|       |      |                    | usb3otg_pipe3_txdetectrxloopbk bit control           |
|       |      |                    | usb3otg_pipe3_powerdown                              |
| 4:3   | RW   | 0x2                | usb3otg_pipe3_powerdown bit control                  |
|       |      |                    | usb3otg_pipe3_powerdown bit control                  |
|       |      |                    | usb3otg_pipe3_txelecidle                             |
| 2     | RW   | 0x1                | usb3otg_pipe3_txelecidle bit control                 |
|       |      |                    | usb3otg_pipe3_txelecidle bit control                 |
|       |      |                    | usb3otg_pipe3_rxtermination                          |
| 1     | RW   | 0x0                | usb3otg_pipe3_rxtermination bit control              |
|       |      |                    | usb3otg_pipe3_rxtermination bit control              |
|       |      |                    | grf_con_usb3_sftsel                                  |
| 0     | RW   | 0x0                | grf_con_usb3_sftsel bit control                      |
|       |      |                    | grf_con_usb3_sftsel bit control                      |

Address: Operational Base + offset (0x0024) USB3 PHY Control Register9

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                 |  |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31:16 | RW   | 0×0000      | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |  |
| 15:1  | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                    |  |
| 0     | RW   | 0x0         | usb3phy_con9<br>Reserved<br>reserved                                                                                                                                                                                                                                                                                                                        |  |

## USB3PHY\_SIG\_DETECT\_CON0

Address: Operational Base + offset (0x0028) USB3 PHY SIG DETECT Control Register0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |  |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31:16 | RW   | 0×0000             | <pre>write_enable Bit0~15 write enable "When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;</pre> |  |
| 15    | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |  |
| 14    | RO   | 0x0<br>0x0         | grf_stat_usb3phy_dp_detected<br>grf_stat_usb3phy_dp_detected bit status<br>grf_stat_usb3phy_dp_detected bit status<br>grf_stat_usb3phy_cp_detected<br>grf_stat_usb3phy_cp_detected bit status                                                                                                                                                               |  |
| 12    | RO   | 0×0                | grf_stat_usb3phy_dcp_detected bit status<br>grf_stat_usb3phy_dcp_detected<br>grf_stat_usb3phy_dcp_detected bit status<br>grf_stat_usb3phy_dcp_detected bit status                                                                                                                                                                                           |  |
| 11    | RO   | 0x0                | usb3otg_utmireset bit status<br>usb3otg_utmireset bit status                                                                                                                                                                                                                                                                                                |  |
| 10    | RO   | 0x0                | usb3otg_phy_ls_fs_rcv<br>usb3otg_phy_ls_fs_rcv bit status<br>usb3otg_phy_ls_fs_rcv bit status                                                                                                                                                                                                                                                               |  |

| Bit                                                                                   | Attr                 | <b>Reset Value</b>              | Description                            |  |
|---------------------------------------------------------------------------------------|----------------------|---------------------------------|----------------------------------------|--|
|                                                                                       |                      |                                 | usb3otg_utmi_avalid                    |  |
| 9     RO     0x0     usb3otg_utmi_avalid bit status<br>usb3otg_utmi_avalid bit status |                      | 0x0                             | usb3otg_utmi_avalid bit status         |  |
|                                                                                       |                      | usb3otg_utmi_avalid bit status  |                                        |  |
| usb3otg_utmi_bvalid                                                                   |                      |                                 | usb3otg_utmi_bvalid                    |  |
| 8                                                                                     | RO                   |                                 |                                        |  |
|                                                                                       |                      |                                 | usb3otg_utmi_bvalid bit status         |  |
|                                                                                       |                      | usb3otg_utmi_hostdisconnect     |                                        |  |
| 7                                                                                     | RO                   | 0x0                             | usb3otg_utmi_hostdisconnect bit status |  |
|                                                                                       |                      |                                 | usb3otg_utmi_hostdisconnect bit status |  |
|                                                                                       |                      |                                 | usb3otg_utmi_iddig                     |  |
| 6                                                                                     | RO                   | 0x0                             | usb3otg_utmi_iddig bit status          |  |
|                                                                                       |                      |                                 | usb3otg_utmi_iddig bit status          |  |
|                                                                                       |                      |                                 | usb3otg_utmi_linestate                 |  |
| 5:4                                                                                   | RO                   | 0x0                             | usb3otg_utmi_linestate bit status      |  |
|                                                                                       |                      |                                 | usb3otg_utmi_linestate bit status      |  |
|                                                                                       | usb3otg_utmi_sessend |                                 | usb3otg_utmi_sessend                   |  |
| 3                                                                                     | RO                   | 0x0                             | usb3otg_utmi_sessend bit status        |  |
| usb3otg_utmi_sessend bit status                                                       |                      | usb3otg_utmi_sessend bit status |                                        |  |
| usb3otg_utmi_vbusvalid                                                                |                      | usb3otg_utmi_vbusvalid          |                                        |  |
| 2                                                                                     | RO                   | 0x0                             | usb3otg_utmi_vbusvalid bit status      |  |
|                                                                                       |                      |                                 | usb3otg_utmi_vbusvalid bit status      |  |
|                                                                                       |                      |                                 | otg0_ls_filter_time_sel                |  |
|                                                                                       |                      |                                 | otg0_ls_filter_time_sel bit control    |  |
|                                                                                       |                      |                                 | otg_ls filter time select              |  |
| 3:2 RW 0x0 00:100us                                                                   |                      | 0x0                             | 00:100us                               |  |
|                                                                                       |                      |                                 | 01:500us                               |  |
|                                                                                       |                      |                                 | 10:1ms                                 |  |
| 11:10ms                                                                               |                      |                                 | 11:10ms                                |  |
| usb3otg_utmi_vmi       1     RO       0x0     usb3otg_utmi_vmi bit status             |                      | usb3otg_utmi_vmi                |                                        |  |
|                                                                                       |                      | usb3otg_utmi_vmi bit status     |                                        |  |
|                                                                                       |                      |                                 | usb3otg_utmi_vmi bit status            |  |
|                                                                                       | usb3otg_utmi_vpi     |                                 | usb3otg_utmi_vpi                       |  |
| 0 RO 0x0 usb3otg_utmi_vpi bit status<br>usb3otg_utmi_vpi bit status                   |                      | usb3otg_utmi_vpi bit status     |                                        |  |
|                                                                                       |                      |                                 | usb3otg_utmi_vpi bit status            |  |
|                                                                                       |                      |                                 | otg0_id_filter_time_sel                |  |
|                                                                                       |                      | 0.20                            | otg0_id_filter_time_sel bit control    |  |
| 1.0                                                                                   |                      |                                 | otg_id_filter time select              |  |
| 1:0                                                                                   | RW                   | 0x0                             | 00:5ms                                 |  |
|                                                                                       |                      |                                 | 01:15ms                                |  |
|                                                                                       |                      |                                 | 10:35ms                                |  |

## USB3PHY\_STATUS1

Address: Operational Base + offset (0x0034) USB3 PHY STATUS1 Register1

| Bit   | Attr | Reset Value | Description                               |
|-------|------|-------------|-------------------------------------------|
|       | usb3 |             | usb3phy_tx_pll_lock                       |
| 31    | RO   | 0x0         | usb3phy_tx_pll_lock bit status            |
|       |      |             | usb3phy_tx_pll_lock bit status            |
|       |      |             | usb3otg_pipe3_reset_n                     |
| 30    | RO   | 0x0         | usb3otg_pipe3_reset_n bit status          |
|       |      |             | usb3otg_pipe3_reset_n bit status          |
| 29:24 | RO   | 0x0         | reserved                                  |
|       |      |             | usb3_phy_obs                              |
| 23:16 | RO   | 0x00        | usb3_phy_obs bit status                   |
|       |      |             | usb3_phy_obs bit status                   |
|       |      |             | usb3otg_pipe3_elasbuffermode              |
| 15    | RO   | 0x0         | usb3otg_pipe3_elasbuffermode bit status   |
|       |      |             | usb3otg_pipe3_elasbuffermode bit status   |
|       |      |             | usb3otg_pipe3_powerdown                   |
| 14:13 | RO   | 0x0         | usb3otg_pipe3_powerdown bit status        |
|       |      |             | usb3otg_pipe3_powerdown bit status        |
|       |      |             | usb3otg_pipe3_rxeqtrain                   |
| 12    | RO   | 0x0         | usb3otg_pipe3_rxeqtrain bit status        |
|       |      |             | usb3otg_pipe3_rxeqtrain bit status        |
|       |      |             | usb3otg_pipe3_rxpolarity                  |
| 11    | RO   | 0x0         | usb3otg_pipe3_rxpolarity bit status       |
|       |      |             | usb3otg_pipe3_rxpolarity bit status       |
|       |      | 0x0         | usb3otg_pipe3_rxtermination               |
| 10    | RO   |             | usb3otg_pipe3_rxtermination bit status    |
|       |      |             | usb3otg_pipe3_rxtermination bit status    |
|       |      | 0x0         | usb3otg_pipe3_txdetectrxloopbk            |
| 9     | RO   |             | usb3otg_pipe3_txdetectrxloopbk bit status |
|       |      |             | usb3otg_pipe3_txdetectrxloopbk bit status |
|       |      | 0×0         | usb3otg_pipe3_compliance                  |
| 8     | RO   |             | usb3otg_pipe3_compliance bit status       |
|       |      |             | usb3otg_pipe3_compliance bit status       |
|       |      |             | usb3otg_pipe3_txoneszeros                 |
| 7     | RO   | 0x0         | usb3otg_pipe3_txoneszeros bit status      |
|       |      |             | usb3otg_pipe3_txoneszeros bit status      |
|       |      | 0x0         | usb3otg_pipe3_phystatus                   |
| 6     | RO   |             | usb3otg_pipe3_phystatus bit status        |
|       |      |             | usb3otg_pipe3_phystatus bit status        |
|       |      |             | usb3otg_pipe3_rxelecidle                  |
| 5     | RO   | 0x0         | usb3otg_pipe3_rxelecidle bit status       |
|       |      |             | usb3otg_pipe3_rxelecidle bit status       |
|       |      |             | usb3otg_pipe3_rxstatus                    |
| 4:2   | RO   | 0x0         | usb3otg_pipe3_rxstatus bit status         |
|       |      |             | usb3otg_pipe3_rxstatus bit status         |

| Bit | Attr | Reset Value | Description                           |  |
|-----|------|-------------|---------------------------------------|--|
|     |      | 0x0         | usb3otg_pipe3_rxvalid                 |  |
| 1   | RO   |             | usb3otg_pipe3_rxvalid bit status      |  |
|     |      |             | usb3otg_pipe3_rxvalid bit status      |  |
|     | RO   | 0×0         | usb3otg_pipe3_powerpresent            |  |
| 0   |      |             | usb3otg_pipe3_powerpresent bit status |  |
|     |      |             | usb3otg_pipe3_powerpresent bit status |  |

## USB3\_WAKEUP\_CON0

Address: Operational Base + offset (0x0040) USB3 WAKEUP Control Register0

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
|       |      |                    | write_enable                                         |
|       |      |                    | Bit0~15 write enable                                 |
|       |      |                    | "When bit16=1, bit0 can be written by software.      |
|       |      |                    | When bit16=0, bit 0 cannot be written by software;   |
| 31:16 | RW   | 0x0000             | When bit 17=1, bit 1 can be written by software.     |
|       |      |                    | When bit 17=0, bit 1 cannot be written by software;  |
|       |      |                    |                                                      |
|       |      |                    | When bit $31=1$ , bit 15 can be written by software. |
|       |      |                    | When bit 31=0, bit 15 cannot be written by software; |
| 15:6  | RO   | 0x0                | reserved                                             |
|       |      |                    | usb3_id_irq                                          |
| 5:4   | RO   | 0x0                | usb3_id_irq bit status                               |
|       |      |                    | usb3_id_irq bit status                               |
|       |      | 0×0                | usb3_rxdet_en                                        |
| 4     | RW   |                    | usb3_rxdet_en bit control                            |
|       |      |                    | usb3_rxdet_en bit control                            |
|       | RW   | 0×0                | usb3_id_irq                                          |
| 5:4   |      |                    | usb3_id_irq bit control                              |
|       |      |                    | usb3_id_irq bit control                              |
|       |      |                    | usb3_bvalid_irq                                      |
| 3:2   | RO   | 0x0                | usb3_bvalid_irq bit status                           |
|       |      |                    | usb3_bvalid_irq bit status                           |
|       |      |                    | usb3_bvalid_irq                                      |
| 3:2   | RW   | 0x0                | usb3_bvalid_irq bit control                          |
|       |      |                    | usb3_bvalid_irq bit control                          |
|       |      |                    | usb3_rxdet_irq                                       |
| 1     | RO   | 0x0                | usb3_rxdet_irq bit status                            |
|       |      |                    | usb3_rxdet_irq bit status                            |
|       |      |                    | usb3_rxdet_irq                                       |
| 1     | RW   | 0x0                | usb3_rxdet_irq bit control                           |
|       |      |                    | usb3_rxdet_irq bit control                           |

| Bit | Attr | Reset Value | Description                    |  |
|-----|------|-------------|--------------------------------|--|
|     |      | 0x0         | usb3_linestate_irq             |  |
| 0   | RO   |             | usb3_linestate_irq bit status  |  |
|     |      |             | usb3_linestate_irq bit status  |  |
|     | RW   | 0x0         | usb3_linestate_irq             |  |
| 0   |      |             | usb3_linestate_irq bit control |  |
|     |      |             | usb3_linestate_irq bit control |  |

# **Chapter 4 Cortex-A53**

## 4.1 Overview

The RK3328 has a quad-core Cortex-A53 cluster with 256K L2 memory. Cortex-A53 processor, which is a mid-range, low-power processor that implements the ARMv8-A architecture.

The Cortex-A53 processor includes following features:

- Full implementation of the ARMv8-A architecture instruction set
- Support for both AArch32 and AArch64 Execution status.
- Support for all exception levels, EL0, EL1, EL2, and EL3, in each execution states.
- Support A32 instruction set, previously called the ARM instruction set.
- Support T32 instruction set, previously called the Thumb instruction set.
- Support A64 instruction set.
- In-order pipeline with symmetric dual-issue of most instructions.
- Harvard Level 1(L1) memory system with a Memory Management Unit (MMU).
- Level 2(L2) memory system providing cluster memory coherency, with L2 cache.
- Support advanced SIMD and Floating-point Extension for integer and floating-point vector operations.
- Support ARMv8 Cryptography Extensions.
- Support AMBA 4 ACE bus architecture.

The configuration details of little cluster and big cluster are shown in following tables

| Table 1-1 CPU Configuration     |          |  |  |  |
|---------------------------------|----------|--|--|--|
| Number of CPU                   | 4        |  |  |  |
| L1 I cache size                 | 32K      |  |  |  |
| L1 D cache size                 | 32K      |  |  |  |
| L2 cache size                   | 256K     |  |  |  |
| L2 data RAM output latency      | 3 cycles |  |  |  |
| L2 data RAM input latency       | 2 cycles |  |  |  |
| CPU cache protection            | No       |  |  |  |
| SCU L2 cache protection         | No       |  |  |  |
| BUS master interface            | ACE      |  |  |  |
| NEON and floating point support | Yes      |  |  |  |
| Cryptography extension          | Yes      |  |  |  |

# 4.2 Block Diagram

The Cortex-A53 sub system is shown in Figure 1-1. As illustrated, dual-core Cortex-A53 connects to system bus through asynchronous bridges which can handle with CDC(clock domain crossing) issue.

The Cortex-A53 is connected with system counter, which can run under a constant frequency clock, for PPI interrupt generation.

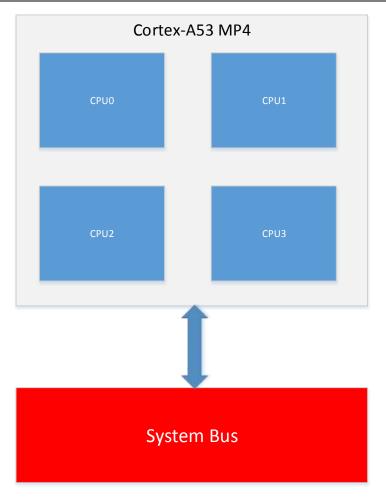



Fig. 4-1 Block Diagram

# 4.3 Function Description

Please refer to the document cortex\_a53\_r0p4\_trm.pdf for the detail function description.

# **Chapter 5 Embedded SRAM**

## 5.1 Overview

The Embedded SRAM is the AXI slave device, which supports read and write access to provide system fast access data storage

## 5.1.1 Features supported

- Provide 36KB access space
- Support security and non-security access
- Security or non-security space is software programmable
- Security space is nx4KB(up to whole memory space)
- Support 64bit AXI bus

## 5.1.2 Features not supported

- Don't support AXI lock transaction
- Don't support AXI exclusive transaction
- Don't support AXI cache function
- Don't support AXI protection function

# 5.2 Block Diagram

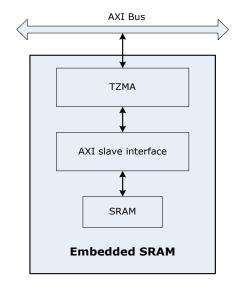



Fig. 5-1 Embedded SRAM block diagram

# **5.3 Function Description**

### 5.3.1 TZMA

Please refer to 7.3.3 for TZMA functional description

## 5.3.2 AXI slave interface

The AXI slave interface is bridge which translate AXI bus access to SRAM interface.

### 5.3.3 Embedded SRAM access path

The Embedded SRAM can only be accessed by Cortex-A53, DMAC\_BUS and CRYPTO

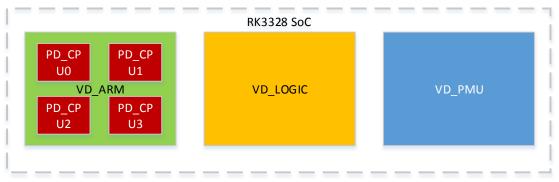
### 5.3.4 Remap

The Embedded SRAM support remap.

Before remap, the Embedded SRAM address range is 0xff09\_0000~0xff09\_8fff, After set remap, (ref Security GRF register SGRF\_SCON0, bit[10]), the system can still access the Embedded SRAM by the old address. at same time, the system also can access the Embedded SRAM by the new address 0xffff\_0000 ~ 0xffff\_8fff (include the bootaddr)

# Chapter 6 Power Management Unit (PMU)

# 6.1 Overview


In order to meet low power requirements, a power management unit (PMU) is designed for controlling power resources in RK3328. The RK3328 PMU is dedicated for managing the power of the whole chip.

### 6.1.1 Features

- Support DDR self-refresh
- Support DDR retention
- Support CPU2/CPU3 power down/up by software
- Support CPU2/CPU3 auto-power management
- Support L2 flush interface

# 6.2 Block Diagram

### 6.2.1 Voltage partition



#### Fig. 6-1 RK3328 Power Domain Partition

The above diagram describes voltage domain partition, notice that there are no power domains inside RK3328 except PD\_CPU2 and PD\_CPU3. PD\_CPU2 and PD\_CPU3 have MTCMOS inside, and for the blocks with name pd\_xxx are not real power domains. Table 6-1 RK3328 Power Domain and Voltage Domain Summary

| Voltago           | Blocks (not | Description                                 |
|-------------------|-------------|---------------------------------------------|
| Voltage<br>Domain | real power  |                                             |
| Domain            | domain)     |                                             |
|                   | PD_CPU0     | CPU Core 0 with NEON and FPU, DAP-lite      |
|                   | PD_CPU1     | CPU Core 1 with NEON and FPU, DAP-lite      |
| VD_ARM            | PD_CPU2     | CPU Core 2 with NEON and FPU, DAP-lite      |
|                   | PD_CPU3     | CPU Core 3 with NEON and FPU, DAP-lite      |
|                   | PD_SCU      | DAP Lite, SCU and 256KB L2                  |
|                   | PD_GPU      | Mali-450                                    |
|                   | PD_RKVENC   | Video encoder                               |
|                   | PD RKVDEC   | Video decoder, NANDC, EMMC, SDIO, SDMMC,    |
| VD_LOG            | PD_KKVDEC   | GMAC2PHY, GMAC2IO                           |
| IC                | PD_VIO      | ISP, IEP, VOP, RGA, CIF0/1/2/3, TV decoder, |
|                   | PD_VI0      | HDMI host, DSI host                         |
|                   | PD_PERI     | Peri NIU                                    |
|                   | PD_DDR      | UPCTL, MEM scheduler, DDR mon, DDR GRF      |

|        | PD_BUS &<br>TOP | CRYPTO, SPDIF, I2S0/1/2, PDM, TSP, SGRF,<br>SEFUSE, SOTP, SRAM(36KB), ROM(20KB),<br>DDRPHY, ACODEC, VDAC, HDMI PHY, PLLx4, GRF,<br>I2Cx4, WDT, CRU, TIMERx6, EFUSE1024, SCR,<br>TSADC, PMU, SARADC, SPI, PWMx4, GPIOx4,<br>UARTx3, DFI monitor, TSADC CTL, Stimerx2,<br>DCF, NSEFUSE, NSOTP |
|--------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | PD_VPU          | VPU                                                                                                                                                                                                                                                                                         |
| VD_PMU | PD_PMU          | OSC, Pmux, and PAD ring                                                                                                                                                                                                                                                                     |

#### 6.2.2 PMU block diagram

The following figure is the PMU block diagram. The PMU includes the 3 following sections:

- APB interface and register, which can accept the system configuration
- Low Power State Control, which generate low power control signals.
- Power Switch Control, which control all power domain switch

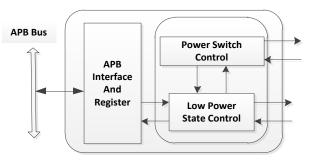



Fig. 4-2 PMU Bock Diagram

# **6.3 Function Description**

First of all, we define two operation modes of PMU, normal mode and low power mode. When operating at normal mode, that means software can manage power sources directly by accessing PMU register.

For example, Cortex-A53 CPU can write PMU\_PWRDN\_CON register to determine that power off/on which power domain independently.

When operating at low power mode, software manages power sources indirectly through FSM (Finite States Machine) in PMU and those settings always not take effect immediately. That means software also can configure PMU registers to power down/up some power resources, but these setting will not be executed immediately after configuration. They will delay to execute after FSM running in particular phase.

To entering low power mode, after setting some power configurations, the

PMU\_POWER\_MODE[0] bit must be set 1 to enable PMU FSM. Then Cortex-A53 CPU needs to execute a WFI command to perform ready signal. After PMU detects all Cortex-A53 CPUs in WFI status, then the FSM will be fetched. And the specific power sources will be controlled during specific status in FSM. So the low power mode is a "delay affect" way to handle power sources inside the RK3328 chip.

# 6.4 Register Description

### 6.4.1 Registers Summary

| Name                           | Offset | Size | Reset<br>Value | Description |
|--------------------------------|--------|------|----------------|-------------|
| PMU_PMU_WAKEUP_CFG0            | 0x0000 | W    | 0x0000000      |             |
| PMU_PMU_PWRDN_CON              | 0x000c | W    | 0x0000000      |             |
| PMU_PMU_PWRDN_ST               | 0x0010 | W    | 0x0000000      |             |
| PMU_PMU_PWRMODE_CO<br>MMON_CON | 0x0018 | W    | 0x00000000     |             |
| PMU_PMU_SFT_CON                | 0x001c | W    | 0x0000000      |             |
| PMU_PMU_INT_CON                | 0x0020 | W    | 0x0000000      |             |
| PMU_PMU_INT_ST                 | 0x0024 | W    | 0x0000000      |             |
| PMU_PMU_POWER_ST               | 0x0044 | W    | 0x0000000      |             |
| PMU_PMU_CPU0APM_CON            | 0x0080 | W    | 0x0000000      |             |
| PMU_PMU_CPU1APM_CON            | 0x0084 | W    | 0x0000000      |             |
| PMU_PMU_CPU2APM_CON            | 0x0088 | W    | 0x0000000      |             |
| PMU_PMU_CPU3APM_CON            | 0x008c | W    | 0x0000000      |             |
| PMU_PMU_SYS_REG0               | 0x00a0 | W    | 0x0000000      |             |
| PMU_PMU_SYS_REG1               | 0x00a4 | W    | 0x0000000      |             |
| PMU_PMU_SYS_REG2               | 0x00a8 | W    | 0x0000000      |             |
| PMU_PMU_SYS_REG3               | 0x00ac | W    | 0x0000000      |             |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 6.4.2 Detail Register Description

#### PMU\_PMU\_WAKEUP\_CFG0

Address: Operational Base + offset (0x0000)

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
| 31:1 | RO   | 0x0                | reserved                |
|      |      | W 0x0              | wakeup_int_cluster_en   |
| 0    | DW   |                    | interrupt wakeup enable |
| 0    | K VV |                    | 0: disable              |
|      |      |                    | 1: enable               |

#### PMU\_PMU\_PWRDN\_CON

Address: Operational Base + offset (0x000c)

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
| 31:4 | RO   | 0x0                | reserved    |

| Bit | Attr | <b>Reset Value</b> | Description                |
|-----|------|--------------------|----------------------------|
|     |      |                    | pd_a53_3_pwrdwn_en         |
| 3   | RW   | 0x0                | a53 cpu3 power down enable |
| 5   | ĸvv  | 0.00               | 0: disable                 |
|     |      |                    | 1: enable                  |
|     |      |                    | pd_a53_2_pwrdwn_en         |
| 2   | DW   | 0.40               | a53 cpu2 power down enable |
| 2   | RW   | 0×0                | 0: disable                 |
|     |      |                    | 1: enable                  |
|     |      | W 0x0              | pd_a53_1_pwrdwn_en         |
| 1   |      |                    | a53 cpu1 power down enable |
| 1   | RVV  |                    | 0: disable                 |
|     |      |                    | 1: enable                  |
|     |      |                    | pd_a53_0_pwrdwn_en         |
| 0   | DW   | W 0×0              | a53 cpu0 power down enable |
| 0   | K VV |                    | 0: disable                 |
|     |      |                    | 1: enable                  |

#### PMU\_PMU\_PWRDN\_ST

Address: Operational Base + offset (0x0010)

| Bit  | Attr | <b>Reset Value</b> | Description       |
|------|------|--------------------|-------------------|
| 31:4 | RO   | 0x0                | reserved          |
|      |      |                    | pd_a53_3_pwr_stat |
| 3    | RW   | 0x0                | CPU3 power status |
| 5    |      | UNU                | 0: power up       |
|      |      |                    | 1: power down     |
|      |      |                    | pd_a53_2_pwr_stat |
| 2    | RW   | 0×0                | CPU2 power status |
| 2    |      |                    | 0: power up       |
|      |      |                    | 1: power down     |
|      |      | W 0×0              | pd_a53_1_pwr_stat |
| 1    | RW   |                    | CPU1 power status |
| Ŧ    |      |                    | 0: power up       |
|      |      |                    | 1: power down     |
|      |      |                    | pd_a53_0_pwr_stat |
| 0    | RW   | W 0×0              | CPU0 power status |
| 0    | L AN |                    | 0: power up       |
|      |      |                    | 1: power down     |

## PMU\_PMU\_PWRMODE\_COMMON\_CON

Address: Operational Base + offset (0x0018)

| Bit  | Attr | <b>Reset Value</b> | Description                                      |
|------|------|--------------------|--------------------------------------------------|
| 31:9 | RO   | 0x0                | reserved                                         |
|      |      |                    | ddrio_ret_en                                     |
| 0    | B RW | 00                 | ddrio retention enable                           |
| 8    |      | 0x0                | 0: disable                                       |
|      |      |                    | 1: enable                                        |
|      |      |                    | ddrio_ret_de_req                                 |
| 7    | RW   | 0x0                | ddrio retention de request                       |
| /    | RVV  | UXU                | 0: disable                                       |
|      |      |                    | 1: enable                                        |
|      |      |                    | l2_idle_en                                       |
| 6    | RW   | 0x0                | wait for L2 idle enable                          |
| 0    | RVV  | UXU                | 0: disable                                       |
|      |      |                    | 1: enable                                        |
|      |      |                    | I2_flush_en                                      |
| 5    | RW   | 0.20               | flush L2 during power mode                       |
| 5    | RVV  | 0×0                | 0: disable                                       |
|      |      |                    | 1: enable                                        |
|      |      | 0x0                | wait_wakeup_begin_cfg                            |
| 4    | RW   |                    | pmu start to observe for wakeup signals          |
| 4    | RVV  |                    | 0: disable                                       |
|      |      |                    | 1: enable                                        |
|      |      |                    | cpu0_pd_en                                       |
| 3    | RW   | .W 0x0             | power down cpu0 enable                           |
| 5    |      |                    | 0: disable                                       |
|      |      |                    | 1: enable                                        |
|      |      |                    | global_int_disable_cfg                           |
| 2    | RW   | 0x0                | global interrupt disable configure               |
| 2    |      | 0.00               | 0: enable interrupt                              |
|      |      |                    | 1: disable interrupt                             |
|      |      |                    | sref_enter_en                                    |
| 1    | RW   | V 0x0              | DDR enter self-refresh enable when in power mode |
| 1    |      | 0.0                | 0: disable                                       |
|      |      |                    | 1: enable                                        |
|      |      |                    | power_mode_en                                    |
| 0    | RW   | 0x0                | enable FSM                                       |
| 0    |      | UXU                | 0: disable                                       |
|      |      |                    | 1: enable                                        |

#### PMU\_PMU\_SFT\_CON

Address: Operational Base + offset (0x001c)

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
| 31:3 | RO   | 0x0                | reserved    |

| Bit | Attr | Reset Value | Description                       |
|-----|------|-------------|-----------------------------------|
|     |      |             | ddr_io_ret_cfg                    |
| 2   | RW   | 0x0         | software request ddr retention    |
| Z   | ĸw   | 0.00        | 0: disable                        |
|     |      |             | 1: enable                         |
|     |      | / 0×0       | l2flushreq_req                    |
| 1   | RW   |             | software request I2 flush         |
| 1   | RVV  |             | 0: disable                        |
|     |      |             | 1: enable                         |
|     |      | W 0x0       | upctl_c_sysreq_cfg                |
| 0   |      |             | software request ddr self-refresh |
| 0   | RVV  |             | 0: disable                        |
|     |      |             | 1: enalbe                         |

## PMU\_PMU\_INT\_CON

Address: Operational Base + offset (0x0020)

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                   |
|-------|------|--------------------|-----------------------------------------------------------------------------------------------|
| 31:19 | RO   | 0x0                | reserved                                                                                      |
| 18    | RW   | 0×0                | a53_l3_pwr_switch_int_en<br>a53 CPU3 power switch interrupt enable<br>0: disable<br>1: enable |
| 17    | RW   | 0×0                | a53_l2_pwr_switch_int_en<br>a53 CPU2 power switch interrupt enable<br>0: disable<br>1: enable |
| 16    | RW   | 0×0                | a53_l1_pwr_switch_int_en<br>a53 CPU1 power switch interrupt enable<br>0: disable<br>1: enable |
| 15    | RW   | 0x0                | a53_l0_pwr_switch_int_en<br>a53 CPU0 power switch interrupt enable<br>0: disable<br>1: enable |
| 14:5  | RO   | 0x0                | reserved                                                                                      |
| 4     | RW   | 0×0                | wakeup_int_en<br>interrupt wakeup interrupt enable<br>0: disable<br>1: enable                 |
| 3:2   | RO   | 0x0                | reserved                                                                                      |
| 1     | RW   | 0×0                | pwrmode_wakeup_int_en<br>power mode wakeup interrupt enable<br>0: disable<br>1: enable        |

| Bit | Attr | <b>Reset Value</b> | Description                 |
|-----|------|--------------------|-----------------------------|
|     | 0 RW | 0×0                | pmu_int_en                  |
| 0   |      |                    | pmu interrupt global enable |
| 0   |      |                    | 0: disable                  |
|     |      |                    | 1: enable                   |

### PMU\_PMU\_INT\_ST

Address: Operational Base + offset (0x0024)

| Bit  | Attr | <b>Reset Value</b> | Description                            |
|------|------|--------------------|----------------------------------------|
| 31:6 | RO   | 0x0                | reserved                               |
| 5    | RW   | 0x0                | a53_I3_pwr_switch_status               |
| 5    |      | 0.00               | a53 cpu3 power switch interrupt status |
| 4    | RW   | 0x0                | a53_l2_pwr_switch_status               |
| -    |      | 0.00               | a53 cpu2 power switch interrupt status |
| 3    | RW   | 0×0                | a53_l1_pwr_switch_status               |
| 5    |      |                    | a53 cpu1 power switch interrupt status |
| 2    | RW   | 0×0                | a53_I0_pwr_switch_status               |
| Z    | r vv |                    | a53 cpu0 power switch interrupt status |
| 1    | RW   | 00                 | wakeup_int_status                      |
| Ţ    | ĸw   | 0x0                | interrupt wakeup status                |
| 0    | RW   | 0×0                | pwrmode_wakeup_status                  |
| 0    |      | RW 0x0             | power mode wakeup status               |

#### PMU\_PMU\_POWER\_ST

Address: Operational Base + offset (0x0044)

| Bit  | Attr | <b>Reset Value</b> | Description         |
|------|------|--------------------|---------------------|
| 31:4 | RO   | 0x0                | reserved            |
| 3:0  | RW   | 0x0                | pwr_status          |
| 5.0  |      | 0.00               | pmu power FSM value |

#### PMU\_PMU\_CPU0APM\_CON

Address: Operational Base + offset (0x0080)

| Bit  | Attr | <b>Reset Value</b> | Description                 |
|------|------|--------------------|-----------------------------|
| 31:4 | RO   | 0x0                | reserved                    |
|      | RW   | 0×0                | cpu0_sft_wakeup             |
| 2    |      |                    | cpu0 software wakeup enable |
| 5    |      |                    | 0: disable                  |
|      |      |                    | 1: enable                   |

| Bit | Attr | Reset Value | Description                  |
|-----|------|-------------|------------------------------|
|     |      |             | global_int_disable_0_cfg     |
| 2   | RW   | 0x0         | disable interrupt to cpu0    |
| Z   | ĸvv  | 0.00        | 0: enable interrupt          |
|     |      |             | 1: disable interrupt         |
|     |      | W 0x0       | cpu0_int_wakeup_en           |
| 1   | RW   |             | cpu0 interrupt wakeup enable |
| 1   | ĸw   |             | 0: disable                   |
|     |      |             | 1: enable                    |
|     |      | V 0×0       | cpu0_wfi_pwrdn_en            |
| 0   | RW   |             | cpu0 WFI power down enable   |
| 0   | ĸw   |             | 0: disable                   |
|     |      |             | 1: enable                    |

### PMU\_PMU\_CPU1APM\_CON

Address: Operational Base + offset (0x0084)

| Bit  | Attr | <b>Reset Value</b> | Description                  |
|------|------|--------------------|------------------------------|
| 31:4 | RO   | 0x0                | reserved                     |
|      |      |                    | cpu1_sft_wakeup              |
| 3    | RW   | 0x0                | cpu1 software wakeup enable  |
| 5    | ĸvv  | 0.00               | 0: disable                   |
|      |      |                    | 1: enable                    |
|      |      |                    | global_int_disable_1_cfg     |
| 2    | RW   | 0x0                | disable interrupt to cpu1    |
| Z    | ĸw   |                    | 0: enable interrupt          |
|      |      |                    | 1: disable interrupt         |
|      |      | 0x0                | cpu1_int_wakeup_en           |
| 1    | RW   |                    | cpu1 interrupt wakeup enable |
| 1 I  |      | 0.00               | 0: disable                   |
|      |      |                    | 1: enable                    |
|      |      |                    | cpu1_wfi_pwrdn_en            |
| 0    | RW   | V 0x0              | cpu1 WFI power down enable   |
| 0    |      |                    | 0: disable                   |
|      |      |                    | 1: enable                    |

#### PMU\_PMU\_CPU2APM\_CON

Address: Operational Base + offset (0x0088)

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
| 31:4 | RO   | 0x0                | reserved    |

| Bit | Attr | <b>Reset Value</b> | Description                  |
|-----|------|--------------------|------------------------------|
|     |      |                    | cpu2_sft_wakeup              |
| 3   | RW   | 0x0                | cpu2 software wakeup enable  |
| 5   | r vv | 0.00               | 0: disable                   |
|     |      |                    | 1: enable                    |
|     |      |                    | global_int_disable_2_cfg     |
| 2   | RW   | 0x0                | disable interrupt to cpu2    |
| Z   | RVV  |                    | 0: enable interrupt          |
|     |      |                    | 1: disable interrupt         |
|     |      | / 0x0              | cpu2_int_wakeup_en           |
| 1   | RW   |                    | cpu2 interrupt wakeup enable |
| 1   | R VV |                    | 0: disable                   |
|     |      |                    | 1: enable                    |
|     |      | W 0×0              | cpu2_wfi_pwrdn_en            |
| 0   | RW   |                    | cpu2 WFI power down enable   |
| 0   |      |                    | 0: disable                   |
|     |      |                    | 1: enable                    |

### PMU\_PMU\_CPU3APM\_CON

Address: Operational Base + offset (0x008c)

| Bit      | Attr | Reset Value | Description                  |
|----------|------|-------------|------------------------------|
| 31:4     | RO   | 0x0         | reserved                     |
|          |      |             | cpu3_sft_wakeup              |
| 3        | RW   | 0x0         | cpu3 software wakeup enable  |
| 5        | ĸvv  | 0.00        | 0: disable                   |
|          |      |             | 1: enable                    |
|          |      |             | global_int_disable_3_cfg     |
| 2        | RW   | 0x0         | disable interrupt to cpu3    |
| 2        | ĸw   |             | 0: enable interrupt          |
|          |      |             | 1: disable interrupt         |
|          |      | RW 0x0      | cpu3_int_wakeup_en           |
| 1        | DW   |             | cpu3 interrupt wakeup enable |
| <b>1</b> | r vv |             | 0: disable                   |
|          |      |             | 1: enable                    |
|          |      |             | cpu3_wfi_pwrdn_en            |
| 0        | RW   | 0x0         | cpu3 WFI power down enable   |
| 0        | L AN |             | 0: disable                   |
|          |      |             | 1: enable                    |

#### PMU\_PMU\_SYS\_REG0

Address: Operational Base + offset (0x00a0)

| Bit  | Attr | Reset Value | Description                       |
|------|------|-------------|-----------------------------------|
| 31:0 | RW   | 0x00000000  | pmu_sys_reg0<br>system register 0 |

#### PMU\_PMU\_SYS\_REG1

Address: Operational Base + offset (0x00a4)

| Bit  | Attr | <b>Reset Value</b>                      | Description       |
|------|------|-----------------------------------------|-------------------|
| 31:0 | RW   | 0x00000000                              | pmu_sys_reg1      |
| 51.0 | 1    | 0.0000000000000000000000000000000000000 | system register 1 |

#### PMU\_PMU\_SYS\_REG2

Address: Operational Base + offset (0x00a8)

| Bit  | Attr | <b>Reset Value</b> | Description                       |
|------|------|--------------------|-----------------------------------|
| 31:0 | RW   | UXUUUUUUUUU        | pmu_sys_reg2<br>system register 2 |

#### PMU\_PMU\_SYS\_REG3

Address: Operational Base + offset (0x00ac)

| Bit  | Attr | <b>Reset Value</b> | Description                       |
|------|------|--------------------|-----------------------------------|
| 31:0 | RW   | UXUUUUUUUUU        | pmu_sys_reg3<br>system register 3 |

## 6.5 Timing Diagram

#### 6.5.1 Each domain power switch timing

The following figure is the each domain power down and power up timing.

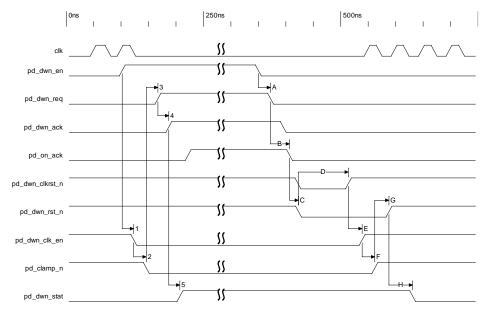



Fig. 4-5 Each Domain Power Switch Timing

## 6.5.2 External wakeup PAD timing

The PMU supports a lot of external wakeup sources, such as SD/MMDC, USBDEV, SIM detect wakeup, GPIO0 wakeup source and so on. All these external wakeup sources must meet the timing requirement (at least 200us) when the wakeup event is asserted. The following figure gives the timing information.

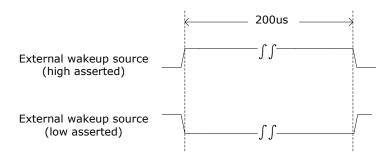



Fig. 4-6 External Wakeup Source PAD Timing

# 6.6 Application Note

#### 6.6.1 Low power mode

PMU can work in the Low power mode by setting bit[0] of PMU\_PWRMODE\_CON register. After setting this bit and all CPU cores enters WFI states, PMU low power FSM will start to run. In the low power mode, PMU will manage power resources by hardware, such as power on/off the specified power domain, send idle request to specified power domain, shut down/up PLL and so on. All of above are configurable by setting corresponding registers. ALL FSM power states could be monitored through IO. The following table describes all power states of PMU FSM.

|     | Ta             | ble 4-4 Low Power State               |
|-----|----------------|---------------------------------------|
| Num | STATES         | Description                           |
| 0   | ST_NORMAL      | Still in normal state                 |
| 1   | ST_CPU0_PWRDN  | Hold CPU0 in reset status, not really |
| 1   |                | power down                            |
| 2   | ST_L2_FLUSH    | Flush L2 by hardware                  |
| 3   | ST_L2_IDLE     | Wait for L2 idle                      |
| 4   | ST_SREF_ENTER  | Enter DDR self-refresh                |
| 5   | ST_DDR_IO_RET  | DDR IO retention                      |
| 6   | ST_WAIT_WAKEUP | Wait for wake up                      |
| 7   | ST_SREF_EXIT   | Exit DDR self-refresh                 |
| 8   | ST_CPU0_PWRUP  | De-assert reset for CPU0              |

# **Chapter 7 Generic Interrupt Controller (GIC)**

# 7.1 Overview

There is a generic interrupt controller(GIC400) in RK3328 which generates physical interrupts to Cortex-A53. It has two interfaces, the distributor interface connects to the interrupt source, and the CPU interface connects to Cortex-A53. The details of CPU interface connectivity are shown in the following table.

| <b>CPU Interface Number</b> | Connectivity |
|-----------------------------|--------------|
| CPU interface 0             | CPU0         |
| CPU interface 1             | CPU1         |
| CPU interface 2             | CPU2         |
| CPU interface 3             | CPU3         |

| Table 1-1 | CPU interface  | connectivity |
|-----------|----------------|--------------|
|           | or o miteriace | connectivity |

It supports the following features:

- Supports 128 hardware interrupt inputs
- Masking of any interrupts
- Prioritization of interrupts
- Distribution of the interrupts to the target Cortex-A53 processor(s)
- Generation of interrupts by software
- Supports Security Extensions

# 7.2 Block Diagram

The generic interrupt controller comprises with:

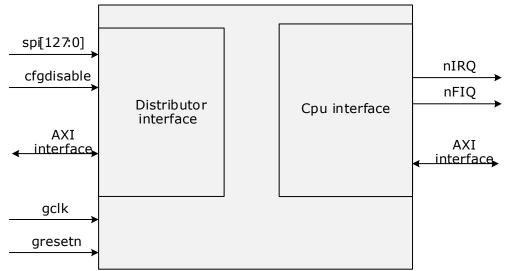



Fig. 7-1 Block Diagram

# 7.3 Function Description

Please refer to the document IHI0048B\_gic\_architecture\_specification.pdf for the detail function description.

# **Chapter 8 DMA Controller (DMAC)**

# 8.1 Overview

This device supports 1 Direct Memory Access (DMA) Controllers. It (DMAC) supports transfers between memory and memory, peripheral and memory. DMAC is under Nonsecure state after reset, and the secure state can be changed by configuring SGRF module. DMAC supports the following features:

- Supports Trustzone technology
- Supports 17 peripheral request
- Up to 64bits data size
- 8 channel at the same time
- Up to burst 16
- 16 interrupts output and 1 abort output
- Supports 128 MFIFO depth

Following table shows the DMAC request mapping scheme.

Table 8-1 DMAC Request Mapping Table

| Req number | Source       | Polarity   |
|------------|--------------|------------|
| 0          | I2S2_2CH_TX  | High level |
| 1          | I2S2_2CH_RX  | High level |
| 2          | UART0_TX     | High level |
| 3          | UART0_RX     | High level |
| 4          | UART1_TX     | High level |
| 5          | UART1_RX     | High level |
| 6          | UART2_TX     | High level |
| 7          | UART2_RX     | High level |
| 8          | SPI0_TX      | High level |
| 9          | SPI0_RX      | High level |
| 10         | SPDIF_8CH_TX | High level |
| 11         | I2S0_8CH_TX  | High level |
| 12         | I2S0_8CH_RX  | High level |
| 13         | PWM_TX       | High level |
| 14         | I2S1_8CH_TX  | High level |
| 15         | I2S1_8CH_RX  | High level |
| 16         | PDM_TX       | High level |

DMAC support incrementing-address burst and fixed-address burst. But in the case of access SPI and UART at byte or halfword size, DMAC only support fixed-address burst and the address must be aligned to word.

## 8.2 Block Diagram

Following figure shows the block diagram of DMAC.

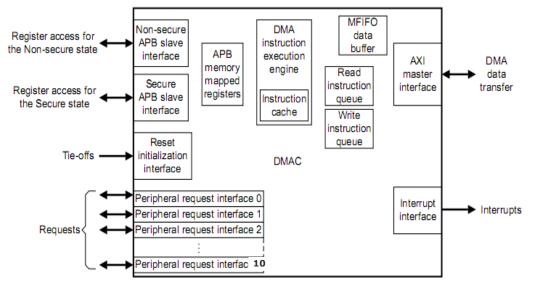



Fig. 8-1 Block diagram of DMAC

As the DMAC supports Trustzone technology, so dual APB interfaces enable the operation of the DMAC to be partitioned into the secure state and Non-secure state. You can use the APB interfaces to access status registers and also directly execute instructions in the DMAC. The default interface after reset is Non-secure apb interface.

# 8.3 Function Description

## 8.3.1 Introduction

The DMAC contains an instruction processing block that enables it to process program code that controls a DMA transfer. The program code is stored in a region of system memory that the DMAC accesses using its AXI interface. The DMAC stores instructions temporarily in a cache. It supports 8 channels, each channel capable of supporting a single concurrent thread of DMA operation. In addition, a single DMA manager thread exists, and you can use it to initialize the DMA channel threads. The DMAC executes up to one instruction for each AXI clock cycle. To ensure that it regularly executes each active thread, it alternates by processing the DMA manager thread and then a DMA channel thread. It uses a round-robin process when selecting the next active DMA channel thread to execute.

The DMAC uses variable-length instructions that consist of one to six bytes. It provides a separate Program Counter (PC) register for each DMA channel. When a thread requests an instruction from an address, the cache performs a look-up. If a cache hit occurs, then the cache immediately provides the data. Otherwise, the thread is stalled while the DMAC uses the AXI interface to perform a cache line fill. If an instruction is greater than 4 bytes, or spans the end of a cache line, the DMAC performs multiple cache accesses to fetch the instruction.

When a cache line fill is in progress, the DMAC enables other threads to access the cache, but if another cache miss occurs, this stalls the pipeline until the first line fill is complete. When a DMA channel thread executes a load or store instruction, the DMAC adds the instruction to the relevant read or write queue. The DMAC uses these queues as an instruction storage buffer prior to it issuing the instructions on the AXI bus. The DMAC also contains a Multi First-In-First-Out (MFIFO) data buffer that it uses to store data that it reads, or writes, during a DMA transfer.

### 8.3.2 Operating states

Following figure shows the operating states for the DMA manager thread and DMA channel threads.

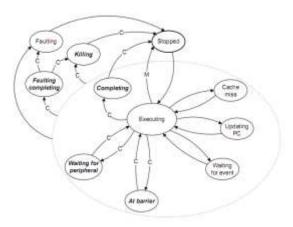



Fig. 8-2 DMAC operation states

Notes: arcs with no letter designator indicate state transitions for the DMA manager and DMA channel threads, otherwise use is restricted as follows:

C DMA channel threads only.

M DMA manager thread only.

After the DMAC exits from reset, it sets all DMA channel threads to the stopped state, and DMA manager thread moves to the Stopped state.

# **8.4 Register Description**

|                |          | 1    | [              | ,                                      |
|----------------|----------|------|----------------|----------------------------------------|
| Name           | Offset   | Size | Reset<br>Value | Description                            |
| DMAC_DSR       | 0x0000   | W    | 0x00000000     | DMA Manager Status Register            |
| DMAC_DPC       | 0x0004   | W    | 0x00000000     | DMA Program Counter Register           |
| DMAC_INTEN     | 0x0020   | W    | 0x00000000     | Interrupt Enable Register              |
| DMAC_EVENT_RIS | 0x0024   | w    | 0x00000000     | Event-Interrupt Raw Status<br>Register |
| DMAC_INTMIS    | 0x0028   | W    | 0x00000000     | Interrupt Status Register              |
| DMAC_INTCLR    | 0x002c   | W    | 0x00000000     | Interrupt Clear Register               |
|                | 0,0020   | \A/  | 0×00000000     | Fault Status DMA Manager               |
| DMAC_FSRD      | 0x0030   | W    |                | Register                               |
| DMAC_FSRC      | 0,0024   | 14/  | W 0x0000000    | Fault Status DMA Channel               |
|                | 0x0034 W | vv   |                | Register                               |
| DMAC_FTRD      | 0x0038   | W    | 0x00000000     | Fault Type DMA Manager Register        |
| DMAC_FTR0      | 0x0040   | W    | 0x00000000     | Fault Type DMA Channel Register        |
| DMAC_FTR1      | 0x0044   | W    | 0x00000000     | Fault Type DMA Channel Register        |
| DMAC_FTR2      | 0x0048   | W    | 0x00000000     | Fault Type DMA Channel Register        |
| DMAC_FTR3      | 0x004c   | W    | 0x00000000     | Fault Type DMA Channel Register        |
| DMAC_FTR4      | 0x0050   | W    | 0x00000000     | Fault Type DMA Channel Register        |
| DMAC_FTR5      | 0x0054   | W    | 0x00000000     | Fault Type DMA Channel Register        |

### 8.4.1 Registers Summary

| Name       | Offset | Size | Reset<br>Value | Description                          |
|------------|--------|------|----------------|--------------------------------------|
| DMAC_FTR6  | 0x0058 | W    | 0x0000000      | Fault Type DMA Channel Register      |
| DMAC_FTR7  | 0x005c | W    | 0x00000000     | Fault Type DMA Channel Register      |
| DMAC_CSR0  | 0x0100 | W    | 0x00000000     | Channel Status Registers             |
| DMAC_CPC0  | 0x0104 | W    | 0×00000000     | Channel Program Counter<br>Registers |
| DMAC_CSR1  | 0x0108 | W    | 0x0000000      | Channel Status Registers             |
| DMAC_CPC1  | 0x010c | w    | 0x00000000     | Channel Program Counter<br>Registers |
| DMAC_CSR2  | 0x0110 | W    | 0x0000000      | Channel Status Registers             |
| DMAC_CPC2  | 0x0114 | w    | 0×00000000     | Channel Program Counter<br>Registers |
| DMAC_CSR3  | 0x0118 | W    | 0x00000000     | Channel Status Registers             |
| DMAC_CPC3  | 0x011c | w    | 0x00000000     | Channel Program Counter<br>Registers |
| DMAC_CSR4  | 0x0120 | W    | 0x00000000     | Channel Status Registers             |
| DMAC_CPC4  | 0x0124 | w    | 0x00000000     | Channel Program Counter<br>Registers |
| DMAC_CSR5  | 0x0128 | W    | 0x00000000     | Channel Status Registers             |
| DMAC_CPC5  | 0x012c | w    | 0x00000000     | Channel Program Counter<br>Registers |
| DMAC_CSR6  | 0x0130 | W    | 0x00000000     | Channel Status Registers             |
| DMAC_CPC6  | 0x0134 | w    | 0x00000000     | Channel Program Counter<br>Registers |
| DMAC_CSR7  | 0x0138 | W    | 0x0000000      | Channel Status Registers             |
| DMAC_CPC7  | 0x013c | w    | 0x00000000     | Channel Program Counter<br>Registers |
| DMAC_SAR0  | 0x0400 | W    | 0x0000000      | Source Address Registers             |
| DMAC_DAR0  | 0x0404 | W    | 0x00000000     | Destination Address Registers        |
| DMAC_CCR0  | 0x0408 | W    | 0x00000000     | Channel Control Registers            |
| DMAC_LC0_0 | 0x040c | W    | 0x00000000     | Loop Counter 0 Registers             |
| DMAC_LC1_0 | 0x0410 | W    | 0x00000000     | Loop Counter 1 Registers             |
| DMAC_SAR1  | 0x0420 | W    | 0x00000000     | Source Address Registers             |
| DMAC_DAR1  | 0x0424 | W    | 0x00000000     | Destination Address Registers        |
| DMAC_CCR1  | 0x0428 | W    | 0x00000000     | Channel Control Registers            |
| DMAC_LC0_1 | 0x042c | W    | 0x0000000      | Loop Counter 0 Registers             |
| DMAC_LC1_1 | 0x0430 | W    | 0x0000000      | Loop Counter 1 Registers             |
| DMAC_SAR2  | 0x0440 | W    | 0x0000000      | Source Address Registers             |
| DMAC_DAR2  | 0x0444 | W    | 0x0000000      | Destination Address Registers        |
| DMAC_CCR2  | 0x0448 | W    | 0x0000000      | Channel Control Registers            |
| DMAC_LC0_2 | 0x044c | W    | 0x0000000      | Loop Counter 0 Registers             |
| DMAC_LC1_2 | 0x0450 | W    | 0x0000000      | Loop Counter 1 Registers             |
| DMAC_SAR3  | 0x0460 | W    | 0x0000000      | Source Address Registers             |
| DMAC_DAR3  | 0x0464 | W    | 0x0000000      | Destination Address Registers        |

| Name           | Offset | Size | Reset<br>Value | Description                   |
|----------------|--------|------|----------------|-------------------------------|
| DMAC_CCR3      | 0x0468 | W    | 0x00000000     | Channel Control Registers     |
| DMAC_LC0_3     | 0x046c | W    | 0x00000000     | Loop Counter 0 Registers      |
| DMAC_LC1_3     | 0x0470 | W    | 0x00000000     | Loop Counter 1 Registers      |
| DMAC_SAR4      | 0x0480 | W    | 0x00000000     | Source Address Registers      |
| DMAC_DAR4      | 0x0484 | W    | 0x00000000     | Destination Address Registers |
| DMAC_CCR4      | 0x0488 | W    | 0x00000000     | Channel Control Registers     |
| DMAC_LC0_4     | 0x048c | W    | 0x0000000      | Loop Counter 0 Registers      |
| DMAC_LC1_4     | 0x0490 | W    | 0x0000000      | Loop Counter 1 Registers      |
| DMAC_SAR5      | 0x04a0 | W    | 0x0000000      | Source Address Registers      |
| DMAC_DAR5      | 0x04a4 | W    | 0x0000000      | Destination Address Registers |
| DMAC_CCR5      | 0x04a8 | W    | 0x00000000     | Channel Control Registers     |
| DMAC_LC0_5     | 0x04ac | W    | 0x00000000     | Loop Counter 0 Registers      |
| DMAC_LC1_5     | 0x04b0 | W    | 0x0000000      | Loop Counter 1 Registers      |
| DMAC_SAR6      | 0x04c0 | W    | 0x0000000      | Source Address Registers      |
| DMAC_DAR6      | 0x04c4 | W    | 0x00000000     | Destination Address Registers |
| DMAC_CCR6      | 0x04c8 | W    | 0x00000000     | Channel Control Registers     |
| DMAC_LC0_6     | 0x04cc | W    | 0x00000000     | Loop Counter 0 Registers      |
| DMAC_LC1_6     | 0x04d0 | W    | 0x00000000     | Loop Counter 1 Registers      |
| DMAC_SAR7      | 0x04e0 | W    | 0x00000000     | Source Address Registers      |
| DMAC_DAR7      | 0x04e4 | W    | 0x00000000     | Destination Address Registers |
| DMAC_CCR7      | 0x04e8 | W    | 0x00000000     | Channel Control Registers     |
| DMAC_LC0_7     | 0x04ec | W    | 0x00000000     | Loop Counter 0 Registers      |
| DMAC_LC1_7     | 0x04f0 | W    | 0x00000000     | Loop Counter 1 Registers      |
| DMAC_DBGSTATUS | 0x0d00 | W    | 0x00000000     | Debug Status Register         |
| DMAC_DBGCMD    | 0x0d04 | W    | 0x00000000     | Debug Command Register        |
| DMAC_DBGINST0  | 0x0d08 | W    | 0x00000000     | Debug Instruction-0 Register  |
| DMAC_DBGINST1  | 0x0d0c | W    | 0x00000000     | Debug Instruction-1 Register  |
| DMAC_CR0       | 0x0e00 | W    | 0x00047051     | Configuration Register 0      |
| DMAC_CR1       | 0x0e04 | W    | 0x0000057      | Configuration Register 1      |
| DMAC_CR2       | 0x0e08 | W    | 0x00000000     | Configuration Register 2      |
| DMAC_CR3       | 0x0e0c | W    | 0x00000000     | Configuration Register 3      |
| DMAC_CR4       | 0x0e10 | W    | 0x0000006      | Configuration Register 4      |
| DMAC_CRDn      | 0x0e14 | W    | 0x02094733     | DMA Configuration Register    |
| DMAC_WD        | 0x0e80 | W    | 0x0000000      | DMA Watchdog Register         |

Notes:<u>Size</u>:**B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access. For DMAC0 channel register, only the channel 0~5 is valid.

### 8.4.2 Detail Register Description

#### DMAC\_DSR

Address: Operational Base + offset (0x0000)

DMA Manager Status Register

| Bit   | Attr | <b>Reset Value</b> | Description |
|-------|------|--------------------|-------------|
| 31:10 | RO   | 0x0                | reserved    |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit | Attr | <b>Reset Value</b> | Description                                                |
|-----|------|--------------------|------------------------------------------------------------|
|     |      |                    | Provides the security status of the DMA manager thread:    |
| 9   | RO   | 0x0                | 0 = DMA manager operates in the Secure state               |
|     |      |                    | 1 = DMA manager operates in the Non-secure state.          |
|     |      |                    | When the DMA manager thread executes a DMAWFE instruction, |
|     |      |                    | it waits for the following event to occur:                 |
|     |      |                    | b00000 = event[0]                                          |
| 8:4 | RO   | 0x00               | b00001 = event[1]                                          |
|     |      |                    | b00010 = event[2]                                          |
|     |      |                    |                                                            |
|     |      |                    | b11111 = event[31].                                        |
|     |      |                    | The operating state of the DMA manager:                    |
|     |      | RO 0x0             | b0000 = Stopped                                            |
|     |      |                    | b0001 = Executing                                          |
| 3:0 | DO   |                    | b0010 = Cache miss                                         |
| 5.0 | ĸŬ   |                    | b0011 = Updating PC                                        |
|     |      |                    | b0100 = Waiting for event                                  |
|     |      |                    | b0101-b1110 = reserved                                     |
|     |      |                    | b1111 = Faulting.                                          |

#### DMAC\_DPC

Address: Operational Base + offset (0x0004) DMA Program Counter Register

| Bit  | Attr | <b>Reset Value</b> | Description                                |
|------|------|--------------------|--------------------------------------------|
| 31:0 | RO   | 0x00000000         | Program counter for the DMA manager thread |

#### DMAC\_INTEN

Address: Operational Base + offset (0x0020) Interrupt Enable Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0×00000000         | Program the appropriate bit to control how the DMAC responds<br>when it executes DMASEV:<br>Bit [N] = 0 If the DMAC executes DMASEV for the event-interrupt<br>resource N then the DMAC signals event N to all of the threads.<br>Set bit [N] to 0 if your system design does not use irq[N] to<br>signal an interrupt request.<br>Bit [N] = 1 If the DMAC executes DMASEV for the event-interrupt<br>resource N then the DMAC sets irq[N] HIGH. Set bit [N] to 1 if<br>your system designer requires irq[N] to signal an<br>interruptrequest. |

#### DMAC\_EVENT\_RIS

Address: Operational Base + offset (0x0024) Event-Interrupt Raw Status Register

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit  | Attr | <b>Reset Value</b> | Description                                            |
|------|------|--------------------|--------------------------------------------------------|
|      |      |                    | Returns the status of the event-interrupt resources:   |
| 31:0 | RO   | 0x00000000         | Bit $[N] = 0$ Event N is inactive or irq $[N]$ is LOW. |
|      |      |                    | Bit $[N] = 1$ Event N is active or irq $[N]$ is HIGH.  |

#### DMAC\_INTMIS

Address: Operational Base + offset (0x0028) Interrupt Status Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                           |  |  |  |
|------|------|--------------------|-----------------------------------------------------------------------|--|--|--|
|      |      |                    | Provides the status of the interrupts that are active in the DMAC:    |  |  |  |
| 31:0 | RO   | 0x00000000         | Bit $[N] = 0$ Interrupt N is inactive and therefore irq $[N]$ is LOW. |  |  |  |
|      |      |                    | Bit $[N] = 1$ Interrupt N is active and therefore irq[N] is HIGH      |  |  |  |

#### DMAC\_INTCLR

Address: Operational Base + offset (0x002c) Interrupt Clear Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                |
|------|------|--------------------|------------------------------------------------------------|
|      |      |                    | Controls the clearing of the irq outputs:                  |
|      |      |                    | Bit [N] = 0 The status of irq[N] does not change.          |
| 31:0 | WO   | 0x00000000         | Bit [N] = 1 The DMAC sets irq[N] LOW if the INTEN Register |
|      |      |                    | programs the DMAC to signal an interrupt.                  |
|      |      |                    | Otherwise, the status of irq[N] does not change.           |

#### DMAC\_FSRD

Address: Operational Base + offset (0x0030) Fault Status DMA Manager Register

| Bit  | Attr | <b>Reset Value</b> | Description                                             |
|------|------|--------------------|---------------------------------------------------------|
|      |      |                    | Provides the fault status of the DMA manager. Read as:  |
| 31:0 | RO   | 0x00000000         | 0 = the DMA manager thread is not in the Faulting state |
|      |      |                    | 1 = the DMA manager thread is in the Faulting state.    |

#### DMAC\_FSRC

Address: Operational Base + offset (0x0034) Fault Status DMA Channel Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                      |
|------|------|--------------------|------------------------------------------------------------------|
|      |      |                    | Each bit provides the fault status of the corresponding channel. |
|      |      |                    | Read as:                                                         |
| 31:0 | RO   | 0x00000000         | Bit [N] = 0 No fault is present on DMA channel N.                |
|      |      |                    | Bit $[N] = 1$ DMA channel N is in the Faulting or Faulting       |
|      |      |                    | completing state.                                                |

## DMAC\_FTRD

Address: Operational Base + offset (0x0038) Fault Type DMA Manager Register

| Bit   |       | Reset Value | Description                                                                                                         |
|-------|-------|-------------|---------------------------------------------------------------------------------------------------------------------|
| 31    | RO    | 0x0         | reserved                                                                                                            |
|       |       |             | If the DMA manager aborts, this bit indicates if the erroneous                                                      |
|       |       |             | instruction was read from the system                                                                                |
| 20    |       |             | memory or from the debug interface:                                                                                 |
| 30    | RO    | 0x0         | 0 = instruction that generated an abort was read from system                                                        |
|       |       |             | memory                                                                                                              |
|       |       |             | 1 = instruction that generated an abort was read from the debug interface.                                          |
| 29:17 |       | 0x0         |                                                                                                                     |
| 29:17 | RU    | UXU         | reserved                                                                                                            |
|       |       |             | Indicates the AXI response that the DMAC receives on the RRESP                                                      |
| 16    | RO    | 0x0         | bus, after the DMA manager<br>performs an instruction fetch:                                                        |
| 10    | ĸŪ    | UXU         | 0 = OKAY response                                                                                                   |
|       |       |             | •                                                                                                                   |
| 15:6  | RO    | 0x0         | 1 = EXOKAY, SLVERR, or DECERR response<br>reserved                                                                  |
| 13.0  | ĸŬ    | 0.00        |                                                                                                                     |
|       |       |             | Indicates if the DMA manager was attempting to execute<br>DMAWFE or DMASEV with inappropriate security permissions: |
|       |       |             | 0 = DMA manager has appropriate security to execute DMAWFE                                                          |
|       |       |             | or DMASEV                                                                                                           |
| 5     | RO    | 0x0         | 1 = a DMA manager thread in the Non-secure state attempted to                                                       |
|       |       |             | execute either:                                                                                                     |
|       |       |             | DMAWFE to wait for a secure event                                                                                   |
|       |       |             | DMASEV to create a secure event or secure interrupt                                                                 |
|       |       |             | Indicates if the DMA manager was attempting to execute DMAGO                                                        |
|       |       | 0×0         | with inappropriate security permissions:                                                                            |
| 4     |       |             | 0 = DMA manager has appropriate security to execute DMAGO                                                           |
| 4     | RO    |             | 1 = DMA manager thread in the Non-secure state attempted to                                                         |
|       |       |             | execute DMAGO to create a DMA channel operating in the Secure                                                       |
|       |       |             | state.                                                                                                              |
| 3:2   | RO    | 0x0         | reserved                                                                                                            |
|       |       |             | Indicates if the DMA manager was attempting to execute an                                                           |
|       |       |             | instruction operand that was not valid for                                                                          |
| 1     | RO    | 0x0         | the configuration of the DMAC:                                                                                      |
|       |       |             | 0 = valid operand                                                                                                   |
|       |       |             | 1 = invalid operand.                                                                                                |
|       |       |             | Indicates if the DMA manager was attempting to execute an                                                           |
| 0     | RW    | 0x0         | undefined instruction:                                                                                              |
| 0     | IX VV |             | 0 = defined instruction                                                                                             |
|       |       |             | 1 = undefined instruction.                                                                                          |

#### DMAC\_FTR0~DMAC\_FTR7

Address: Operational Base + offset (0x0040)

Operational Base+0x44

Operational Base+0x48

Operational Base+0x4C

Operational Base+0x50

Operational Base+0x54

Operational Base+0x58

Operational Base+0x5C

Fault Type DMA Channel Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                       |
|-------|------|--------------------|-------------------------------------------------------------------|
|       |      |                    | Indicates if the DMA channel has locked-up because of resource    |
|       |      |                    | starvation:                                                       |
| 31    | RO   | 0x0                | 0 = DMA channel has adequate resources                            |
|       |      |                    | 1 = DMA channel has locked-up because of insufficient resources.  |
|       |      |                    | This fault is an imprecise abort                                  |
|       |      |                    | If the DMA channel aborts, this bit indicates if the erroneous    |
|       |      |                    | instruction was read from the system                              |
|       |      |                    | memory or from the debug interface:                               |
|       |      |                    | 0 = instruction that generated an abort was read from system      |
| 30    | RO   | 0x0                | memory                                                            |
|       |      |                    | 1 = instruction that generated an abort was read from the debug   |
|       |      |                    | interface.                                                        |
|       |      |                    | This fault is an imprecise abort but the bit is only valid when a |
|       |      |                    | precise abort occurs.                                             |
| 29:19 | RO   | 0x0                | reserved                                                          |
|       |      |                    | Indicates the AXI response that the DMAC receives on the RRESP    |
|       |      |                    | bus, after the DMA channel                                        |
| 18    | RO   | 0×0                | thread performs a data read:                                      |
| 10    |      |                    | 0 = OKAY response                                                 |
|       |      |                    | 1 = EXOKAY, SLVERR, or DECERR response.                           |
|       |      |                    | This fault is an imprecise abort                                  |
|       |      |                    | Indicates the AXI response that the DMAC receives on the BRESP    |
|       |      |                    | bus, after the DMA channel                                        |
| 17    | RO   | 0x0                | thread performs a data write:                                     |
| - /   |      |                    | 0 = OKAY response                                                 |
|       |      |                    | 1 = EXOKAY, SLVERR, or DECERR response.                           |
|       |      |                    | This fault is an imprecise abort.                                 |
|       |      |                    | Indicates the AXI response that the DMAC receives on the RRESP    |
|       |      |                    | bus, after the DMA channel                                        |
| 16    | RO   | 0×0                | thread performs an instruction fetch:                             |
|       |      |                    | 0 = OKAY response                                                 |
|       |      |                    | 1 = EXOKAY, SLVERR, or DECERR response.                           |
|       |      |                    | This fault is a precise abort.                                    |
| 15:14 | RO   | 0x0                | reserved                                                          |

| 1 = previous DMALDs have not put enough data in the MFIFO to enable the DMAST to complete.         This fault is a precise abort.         12       RO         12       RO         12       RO         14       METFO is too small to hold the data that DMALD requires.         DMALD 0 = MFIFO contains sufficient space         1 = MFIFO is too small to hold the data that DMALD requires.         DMAST 0 = MFIFO contains sufficient data         1 = MFIFO is too small to store the data to enable DMAST to complete.         This fault is an imprecise abort         11:8       RO         7       RO         0x0       reserved         Indicates if a DMA channel thread, in the Non-secure state, attempts to program the CCRn Register to perform a secure read or secure write:         7       RO         0x0       = a DMA channel thread in the Non-secure state is not violating the security permissions         1 = a DMA channel thread in the Non-secure state, attempted to perform a secure read or secure write.         This fault is a precise abort         1       Indicates if a DMA channel thread, in the Non-secure state, attempted to perform a secure read or secure write.         This fault is a precise abort       Indicates if a DMA channel thread in the Non-secure state, attempted to execute DMAWFP, DMALDP, DMASTP, or DMAFLUSHP with inappropriate security permissions:                                                                                                                                                                                                                                                                          | Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13       RO       0x0       1 = previous DMALDs have not put enough data in the MFIFO to enable the DMAST to complete.<br>This fault is a precise abort.         12       RO       0x0       Indicates if the MFIFO prevented the DMA channel thread from executing DMALD or DMAST. Depending on the instruction:<br>DMALD 0 = MFIFO contains sufficient space         12       RO       0x0       Image: MFIFO is too small to hold the data that DMALD requires.<br>DMAST 0 = MFIFO contains sufficient data         11:8       RO       0x0       reserved         7       RO       0x0       reserved         7       RO       0x0       reserved         7       RO       0x0       a DMA channel thread in the Non-secure state, attempted to perform a secure read or secure write:<br>0 = a DMA channel thread in the Non-secure state is not violating the security permissions         6       RO       0x0       1 = a DMA channel thread in the Non-secure state is not violating the security permissions:<br>0 = a DMA channel thread in the Non-secure state is not violating the security permissions:<br>0 = a DMA channel thread in the Non-secure state is not violating the security permissions:<br>0 = a DMA channel thread in the Non-secure state is not viola                                                                                                                                                                                                                  |      |      |                    | DMAC to perform the DMAST:                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12       RO       0x0       Indicates if the MFIFO prevented the DMA channel thread from executing DMALD or DMAST. Depending on the instruction: DMALD 0 = MFIFO contains sufficient space         12       RO       0x0       I = MFIFO is too small to hold the data that DMALD requires. DMAST 0 = MFIFO contains sufficient data         1 = MFIFO is too small to store the data to enable DMAST to complete. This fault is an imprecise abort       Indicates if a DMA channel thread, in the Non-secure state, attempts to program the CCRn Register to perform a secure read or secure write:         7       RO       0x0       Indicates if a DMA channel thread in the Non-secure state is not violating the security permissions         7       RO       0x0       Indicates if a DMA channel thread, in the Non-secure state, attempts to program the CCRn Register         7       RO       0x0       Indicates if a DMA channel thread in the Non-secure state, attempted to perform a secure read or secure write. This fault is a precise abort         7       RO       0x0       Indicates if a DMA channel thread, in the Non-secure state, attempts to execute DMAWFP, DMALDP, DMASTP, or DMAFLUSHP with inappropriate security permissions: 0 = a DMA channel thread in the Non-secure state is not violating the security permissions         6       RO       0x0       1 = a DMA channel thread in the Non-secure state, attempted to execute either: 0 DMAKEP to wait for a secure peripheral 0 DMALDP or DMASTP to notify a secure peripheral 0 DMALDP or DMASTP to notify a secure peripheral 0 DMALDP or DMASEV to reate a secure event peripheral. This fault is a p | 13   | RO   | 0×0                | 1 = previous DMALDs have not put enough data in the MFIFO to enable the DMAST to complete.                                                                                                                                                                                                                                                                                                                                                                               |
| 7       R0       0x0       Indicates if a DMA channel thread, in the Non-secure state, attempts to program the CCRn Register to perform a secure read or secure write:         7       R0       0x0       = a DMA channel thread in the Non-secure state is not violating the security permissions         1       = a DMA channel thread in the Non-secure state attempted to perform a secure read or secure write.<br>This fault is a precise abort         8       Indicates if a DMA channel thread, in the Non-secure state, attempts to execute DMAWFP, DMALDP, DMASTP, or DMAFLUSHP with inappropriate security permissions:         6       R0       0x0       1 = a DMA channel thread in the Non-secure state is not violating the security permissions         6       R0       0x0       1 = a DMA channel thread in the Non-secure state is not violating the security permissions         6       R0       0x0       1 = a DMA channel thread in the Non-secure state is not violating the security permissions         6       R0       0x0       1 = a DMA channel thread in the Non-secure state attempted to execute either:         0       0x0       1 = a DMA channel thread in the Non-secure state attempted to execute either:         0       DMAFLUSHP to fulsh a secure peripheral.       This fault is a precise abort.         5       R0       0x0       1 = a DMA channel thread in the Non-secure state is not violating the security permissions         1       a DMA channel thread in the Non-secur                                                                                                                                                            | 12   | RO   | 0×0                | Indicates if the MFIFO prevented the DMA channel thread from<br>executing DMALD or DMAST. Depending on the instruction:<br>DMALD 0 = MFIFO contains sufficient space<br>1 = MFIFO is too small to hold the data that DMALD requires.<br>DMAST 0 = MFIFO contains sufficient data<br>1 = MFIFO is too small to store the data to enable DMAST to<br>complete.                                                                                                             |
| 7RO0x0attempts to program the CCRn Register<br>to perform a secure read or secure write:<br>0 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions<br>1 = a DMA channel thread in the Non-secure state attempted to<br>perform a secure read or secure write.<br>This fault is a precise abort6RO0x0Indicates if a DMA channel thread, in the Non-secure state,<br>attempts to execute DMAWFP, DMALDP,<br>DMASTP, or DMAFLUSHP with inappropriate security permissions:<br>0 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions6RO0x01 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions6RO0x01 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions6RO0x01 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions6RO0x01 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions6RO0x01 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions6RO0x01 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions7Indicates if the DMA channel thread attempts to execute<br>DMAWFE or DMASEV with inappropriate security permissions:<br>0 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions5RO0x01 = a DMA channel thread in the Non-secure state attempted to<br>execute either:<br>DMAWFE to wait for a secure event<br>DMASEV to create a secure event<br>DMASEV to create a secure event<                                           | 11:8 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6RO0x01 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions6RO0x01 = a DMA channel thread in the Non-secure state attempted to<br>execute either:<br>o DMAWFP to wait for a secure peripheral<br>o DMALDP or DMASTP to notify a secure peripheral<br>o DMAFLUSHP to flush a secure peripheral.<br>This fault is a precise abort.5RO0x01 = a DMA channel thread in the Non-secure state attempted to<br>execute either:<br>o DMAWFP to wait for a secure peripheral.<br>This fault is a precise abort.5RO0x01 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions<br>1 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions5RO0x01 = a DMA channel thread in the Non-secure state attempted to<br>execute either:<br>DMAWFE to wait for a secure event<br>DMAWFE to wait for a secure event<br>DMASEV to create a secure event or secure interrupt.<br>This fault is a precise abort.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7    | RO   | 0×0                | attempts to program the CCRn Register<br>to perform a secure read or secure write:<br>0 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions<br>1 = a DMA channel thread in the Non-secure state attempted to<br>perform a secure read or secure write.                                                                                                                                                                           |
| 5RO0x0DMAWFE or DMASEV with inappropriate security permissions:<br>0 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions<br>1 = a DMA channel thread in the Non-secure state attempted to<br>execute either:<br>DMAWFE to wait for a secure event<br>DMASEV to create a secure event or secure interrupt.<br>This fault is a precise abort.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6    | RO   | 0×0                | attempts to execute DMAWFP, DMALDP,<br>DMASTP, or DMAFLUSHP with inappropriate security permissions:<br>0 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions<br>1 = a DMA channel thread in the Non-secure state attempted to<br>execute either:<br>o DMAWFP to wait for a secure peripheral<br>o DMALDP or DMASTP to notify a secure peripheral<br>o DMAFLUSHP to flush a secure peripheral.<br>This fault is a precise abort. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5    | RO   | 0×0                | DMAWFE or DMASEV with inappropriate security permissions:<br>0 = a DMA channel thread in the Non-secure state is not violating<br>the security permissions<br>1 = a DMA channel thread in the Non-secure state attempted to<br>execute either:<br>DMAWFE to wait for a secure event<br>DMASEV to create a secure event or secure interrupt.                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4:2  | RO   | 0x0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                     |
|-----|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | RO   | 0×0                | Indicates if the DMA channel thread was attempting to execute<br>an instruction operand that was not<br>valid for the configuration of the DMAC:<br>0 = valid operand<br>1 = invalid operand.<br>This fault is a precise abort. |
| 0   | RO   | 0×0                | Indicates if the DMA channel thread was attempting to execute<br>an undefined instruction:<br>0 = defined instruction<br>1 = undefined instruction.<br>This fault is a precise abort                                            |

#### DMAC\_CSR0~DMAC\_CSR7

Address:Operational Base+0x100

Operational Base+0x108 Operational Base+0x110 Operational Base+0x118 Operational Base+0x120 Operational Base+0x128 Operational Base+0x130 Operational Base+0x138

Channel Status Registers

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                      |
|-------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:22 | RO   | 0x0                | reserved                                                                                                                                                                                                         |
| 21    | RO   | 0×0                | The channel non-secure bit provides the security of the DMA<br>channel:<br>0 = DMA channel operates in the Secure state<br>1 = DMA channel operates in the Non-secure state                                      |
| 20:16 | RO   | 0x0                | reserved                                                                                                                                                                                                         |
| 15    | RO   | 0×0                | When the DMA channel thread executes DMAWFP this bit<br>indicates if the periph operand was set:<br>0 = DMAWFP executed with the periph operand not set<br>1 = DMAWFP executed with the periph operand set       |
| 14    | RO   | 0x0                | When the DMA channel thread executes DMAWFP this bit<br>indicates if the burst or single operand were set:<br>0 = DMAWFP executed with the single operand set<br>1 = DMAWFP executed with the burst operand set. |
| 13:9  | RO   | 0x0                | reserved                                                                                                                                                                                                         |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8:4 | RO   | 0×00               | If the DMA channel is in the Waiting for event state or the<br>Waiting for peripheral state then these bits<br>indicate the event or peripheral number that the channel is<br>waiting for:<br>b00000 = DMA channel is waiting for event, or peripheral, 0<br>b00001 = DMA channel is waiting for event, or peripheral, 1<br>b00010 = DMA channel is waiting for event, or peripheral, 2<br><br>b11111 = DMA channel is waiting for event, or peripheral, 31 |
| 3:0 | RO   | 0×0                | The channel status encoding is:<br>b0000 = Stopped<br>b0001 = Executing<br>b0010 = Cache miss<br>b0011 = Updating PC<br>b0100 = Waiting for event<br>b0101 = At barrier<br>b0110 = reserved<br>b0111 = Waiting for peripheral<br>b1000 = Killing<br>b1001 = Completing<br>b1010-b1101 = reserved<br>b1110 = Faulting completing<br>b1111 = Faulting                                                                                                         |

#### DMAC\_CPC0~DMAC\_CPC7

Address:Operational Base+0x104

Operational Base+0x10C

Operational Base+0x114

Operational Base+0x11c

Operational Base+0x124

Operational Base+0x12C

Operational Base+0x134

Operational Base+0x13C

Channel Program Counter Registers

| Bit  | Attr | <b>Reset Value</b> | Description                                  |
|------|------|--------------------|----------------------------------------------|
| 31:0 | RO   | 0x0000000          | Program counter for the DMA channel 0 thread |

#### DMAC\_SAR0~DMAC\_SAR7

Address:Operational Base+0x400

Operational Base+0x420

Operational Base+0x440

Operational Base+0x460

Operational Base+0x480

- Operational Base+0x4A0
- Operational Base+0x4C0
- Operational Base+0x4E0

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

Source Address Registers

| Bit  | Attr | <b>Reset Value</b> | Description                                  |
|------|------|--------------------|----------------------------------------------|
| 31:0 | RO   | 0x00000000         | Address of the source data for DMA channel 0 |

#### DMAC\_DAR0~DMAC\_DAR7

Address:Operational Base+0x404

Operational Base+0x424 Operational Base+0x444 Operational Base+0x464 Operational Base+0x484 Operational Base+0x4A4 Operational Base+0x4C4 Operational Base+0x4E4

DestinationAddress Registers

| Bit  | Attr | <b>Reset Value</b> | Description                                       |
|------|------|--------------------|---------------------------------------------------|
| 31:0 | RO   | 0x00000000         | Address of the Destination data for DMA channel 0 |

#### DMAC\_CCR0~DMAC\_CCR7

Address:Operational Base+0x408

Operational Base+0x428

Operational Base+0x448

Operational Base+0x468

Operational Base+0x488

Operational Base+0x4A8

Operational Base+0x4C8

Operational Base+0x4E8

Channel Control Registers

| Bit   | Attr | <b>Reset Value</b> | Description                                                 |
|-------|------|--------------------|-------------------------------------------------------------|
| 31:28 | RO   | 0x0                | reserved                                                    |
|       |      |                    | Programs the state of AWCACHE[3,1:0]a when the DMAC writes  |
|       |      |                    | the destination data.                                       |
|       |      |                    | Bit [27] 0 = AWCACHE[3] is LOW                              |
| 27:25 |      | 0x0                | 1 = AWCACHE[3] is HIGH.                                     |
| 27.25 | кU   | 0.00               | Bit [26] 0 = AWCACHE[1] is LOW                              |
|       |      |                    | 1 = AWCACHE[1] is HIGH.                                     |
|       |      |                    | Bit [25] 0 = AWCACHE[0] is LOW                              |
|       |      |                    | 1 = AWCACHE[0] is HIGH                                      |
|       |      | 0x0                | Programs the state of AWPROT[2:0]a when the DMAC writes the |
|       |      |                    | destination data.                                           |
|       |      |                    | Bit [24] 0 = AWPROT[2] is LOW                               |
| 24:22 |      |                    | 1 = AWPROT[2] is HIGH.                                      |
| 24.22 | кU   |                    | Bit [23] 0 = AWPROT[1] is LOW                               |
|       |      |                    | 1 = AWPROT[1] is HIGH.                                      |
|       |      |                    | Bit $[22]  0 = AWPROT[0]$ is LOW                            |
|       |      |                    | 1 = AWPROT[0] is HIGH                                       |

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                              |
|-------|------|--------------------|--------------------------------------------------------------------------------------------------------------------------|
|       |      |                    | For each burst, these bits program the number of data transfers                                                          |
|       |      |                    | that the DMAC performs when it writes                                                                                    |
|       |      |                    | the destination data:                                                                                                    |
|       |      |                    | b0000 = 1 data transfer                                                                                                  |
|       |      |                    | b0001 = 2 data transfers                                                                                                 |
| 21:18 | RO   | 0x0                | b0010 = 3 data transfers                                                                                                 |
|       |      |                    |                                                                                                                          |
|       |      |                    | b1111 = 16 data transfers.                                                                                               |
|       |      |                    | The total number of bytes that the DMAC writes out of the MFIFO                                                          |
|       |      |                    | when it executes a DMAST instruction                                                                                     |
|       |      |                    | is the product of dst_burst_len and dst_burst_size                                                                       |
|       |      |                    | For each beat within a burst, it programs the number of bytes                                                            |
|       |      |                    | that the DMAC writes to the destination:                                                                                 |
|       |      |                    | b000 = writes 1 byte per beat                                                                                            |
|       |      |                    | b001 = writes 2 bytes per beat                                                                                           |
|       |      |                    | b010 = writes 4 bytes per beat                                                                                           |
| 17:15 | RO   | 0x0                | b011 = writes 8 bytes per beat                                                                                           |
|       |      |                    | b100 = writes 16 bytes per beat                                                                                          |
|       |      |                    | b101-b111 = reserved.                                                                                                    |
|       |      |                    | The total number of bytes that the DMAC writes out of the MFIFO                                                          |
|       |      |                    | when it executes a DMAST instruction                                                                                     |
|       |      |                    | is the product of dst_burst_len and dst_burst_size.                                                                      |
|       |      |                    | Programs the burst type that the DMAC performs when it writes the destination data:                                      |
| 14    | RO   | 0x0                |                                                                                                                          |
| 14    | ĸŪ   | 0.00               | 0 = Fixed-address burst. The DMAC signals AWBURST[0] LOW.<br>1 = Incrementing-address burst. The DMAC signals AWBURST[0] |
|       |      |                    | HIGH.                                                                                                                    |
|       |      |                    | Set the bits to control the state of ARCACHE[2:0]a when the                                                              |
|       |      |                    | DMAC reads the source data.                                                                                              |
|       |      |                    | Bit $[13]$ 0 = ARCACHE[2] is LOW                                                                                         |
|       |      |                    | 1 = ARCACHE[2] is HIGH.                                                                                                  |
| 13:11 | RO   | 0x0                | Bit [12] $0 = \text{ARCACHE}[1]$ is LOW                                                                                  |
|       |      |                    | 1 = ARCACHE[1] is HIGH.                                                                                                  |
|       |      |                    | Bit [11] $0 = ARCACHE[0]$ is LOW                                                                                         |
|       |      |                    | 1 = ARCACHE[0] is HIGH.                                                                                                  |
|       |      |                    | Programs the state of ARPROT[2:0]a when the DMAC reads the                                                               |
|       |      |                    | source data.                                                                                                             |
|       |      |                    | Bit $[10]$ 0 = ARPROT $[2]$ is LOW                                                                                       |
| 10.0  | RO   | 0.40               | 1 = ARPROT[2] is HIGH.                                                                                                   |
| 10:8  |      | O 0x0              | Bit [9] $0 = ARPROT[1]$ is LOW                                                                                           |
|       |      |                    | 1 = ARPROT[1] is HIGH.                                                                                                   |
|       |      |                    | Bit [8] $0 = ARPROT[0]$ is LOW                                                                                           |
|       |      |                    | 1 = ARPROT[0] is HIGH.                                                                                                   |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4 | RO   | 0x0         | For each burst, these bits program the number of data transfers<br>that the DMAC performs when it reads the source data:<br>b0000 = 1 data transfer<br>b0001 = 2 data transfers<br>b0010 = 3 data transfers<br><br>b1111 = 16 data transfers.<br>The total number of bytes that the DMAC reads into the MFIFO<br>when it executes a DMALD instruction                                                                                                                                                                   |
| 3:1 | RO   | 0×0         | is the product of src_burst_len and src_burst_size<br>For each beat within a burst, it programs the number of bytes<br>that the DMAC reads from the source:<br>b000 = reads 1 byte per beat<br>b001 = reads 2 bytes per beat<br>b010 = reads 4 bytes per beat<br>b011 = reads 8 bytes per beat<br>b100 = reads 16 bytes per beat<br>b101-b111 = reserved.<br>The total number of bytes that the DMAC reads into the MFIFO<br>when it executes a DMALD instruction<br>is the product of src_burst_len and src_burst_size |
| 0   | RO   | 0×0         | Programs the burst type that the DMAC performs when it reads<br>the source data:<br>0 = Fixed-address burst. The DMAC signals ARBURST[0] LOW.<br>1 = Incrementing-address burst. The DMAC signals ARBURST[0]<br>HIGH                                                                                                                                                                                                                                                                                                    |

#### DMAC\_LC0\_0~DMAC\_LC0\_7

Address:Operational Base+0x40c

Operational Base+0x42C

- Operational Base+0x44C Operational Base+0x46C
- Operational Base+0x48C
- Operational Base+0x4AC

Operational Base+0x4CC

Operational Base+0x4EC

#### Loop Counter 0 Registers

| Bit  | Attr | <b>Reset Value</b> | Description               |
|------|------|--------------------|---------------------------|
| 31:8 | RO   | 0x0                | reserved                  |
| 7:0  | RO   | 0x00               | Loop counter 0 iterations |

#### DMAC\_LC1\_0~DMAC\_LC1\_7

Address:Operational Base+0x410 Operational Base+0x430 Operational Base+0x450 Operational Base+0x470

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

Operational Base+0x490 Operational Base+0x4B0 Operational Base+0x4D0 Operational Base+0x4F0

Loop Counter 1 Registers

| Bit  | Attr | <b>Reset Value</b> | Description               |
|------|------|--------------------|---------------------------|
| 31:8 | RO   | 0x0                | reserved                  |
| 7:0  | RO   | 0x00               | Loop counter 1 iterations |

#### DMAC\_DBGSTATUS

Address: Operational Base + offset (0x0d00) Debug Status Register

| Bit  | Attr | Reset Value | Description                                                                                                                                        |
|------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:2 | RO   | 0x0         | reserved                                                                                                                                           |
| 1:0  | RO   | 0×0         | The debug encoding is as follows:<br>b00 = execute the instruction that the DBGINST [1:0] Registers<br>contain<br>b01 = reserved<br>b10 = reserved |
|      |      |             | b11 = reserved.                                                                                                                                    |

#### DMAC\_DBGCMD

Address: Operational Base + offset (0x0d04)

Debug Command Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                    |
|------|------|--------------------|----------------------------------------------------------------|
| 31:2 | RO   | 0x0                | reserved                                                       |
|      |      | 0×0                | The debug encoding is as follows:                              |
|      | wo   |                    | b00 = execute the instruction that the DBGINST [1:0] Registers |
| 1:0  |      |                    | contain                                                        |
| 1.0  |      |                    | b01 = reserved                                                 |
|      |      |                    | b10 = reserved                                                 |
|      |      |                    | b11 = reserved                                                 |

#### DMAC\_DBGINST0

Address: Operational Base + offset (0x0d08) Debug Instruction-0 Register

| Bit   | Attr | <b>Reset Value</b> | Description        |
|-------|------|--------------------|--------------------|
| 31:24 | WO   | 0x00               | Instruction byte 1 |
| 23:16 | WO   | 0x00               | Instruction byte 0 |
| 15:11 | RO   | 0x0                | reserved           |

| Bit  | Attr | Reset Value | Description                              |
|------|------|-------------|------------------------------------------|
|      |      |             | DMA channel number:                      |
|      |      |             | b000 = DMA channel 0                     |
| 10:8 | wo   | 0.20        | b001 = DMA channel 1                     |
| 10:0 | WO   | 0×0         | b010 = DMA channel 2                     |
|      |      |             |                                          |
|      |      |             | b111 = DMA channel 7                     |
| 7:1  | RO   | 0x0         | reserved                                 |
|      |      |             | The debug thread encoding is as follows: |
| 0    | WO   | 0x0         | 0 = DMA manager thread                   |
|      |      |             | 1 = DMA channel.                         |

#### DMAC\_DBGINST1

Address: Operational Base + offset (0x0d0c) Debug Instruction-1 Register

| Bit   | Attr | <b>Reset Value</b> | Description        |
|-------|------|--------------------|--------------------|
| 31:24 | WO   | 0x00               | Instruction byte 5 |
| 23:16 | WO   | 0x00               | Instruction byte 4 |
| 15:8  | WO   | 0x00               | Instruction byte 3 |
| 7:0   | WO   | 0x00               | Instruction byte 2 |

#### DMAC\_CR0

Address: Operational Base + offset (0x0e00)

Configuration Register 0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                          |
|-------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:22 | RO   | 0x0                | reserved                                                                                                                                                                                                                                             |
| 21:17 | RO   | 0x02               | Number of interrupt outputs that the DMAC provides:<br>b00000 = 1 interrupt output, irq[0]<br>b00001 = 2 interrupt outputs, irq[1:0]<br>b00010 = 3 interrupt outputs, irq[2:0]<br><br>b11111 = 32 interrupt outputs, irq[31:0].                      |
| 16:12 | RO   | 0x07               | Number of peripheral request interfaces that the DMAC provides:<br>b00000 = 1 peripheral request interface<br>b00001 = 2 peripheral request interfaces<br>b00010 = 3 peripheral request interfaces<br><br>b11111 = 32 peripheral request interfaces. |
| 11:7  | RO   | 0x0                | reserved                                                                                                                                                                                                                                             |

| Bit   | Attr | <b>Reset Value</b> | Description                                                   |  |  |
|-------|------|--------------------|---------------------------------------------------------------|--|--|
|       |      |                    | Number of DMA channels that the DMAC supports:                |  |  |
|       |      |                    | b000 = 1 DMA channel                                          |  |  |
| C . A |      | 0.45               | b001 = 2 DMA channels                                         |  |  |
| 6:4   | RO   | 0x5                | b010 = 3 DMA channels                                         |  |  |
|       |      |                    |                                                               |  |  |
|       |      |                    | b111 = 8 DMA channels.                                        |  |  |
| 3     | RO   | 0x0 reserved       |                                                               |  |  |
|       |      | 0x0                | Indicates the status of the boot_manager_ns signal when the   |  |  |
| 2     | RO   |                    | DMAC exited from reset:                                       |  |  |
| 2     | ĸŪ   |                    | 0 = boot_manager_ns was LOW                                   |  |  |
|       |      |                    | 1 = boot_manager_ns was HIGH.                                 |  |  |
|       |      | O 0×0              | Indicates the status of the boot_from_pc signal when the DMAC |  |  |
| 1     | RO   |                    | exited from reset:                                            |  |  |
| 1     | ĸŬ   |                    | 0 = boot_from_pc was LOW                                      |  |  |
|       |      |                    | 1 = boot_from_pc was HIGH                                     |  |  |
|       |      | .O 0x1             | Supports peripheral requests:                                 |  |  |
| 0     | RO   |                    | 0 = the DMAC does not provide a peripheral request interface  |  |  |
|       | ĸŪ   |                    | 1 = the DMAC provides the number of peripheral request        |  |  |
|       |      |                    | interfaces that the num_periph_req field specifies.           |  |  |

#### DMAC\_CR1

Address: Operational Base + offset (0x0e04) Configuration Register 1

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                       |  |  |  |
|------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 31:8 | RO   | 0x0                | reserved                                                                                                                                                                          |  |  |  |
| 7:4  | RO   | 0x5                | <pre>[7:4] num_i-cache_lines Number of i-cache lines:<br/>b0000 = 1 i-cache line<br/>b0001 = 2 i-cache lines<br/>b0010 = 3 i-cache lines<br/><br/>b1111 = 16 i-cache lines.</pre> |  |  |  |
| 3    | RO   | 0x0                | reserved                                                                                                                                                                          |  |  |  |
| 2:0  | RO   | 0x7                | The length of an i-cache line:<br>b000-b001 = reserved<br>b010 = 4 bytes<br>b011 = 8 bytes<br>b100 = 16 bytes<br>b101 = 32 bytes<br>b110-b111 = reserved                          |  |  |  |

#### DMAC\_CR2

Address: Operational Base + offset (0x0e08) Configuration Register 2

| Bit  | Attr | <b>Reset Value</b> | Description                                                |
|------|------|--------------------|------------------------------------------------------------|
| 31:0 | RO   | UXUUUUUUUUU        | Provides the value of boot_addr[31:0] when the DMAC exited |
| 51.0 |      |                    | from reset                                                 |

#### DMAC\_CR3

Address: Operational Base + offset (0x0e0c)

Configuration Register 3

| Bit  | Attr | <b>Reset Value</b> | Description                                                            |  |  |  |
|------|------|--------------------|------------------------------------------------------------------------|--|--|--|
|      |      |                    | Provides the security state of an event-interrupt resource:            |  |  |  |
| 31:0 | RO   | 0x00000000         | Bit $[N] = 0$ Assigns event <n> or irq[N] to the Secure state.</n>     |  |  |  |
|      |      |                    | Bit $[N] = 1$ Assigns event <n> or irq[N] to the Non-secure state.</n> |  |  |  |

#### DMAC\_CR4

Address: Operational Base + offset (0x0e10) Configuration Register 4

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                       |
|------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RO   | 0x00000006         | Provides the security state of the peripheral request interfaces:<br>Bit [N] = 0 Assigns peripheral request interface N to the Secure<br>state.<br>Bit [N] = 1 Assigns peripheral request interface N to the Non-<br>secure state |

#### DMAC\_CRDn

Address: Operational Base + offset (0x0e14) DMA Configuration Register

| Bit   | Attr | Reset Value | Description                                                                                                                      |
|-------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------|
| 31:30 | RO   | 0x0         | reserved                                                                                                                         |
| 29:20 | RO   | 0x020       | The number of lines that the data buffer contains:<br>b000000000 = 1 line<br>b000000001 = 2 lines<br><br>b111111111 = 1024 lines |
| 19:16 | RO   | 0x9         | The depth of the read queue:<br>b0000 = 1 line<br>b0001 = 2 lines<br><br>b1111 = 16 lines.                                       |
| 15    | RO   | 0x0         | reserved                                                                                                                         |

| Bit   | Attr                                            | <b>Reset Value</b> | Description                                                                                                                                                 |  |  |  |
|-------|-------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 14:12 | RO                                              | 0x4                | Read issuing capability that programs the number of outstanding<br>read transactions:<br>b000 = 1<br>b001 = 2<br><br>b111 = 8                               |  |  |  |
| 11:8  | The depth of the write queue:<br>b0000 = 1 line |                    |                                                                                                                                                             |  |  |  |
| 7     | RO                                              | 0x0                | reserved                                                                                                                                                    |  |  |  |
| 6:4   | RO                                              | 0x3                | Write issuing capability that programs the number of outstanding<br>write transactions:<br>b000 = 1<br>b001 = 2<br><br>b111 = 8                             |  |  |  |
| 3     | RO                                              | 0x0                | reserved                                                                                                                                                    |  |  |  |
| 2:0   | RO                                              | 0x3                | The data bus width of the AXI interface:<br>b000 = reserved<br>b001 = reserved<br>b010 = 32-bit<br>b011 = 64-bit<br>b100 = 128-bit<br>b101-b111 = reserved. |  |  |  |

#### DMAC\_WD

Address: Operational Base + offset (0x0e80) DMA Watchdog Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                  |
|------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:1 | RO   | 0x0                | reserved                                                                                                                                                                                     |
| 0    | RW   | 0x0                | Controls how the DMAC responds when it detects a lock-up condition:<br>0 = the DMAC aborts all of the contributing DMA channels and sets irq_abort HIGH<br>1 = the DMAC sets irq_abort HIGH. |

# 8.5 Timing Diagram

Following picture shows the relationship between dma\_req and dma\_ack.

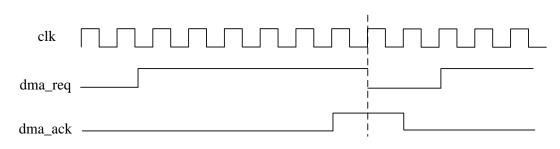



Fig. 8-3 DMAC request and acknowledge timing

# 8.6 Interface Description

DMAC has the following tie-off signals. It can be configured by SGRF register. (Please refer to the chapter to find how to configure)

| Interface              | Reset | Control source                                          |
|------------------------|-------|---------------------------------------------------------|
|                        | value |                                                         |
| boot_manager_ns        | 0x0   | sgrf_dmac1_con5[15]                                     |
| boot_irq_ns            | 0x0   | sgrf_dmac1_con3[15:0]                                   |
| boot_periph_ns         | 0x0   | <pre>{sgrf_dmac1_con5[3:0],sgrf_dmac1_con4[15:0]}</pre> |
| grf_drtype_uart0_tx    | 0x1   | sgrf_dmac1_con0[1:0]                                    |
| grf_drtype_uart0_rx    | 0x1   | sgrf_dmac1_con0[3:2]                                    |
| grf_drtype_uart1_tx    | 0x1   | sgrf_dmac1_con0[5:4]                                    |
| grf_drtype_uart1_rx    | 0x1   | sgrf_dmac1_con0[7:6]                                    |
| grf_drtype_uart2_tx    | 0x1   | sgrf_dmac1_con0[9:8]                                    |
| grf_drtype_uart2_rx    | 0x1   | sgrf_dmac1_con0[11:10]                                  |
| grf_drtype_spi0_tx     | 0x1   | sgrf_dmac1_con0[13:12]                                  |
| grf_drtype_spi0_rx     | 0x1   | sgrf_dmac1_con0[15:14]                                  |
| grf_drtype_i2s0_8ch_tx | 0x1   | sgrf_dmac1_con1[1:0]                                    |
| grf_drtype_i2s0_8ch_rx | 0x1   | sgrf_dmac1_con1[3:2]                                    |
| grf_drtype_i2s1_8ch_tx | 0x1   | sgrf_dmac1_con1[5:4]                                    |
| grf_drtype_i2s1_8ch_rx | 0x1   | sgrf_dmac1_con1[7:6]                                    |
| grf_drtype_i2s2_2ch_tx | 0x1   | sgrf_dmac1_con1[9:8]                                    |
| grf_drtype_i2s2_2ch_rx | 0x1   | sgrf_dmac1_con1[11:10]                                  |
| grf_drtype_spdif       | 0x1   | sgrf_dmac1_con1[13:12]                                  |
| grf_drtype_pwm         | 0x1   | sgrf_dmac1_con1[15:14]                                  |
| grf_drtype_pdm         | 0x1   | sgrf_dmac1_con2[1:0]                                    |

| Table 8-2 | DMAC | boot | interface |
|-----------|------|------|-----------|

#### boot\_manager\_ns

When the DMAC exits from reset, this signal controls the security state of the DMA manager thread:

- 0 = assigns DMA manager to the Secure state
- 1 = assigns DMA manager to the Non-secure state.

#### boot\_irq\_ns

Controls the security state of an event-interrupt resource, when the DMAC exits from reset:  $boot_irq_ns[x]$  is LOW

The DMAC assigns event<x> or irq[x] to the Secure state.

boot\_irq\_ns[x] is HIGH

The DMAC assigns event<x> or irq[x] to the Non-secure state.

#### boot\_periph\_ns

Controls the security state of a peripheral request interface, when the DMAC exits from reset:

boot\_periph\_ns[x] is LOW

The DMAC assigns peripheral request interface x to the Secure state.

boot\_periph\_ns[x] is HIGH

The DMAC assigns peripheral request interface x to the Non-secure state.

#### grf\_drtype\_<x>

The DMAC sets the state of the request\_type flag:

grf\_drtype\_<x>[1:0]=b00: request\_type<x> = Single.

grf\_drtype\_<x>[1:0]=b01: request\_type<x> = Burst.

# 8.7 Application Notes

### 8.7.1 Using the APB slave interfaces

You must ensure that you use the appropriate APB interface, depending on the security state in which the boot\_manager\_ns initializes the DMAC to operate. For example, if the DMAC is in the secure state, you must issue the instruction using the secure APB interface, otherwise the DMAC ignores the instruction. You can use the secure APB interface, or the non-secure APB interface, to start or restart a DMA channel when the DMAC is in the Non-secure state.

The necessary steps to start a DMA channel thread using the debug instruction registers as following:

- 1. Create a program for the DMA channel.
- 2. Store the program in a region of system memory.
- 3. Poll the DBGSTATUS Register to ensure that debug is idle, that is, the dbgstatus bit is 0.
- 4. Write to the DBGINST0 Register and enter the:
- Instruction byte 0 encoding for DMAGO.
- Instruction byte 1 encoding for DMAGO.
- Debug thread bit to 0. This selects the DMA manager thread.

5. Write to the DBGINST1 Register with the DMAGO instruction byte [5:2] data, see Debug Instruction-1 Register o. You must set these four bytes to the address of the first instruction in the program, that was written to system memory in step 2

instruction in the program, that was written to system memory in step 2.

6. Writing zero to the DBGCMD Register. The DMAC starts the DMA channel thread and sets the dbgstatus bit to 1.

### 8.7.2 Security usage

#### DMA manager thread is in the secure state

If the DNS bit is 0, the DMA manager thread operates in the secure state and it only performs secure instruction fetches. When a DMA manager thread in the secure state processes:

#### DMAGO

It uses the status of the ns bit, to set the security state of the DMA channel thread by writing to the CNS bit for that channel.

#### DMAWFE

It halts execution of the thread until the event occurs. When the event occurs, the DMAC continues execution of the thread, irrespective of the security state of the corresponding INS bit.

#### DMASEV

It sets the corresponding bit in the INT\_EVENT\_RIS Register, irrespective of the security state of the corresponding INS bit.

#### DMA manager thread is in the Non-secure state

If the DNS bit is 1, the DMA manager thread operates in the Non-secure state, and it only performs non-secure instruction fetches. When a DMA manager thread in the Non-secure state processes:

#### DMAGO

The DMAC uses the status of the ns bit, to control if it starts a DMA channel

thread. If:

ns = 0

The DMAC does not start a DMA channel thread and instead it:

1. Executes a NOP.

- 2. Sets the FSRD Register, see Fault Status DMA Manager
- 3. Sets the dmago\_err bit in the FTRD Register, see Fault Type DMA Manager Register.
- 4. Moves the DMA manager to the Faulting state.

ns = 1

The DMAC starts a DMA channel thread in the Non-secure state and programs the CNS bit to be non-secure.

#### DMAWFE

The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to control if it waits for the event. If:

INS = 0

The event is in the Secure state. The DMAC:

- 1. Executes a NOP.
- 2. Sets the FSRD Register, see Fault Status DMA Manager Register.
- 3. Sets the mgr\_evnt\_err bit in the FTRD Register, see Fault Type DMA Manager Register.
- 4. Moves the DMA manager to the Faulting state.

INS = 1

The event is in the Non-secure state. The DMAC halts execution of the thread and waits for the event to occur.

#### DMASEV

The DMAC uses the status of the corresponding INS bit, in the CR3Register, to control if it creates the event-interrupt. If:

INS = 0

The event-interrupt resource is in the secure state. The DMAC:

- 1. Executes a NOP.
- 2. Sets the FSRD Register, see Fault Status DMA Manager Register.
- 3. Sets the mgr\_evnt\_err bit in the FTRD Register, see Fault Type DMA Manager Register.
- 4. Moves the DMA manager to the Faulting state.

INS = 1

The event-interrupt resource is in the Non-secure state. The DMAC creates the event-interrupt.

#### DMA channel thread is in the secure state

When the CNS bit is 0, the DMA channel thread is programmed to operate in the Secure state and it only performs secure instruction fetches.

When a DMA channel thread in the secure state processes the following instructions: **DMAWFE** 

The DMAC halts execution of the thread until the event occurs. When the event occurs, the DMAC continues execution of the thread, irrespective of the security state of the corresponding INS bit, in the CR3 Register.

#### DMASEV

The DMAC creates the event-interrupt, irrespective of the security state of the corresponding INS bit, in the CR3 Register.

#### DMAWFP

The DMAC halts execution of the thread until the peripheral signals a DMA request. When this occurs, the DMAC continues execution of the thread, irrespective of the security state of the corresponding PNS bit, in the CR4 Register.

#### DMALDP, DMASTP

The DMAC sends a message to the peripheral to communicate that data transfer is complete, irrespective of the security state of the corresponding PNS bit, in the CR4 Register.

#### DMAFLUSHP

The DMAC clears the state of the peripheral and sends a message to the peripheral to resend its level status, irrespective of the security state of the corresponding PNS bit, in the CR4 Register.

When a DMA channel thread is in the Secure state, it enables the DMAC to perform secure and non-secure AXI accesses

#### DMA channel thread is in the Non-secure state

When the CNS bit is 1, the DMA channel thread is programmed to operate in the Nonsecure state and it only performs non-secure instruction fetches.

When a DMA channel thread in the Non-secure state processes the following instructions: **DMAWFE** 

## The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to control if it

waits for the event. If:

INS = 0

The event is in the Secure state. The DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.

3. Sets the ch\_evnt\_err bit in the FTRn Register, see Fault Type DMA Channel Registers.

4. Moves the DMA channel to the Faulting completing state.

INS = 1

The event is in the Non-secure state. The DMAC halts execution of the thread and waits for the event to occur.

#### DMASEV

The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to control if it creates the event. If:

INS = 0

The event-interrupt resource is in the Secure state. The DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.

3. Sets the ch\_evnt\_err bit in the FTRn Register, see Fault Type DMA Channel Registers .

4. Moves the DMA channel to the Faulting completing state.

INS = 1

The event-interrupt resource is in the Non-secure state. The DMAC creates the event-interrupt.

#### DMAWFP

The DMAC uses the status of the corresponding PNS bit, in the CR4 Register, to control if it waits for the peripheral to signal a request. If:

PNS = 0

The peripheral is in the Secure state. The DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.

3. Sets the ch\_periph\_err bit in the FTRn Register, see Fault Type DMA Channel Registers.

4. Moves the DMA channel to the Faulting completing state.

PNS = 1

The peripheral is in the Non-secure state. The DMAC halts execution of the thread and waits for the peripheral to signal a request.

#### DMALDP, DMASTP

The DMAC uses the status of the corresponding PNS bit, in the CR4 Register, to control if it sends an acknowledgement to the peripheral. If:

PNS = 0

The peripheral is in the secure state. The DMAC:

1. Executes a NOP.

- 2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.
- 3. Sets the ch\_periph\_err bit in the FTRn Register, see Fault Type DMA Channel Registers.
- 4. Moves the DMA channel to the Faulting completing state.

PNS = 1

The peripheral is in the Non-secure state. The DMAC sends a message to the peripheral to communicate when the data transfer is complete.

#### DMAFLUSHP

The DMAC uses the status of the corresponding PNS bit, in the CR4 Register, to control if it sends a flush request to the peripheral. If:

PNS = 0

The peripheral is in the secure state. The DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.

3. Sets the ch\_periph\_err bit in the FTRn Register, see Fault Type DMA Channel Registers.

4. Moves the DMA channel to the Faulting completing state.

PNS = 1

The peripheral is in the Non-secure state. The DMAC clears the state of the peripheral and sends a message to the peripheral to resend its level status.

When a DMA channel thread is in the Non-secure state, and a DMAMOV CCR instruction attempts to program the channel to perform a secure AXI transaction, the DMAC:

1. Executes a DMANOP.

2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.

- 3. Sets the ch\_rdwr\_err bit in the FTRn Register, see Fault Type DMA Channel Registers.
- 4. Moves the DMA channel thread to the Faulting completing state.

#### 8.7.3 Programming restrictions

#### Fixed unaligned bursts

The DMAC does not support fixed unaligned bursts. If you program the following conditions, the DMAC treats this as a programming error:

Unaligned read

- src\_inc field is 0 in the CCRn Register
- the SARn Register contains an address that is not aligned to the size of data that the src\_burst\_size field contain

Unaligned write

- dst\_inc field is 0 in the CCRn Register
- the DARn Register contains an address that is not aligned to the size of data that the dst\_burst\_size field contains

#### Endian swap size restrictions

If you program the endian\_swap\_size field in the CCRn Register, to enable a DMA channel to perform an endian swap then you must set the corresponding SARn Register and the corresponding DARn Register to contain an address that is aligned to the value that the endian\_swap\_size field contains.

#### Updating DMA channel control registers during a DMA cycle restrictions

Prior to the DMAC executing a sequence of DMALD and DMAST instructions, the values you program in to the CCRn Register, SARn Register, and DARn Register control the data byte lane manipulation that the DMAC performs when it transfers the data from the source address to the destination address. You'd better not update these registers during a DMA cycle.

#### **Resource sharing between DMA channels**

DMA channel programs share the MFIFO data storage resource. You must not start a set of concurrently running DMA channel programs with a resource requirement that exceeds the configured size of the MFIFO. If you exceed this limit then the DMAC might lock up and generate a Watchdog abort.

#### 8.7.4 Unaligned transfers may be corrupted

For a configuration with more than one channel, if any of channels 1 to 7 is performing transfers between certain types of misaligned source and destination addresses, then the output data may be corrupted by the action of channel 0.

Data corruption might occur if all of the following are true:

1. Two beats of AXI read data are received for one of channels 1 to 7.

2. Source and destination address alignments mean that each read data beat is splited across two lines in the data buffer (see Splitting data, below).

3. There is one idle cycle between the two read data beats.

4. Channel 0 performs an operation that updates channel control information during this idle cycle (see Updates to channel control information, below)

#### Splitting data

Depending upon the programmed values for the DMA transfer, one beat of read data from the AXI interface need to be splited across two lines in the internal data buffer. This occurs when the read data beat contains data bytes which will be written to addresses that wrap around at the AXI interface data width, so that these bytes could not be transferred by a single AXI write data beat of the full interface width.

Most applications of DMA-330 do not split data in this way, so are NOT vulnerable to data corruption from this defect.

The following cases are NOT vulnerable to data corruption because they do not split data:

- Byte lane offset between source and destination addresses is 0 when source and destination addresses have the same byte lane alignment, the offset is 0 and a wrap operation that splits data cannot occur.
- Byte lane offset between source and destination addresses is a multiple of source size Table 8-3 Source size in CCRn

| Source size in CCRn | Allowed offset between SARn and DARn |  |  |  |  |  |
|---------------------|--------------------------------------|--|--|--|--|--|
| SS8                 | any offset allowed.                  |  |  |  |  |  |
| SS16                | 0,2,4,6,8,10,12,14                   |  |  |  |  |  |
| SS32                | 0,4,8,12                             |  |  |  |  |  |
| SS64                | 0,8                                  |  |  |  |  |  |

#### 8.7.5 Interrupt shares between channel

As the DMAC does not record which channel (or list of channels) have asserted an interrupt. So it will depend on your program and whether any of the visible information for that program can be used to determine progress, and help identify the interrupt source. There are 4 likely information sources that can be used to determine the progress made by a program:

- Program counter (PC)
- Source address
- Destination address
- Loop counters (LC)

For example, a program might emit an interrupt each time that it iterates around a loop. In this case, the interrupt service routine (ISR) would need to store the loop value of each channel when it is called, and then compare against the new value when it is next called. A change in value would indicate that the program has progressed.

The ISR must be carefully written to ensure that no interrupts are lost. The sequence of operations is as follows:

- 1. Disable interrupts
- 2. Immediately clear the interrupt in DMA-330
- 3. Check the relevant registers for both channels to determine which must be serviced
- 4. Take appropriate action for the channels
- 5. Re-enable interrupts and exit ISR

#### **8.7.6 Instruction sets**

| Mnemonic | Instruction  | Thread usage |  |  |  |  |
|----------|--------------|--------------|--|--|--|--|
| DMAADDH  | Add Halfword | С            |  |  |  |  |
| DMAEND   | End          | M/C          |  |  |  |  |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| DMAFLUSHP | Flush and notify Peripheral | С   |
|-----------|-----------------------------|-----|
| DMAGO     | Go                          | М   |
| DMAKILL   | Kill                        | С   |
| DMALD     | Load                        | С   |
| DMALDP    | Load Peripheral             | С   |
| DMALP     | Loop                        | С   |
| DMALPEND  | Loop End                    | С   |
| DMALPFE   | Loop Forever                | С   |
| DMAMOV    | Move                        | С   |
| DMANOP    | No operation                | M/C |
| DMARMB    | Read Memory Barrier         | С   |
| DMASEV    | Send Event                  | M/C |
| DMAST     | Store                       | С   |
| DMASTP    | Store and notify Peripheral | С   |
| DMASTZ    | Store Zero                  | С   |
| DMAWFE    | Wait For Event M            | M/C |
| DMAWFP    | Wait For Peripheral         | С   |
| DMAWMB    | Write Memory Barrier        | С   |
| DMAADNH   | Add Negative Halfword       | С   |
|           |                             |     |

Notes: Thread usage: C=DMA channel, M=DMA manager

#### 8.7.7 Assembler directives

In this document, only DMMADNH instruction is took as an example to show the way the instruction assembled. For the other instructions, please refer to pl330\_trm.pdf.

#### DMAADNH

Add Negative Halfword adds an immediate negative 16-bit value to the SARn Register or DARn Register, for the DMA channel thread. This enables the DMAC to support 2D DMA operations, or reading or writing an area of memory in a different order to naturally incrementing addresses. See Source Address Registers and Destination Address Registers. The immediate unsigned 16-bit value is one-extended to 32 bits, to create a value that is the two's complement representation of a negative number between -65536 and -1, before the DMAC adds it to the address using 32-bit addition. The DMAC discards the carry bit so that addresses wrap from 0xFFFFFFFF to 0x00000000. The net effect is to subtract between 65536 and 1 from the current value in the Source or Destination Address Register. Following table shows the instruction encoding.

Table 8-5 DMAC instruction encoding

| Table of 5 Divine instruction encouning |          |   |   |   |   |   |   |    |   |
|-----------------------------------------|----------|---|---|---|---|---|---|----|---|
| Imm[15:8]                               | Imm[7:0] | 0 | 1 | 0 | 1 | 1 | 1 | ra | 0 |

#### Assembler syntax

DMAADNH <address\_register>, <16-bit immediate> where: <address\_register> Selects the address register to use. It must be either: SAR SARn Register and sets ra to 0. DAR DARn Register and sets ra to 1.

<16-bit immediate>

The immediate value to be added to the <address\_register>.

You should specify the 16-bit immediate as the number that is to be represented in the instruction encoding. For example, DMAADNH DAR, 0xFFF0 causes the value 0xFFFFFF0 to be added to the current value of the Destination Address Register, effectively subtracting 16 from the DAR.

You can only use this instruction in a DMA channel thread.

### Chapter 9 Temperature Sensor ADC (TSADC)

### 9.1 Overview

TS-ADC Controller module supports user-defined mode and automatic mode. User-defined mode refers, TSADC all the control signals entirely by software writing to register for direct control. Automatic mode refers to the module automatically poll TSADC output, and the results were checked. If you find that the temperature High in a period of time, an interrupt is generated to the processor down-measures taken; if the temperature over a period of time High, the resulting TSHUT gave CRU module, let it reset the entire chip, or via GPIO give PMIC.

TS-ADC Controller supports the following features:

- Support User-Defined Mode and Automatic Mode
- In User-Defined Mode, start\_of\_conversion can be controlled completely by software, and also can be generated by hardware.
- In Automatic Mode, the temperature of alarm(high/low temperature) interrupt can be configurable
- In Automatic Mode, the temperature of system reset can be configurable
- Support to 1 channel TS-ADC, the temperature criteria can be configurable
- In Automatic Mode, the time interval of temperature detection can be configurable
- In Automatic Mode, when detecting a high temperature, the time interval of temperature detection can be configurable
- High temperature denounce can be configurable
- -40~125°C temperature range and 5°C temperature resolution
- 10-bit SARADC up to 50KS/s sampling rate

### 9.2 Block Diagram

TS-ADC controller comprises with:

- APB Interface
- TS-ADC control logic

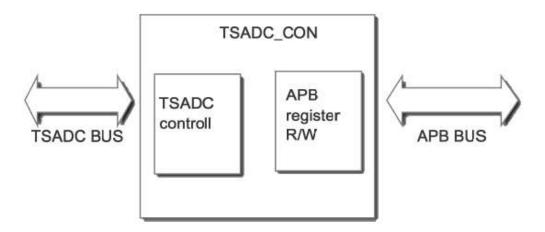



Fig. 9-1 TS-ADC Controller Block Diagram

### 9.3 Function Description

#### 9.3.1 APB Interface

There is an APB Slave interface in TS-ADC Controller, which is used to configure the TS-ADC Controller registers and look up the temperature from the temperature sensor.

#### 9.3.2 TS-ADC Controller

This block is exploited to realize binary search algorithm, storing the intermediate result and generate control signal for analog block. This block compares the analog input with the voltage generated from D/A Converter, and output the comparison result to SAR and Control Logic Block for binary search. Three level amplifiers are employed in this comparator to provide enough gain.

### 9.4 Register description

#### 9.4.1 Registers Summary

| Name                           | Offset | Size | Reset<br>Value | Description                                           |
|--------------------------------|--------|------|----------------|-------------------------------------------------------|
| TSADC_USER_CON                 | 0x0000 | w    | 0x00000200     | The control register of A/D<br>Converter.             |
| TSADC_AUTO_CON                 | 0x0004 | W    | 0x00000000     | TSADC auto mode control register                      |
| TSADC_INT_EN                   | 0x0008 | W    | 0x00000000     |                                                       |
| TSADC_INT_PD                   | 0x000c | W    | 0x00000000     |                                                       |
| TSADC_DATA0                    | 0x0020 | w    | 0x00000000     | This register contains the data after A/D Conversion. |
| TSADC_DATA1                    | 0x0024 | w    | 0x00000000     | This register contains the data after A/D Conversion. |
| TSADC_COMP0_INT                | 0x0030 | w    | 0x00000000     | TSADC high temperature level for source 0             |
| TSADC_COMP1_INT                | 0x0034 | w    | 0x00000000     | TSADC high temperature level for source 1             |
| TSADC_COMP0_SHUT               | 0x0040 | w    | 0x00000000     | TSADC high temperature level for source 0             |
| TSADC_COMP1_SHUT               | 0x0044 | w    | 0x00000000     | TSADC high temperature level for source 1             |
| TSADC_HIGHT_INT_DEBO<br>UNCE   | 0x0060 | w    | 0x00000003     | high temperature debounce                             |
| TSADC_HIGHT_TSHUT_D<br>EBOUNCE | 0x0064 | w    | 0x0000003      | high temperature debounce                             |
| TSADC_AUTO_PERIOD              | 0x0068 | W    | 0x00010000     | TSADC auto access period                              |
| TSADC_AUTO_PERIOD_H<br>T       | 0x006c | W    | 0x00010000     | TSADC auto access period when temperature is high     |
| TSADC_COMP0_LOW_INT            | 0x0080 | W    | 0x00000000     | TSADC low temperature level for source 0              |
| TSADC_COMP1_LOW_INT            | 0x0084 | w    | 0x00000000     | TSADC low temperature level for source 1              |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

# 9.4.2 Detail Register Description TSADC\_USER\_CON

Address: Operational Base + offset (0x0000) The control register of A/D Converter.

| Bit   | Attr | <b>Reset Value</b> | Description                                                     |
|-------|------|--------------------|-----------------------------------------------------------------|
| 31:13 | RO   | 0x0                | reserved                                                        |
|       |      |                    | adc_status                                                      |
| 12    | RO   | 0x0                | ADC status (EOC)                                                |
| 12    | κυ   | 0.00               | 0: ADC stop                                                     |
|       |      |                    | 1: Conversion in progress                                       |
| 11:6  | RW   | 0x08               | inter_pd_soc                                                    |
| 11.0  |      | 0,00               | interleave between power down and start of conversion           |
|       |      |                    | start                                                           |
|       |      |                    | When software write 1 to this bit , start_of_conversion will be |
| 5     | RW   | 0x0                | assert.                                                         |
|       |      |                    | This bit will be cleared after TSADC access finishing.          |
|       |      |                    | When TSADC_USER_CON[4] = $1'b1$ take effect.                    |
|       |      | W 0×0              | start_mode                                                      |
|       | RW   |                    | start mode.                                                     |
| 4     |      |                    | 0: tsadc controller will asert start_of_conversion after        |
| •     |      |                    | "inter_pd_soc" cycles.                                          |
|       |      |                    | 1: the start_of_conversion will be controlled by                |
|       |      |                    | TSADC_USER_CON[5].                                              |
|       |      |                    | adc_power_ctrl                                                  |
| 3     | RW   | 0x0                | ADC power down control bit                                      |
| 5     |      | 0,00               | 0: ADC power down                                               |
|       |      |                    | 1: ADC power up and reset                                       |
|       |      |                    | adc_input_src_sel                                               |
|       | RW   |                    | ADC input source selection(CH_SEL[2:0]).                        |
| 2:0   |      | 0x0                | 000 : Input source 0 (SARADC_AIN[0])                            |
|       |      |                    | 001 : Input source 1 (SARADC_AIN[1])                            |
|       |      |                    | Others : Reserved                                               |

#### TSADC\_AUTO\_CON

Address: Operational Base + offset (0x0004)

| TSADC auto mode control register |      |                    |                                                                      |  |  |  |
|----------------------------------|------|--------------------|----------------------------------------------------------------------|--|--|--|
| Bit                              | Attr | <b>Reset Value</b> | Description                                                          |  |  |  |
| 31:26                            | RO   | 0x0                | reserved                                                             |  |  |  |
|                                  |      | 0x0                | last_tshut_2cru                                                      |  |  |  |
|                                  | RW   |                    | last_tshut_2cru for cru first/second reset                           |  |  |  |
| 25                               |      |                    | TSHUT status.                                                        |  |  |  |
| 25                               |      |                    | This bit will set to 1 when tshut is valid, and only be cleared when |  |  |  |
|                                  |      |                    | application write 1 to it.                                           |  |  |  |
|                                  |      |                    | This bit will not be cleared by system reset.                        |  |  |  |

| Bit   | Attr | <b>Reset Value</b> | Description                                                          |
|-------|------|--------------------|----------------------------------------------------------------------|
|       |      |                    | last_tshut_2gpio                                                     |
|       |      |                    | last_tshut_2gpio for hardware reset                                  |
| 24    |      | 0.40               | TSHUT status.                                                        |
| 24    | RW   | 0x0                | This bit will set to 1 when tshut is valid, and only be cleared when |
|       |      |                    | application write 1 to it.                                           |
|       |      |                    | This bit will not be cleared by system reset.                        |
| 23:18 | RO   | 0x0                | reserved                                                             |
|       |      |                    | sample_dly_sel                                                       |
| 17    | RO   | 0x0                | 0: AUTO_PERIOD is used                                               |
|       |      |                    | 1: AUTO_PERIOD_HT is used                                            |
|       |      |                    | auto_status                                                          |
| 16    | RO   | 0x0                | 0: auto mode stop;                                                   |
|       |      |                    | 1: auto mode in progress.                                            |
| 15:14 | RO   | 0x0                | reserved                                                             |
|       |      |                    | src1_lt_en                                                           |
| 13    | RW   | 0x0                | 0: do not care low temperature of source 0                           |
|       |      |                    | 1: enable the low temperature monitor of source 0                    |
|       |      |                    | src0_lt_en                                                           |
| 12    | RW   | 0x0                | 0: do not care low temperature of source 0                           |
|       |      |                    | 1: enable the low temperature monitor of source 0                    |
| 11:9  | RO   | 0x0                | reserved                                                             |
|       |      |                    | tshut_prolarity                                                      |
| 8     | RW   | 0x0                | 0: low active                                                        |
|       |      |                    | 1: high active                                                       |
| 7:6   | RO   | 0x0                | reserved                                                             |
|       |      |                    | src1_en                                                              |
| 5     | RW   | 0x0                | 0: do not care the temperature of source 1                           |
|       |      |                    | 1: if the temperature of source 0 is too high , TSHUT will be valid  |
|       |      |                    | src0_en                                                              |
| 4     | RW   | 0x0                | 0: do not care the temperature of source 0                           |
|       |      |                    | 1: if the temperature of source 0 is too high , TSHUT will be valid  |
| 3:2   | RO   | 0x0                | reserved                                                             |
|       |      |                    | tsadc_q_sel                                                          |
|       |      |                    | temperature coefficient                                              |
|       |      |                    | 1'b0:use tsadc_q as output(positive temperature coefficient)         |
| 1     | RW   | 0x0                | 1'b1:use(1024 - tsadc_q) as output (negative temperature             |
|       |      |                    | coefficient)                                                         |
|       |      |                    | RK3328 is negative temprature coefficient, so please set this bit    |
|       |      |                    | as 1'b1                                                              |
|       |      |                    | auto_en                                                              |
| 0     | RW   | 0x0                | 0: TSADC controller works at user-define mode                        |
|       |      |                    | 1: TSADC controller works at auto mode                               |

#### TSADC\_INT\_EN

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit   | 1    | Reset Value | + offset (0x0008) Description                                         |  |  |  |
|-------|------|-------------|-----------------------------------------------------------------------|--|--|--|
| 31:17 |      | 0x0         | reserved                                                              |  |  |  |
| 51.17 | ĸŬ   | 0.00        | eoc_int_en                                                            |  |  |  |
|       |      |             |                                                                       |  |  |  |
| 16    | RW   | 0x0         | eoc_Interrupt enable.<br>eoc_interrupt enable in user defined mode    |  |  |  |
| 10    | K VV | UXU         | 0: disable                                                            |  |  |  |
|       |      |             | 1: enable                                                             |  |  |  |
| 15:14 |      | 0x0         | reserved                                                              |  |  |  |
| 15.14 | кU   | 0.00        |                                                                       |  |  |  |
|       |      |             | lt_inten_src1                                                         |  |  |  |
| 13    | RW   | 0x0         | low temperature interrupt enable for src1<br>0: disable               |  |  |  |
|       |      |             | 1: enable                                                             |  |  |  |
|       |      |             |                                                                       |  |  |  |
|       |      |             | lt_inten_src0                                                         |  |  |  |
| 12    | RW   | 0x0         | low temperature interrupt enable for src0<br>0: disable               |  |  |  |
|       |      |             | 1: enable                                                             |  |  |  |
| 11:10 |      | 0x0         |                                                                       |  |  |  |
| 11:10 | RU   | 0x0         | reserved                                                              |  |  |  |
|       | RW   | 0×0         | tshut_2cru_en_src1                                                    |  |  |  |
| 9     |      |             | 0: TSHUT output to cru disabled. TSHUT output will always keep        |  |  |  |
|       |      |             | low .                                                                 |  |  |  |
|       |      |             | 1: TSHUT output works.                                                |  |  |  |
|       | RW   | 0×0         | tshut_2cru_en_src0                                                    |  |  |  |
| 8     |      |             | 0: TSHUT output to cru disabled. TSHUT output will always keep        |  |  |  |
|       |      |             |                                                                       |  |  |  |
| 7:6   | RO   | 0x0         | 1: TSHUT output works.                                                |  |  |  |
| 7.0   | кU   | 0.00        | reserved                                                              |  |  |  |
|       |      |             | tshut_2gpio_en_src1                                                   |  |  |  |
| 5     | RW   | 0x0         | 0: TSHUT output to gpio disabled. TSHUT output will always keep low . |  |  |  |
|       |      |             | 1: TSHUT output works.                                                |  |  |  |
|       |      |             | tshut_2gpio_en_src0                                                   |  |  |  |
|       |      |             | 0: TSHUT output to gpio disabled. TSHUT output will always            |  |  |  |
| 4     | RW   | 0x0         | keep low .                                                            |  |  |  |
|       |      |             | 1: TSHUT output works.                                                |  |  |  |
| 3:2   | RO   | 0x0         | reserved                                                              |  |  |  |
| 5.2   | κυ   | 0.00        |                                                                       |  |  |  |
|       |      |             | ht_inten_src1<br>high temperature interrupt enable for crc1           |  |  |  |
| 1     | RW   | 0x0         | high temperature interrupt enable for src1<br>0: disable              |  |  |  |
|       |      |             | 1: enable                                                             |  |  |  |
|       |      |             |                                                                       |  |  |  |
|       |      |             | ht_inten_src0                                                         |  |  |  |
| 0     | RW   | RW 0x0      | high temperature interrupt enable for src0<br>0: disable              |  |  |  |
|       |      |             |                                                                       |  |  |  |
|       |      |             | 1: enable                                                             |  |  |  |

Address: Operational Base + offset (0x0008)

### TSADC\_INT\_PD

Address: Operational Base + offset (0x000c)

| Bit   |       | Reset Value | Description                                                                |
|-------|-------|-------------|----------------------------------------------------------------------------|
| 31:17 | RO    | 0x0         | reserved                                                                   |
| -     |       |             | eoc_int_pd                                                                 |
|       |       |             | Interrupt status.                                                          |
| 16    | RW    | 0x0         | This bit will be set to 1 when end-of-conversion.                          |
|       |       |             | Set 0 to clear the interrupt.                                              |
| 15:14 | RO    | 0x0         | reserved                                                                   |
|       |       |             | lt_irq_src1                                                                |
|       |       |             | When TSADC output is lower than COMP_INT_LOW, this bit will                |
| 13    | RW    | 0x0         | be valid, which means temperature is low, and the application              |
|       |       |             | should in charge of this.                                                  |
|       |       |             | write 1 to it , this bit will be cleared.                                  |
|       |       |             | lt_irq_src0                                                                |
|       |       |             | When TSADC output is lower than COMP_INT_LOW, this bit will                |
| 12    | RW    | 0x0         | be valid, which means temperature is low, and the application              |
|       |       |             | should in charge of this.                                                  |
|       |       |             | write 1 to it , this bit will be cleared.                                  |
| 11:6  | RO    | 0x0         | reserved                                                                   |
|       | RW    | W 0×0       | tshut_o_src1                                                               |
|       |       |             | TSHUT output status                                                        |
| 5     |       |             | When TSADC output is bigger than COMP_SHUT, this bit will be               |
| 5     |       |             | valid, which means temperature is VERY high, and the application           |
|       |       |             | should in charge of this.                                                  |
|       |       |             | write 1 to it , this bit will be cleared.                                  |
|       |       |             | tshut_o_src0                                                               |
|       |       |             | TSHUT output status                                                        |
| 4     | RW    | W 0×0       | When TSADC output is bigger than COMP_SHUT, this bit will be               |
|       |       |             | valid, which means temperature is VERY high, and the application           |
|       |       |             | should in charge of this.                                                  |
| 3:2   | RO    | 0x0         | write 1 to it , this bit will be cleared.<br>reserved                      |
| 5:2   | RU    | UXU         |                                                                            |
|       |       |             | ht_irq_src1<br>When TSADC output is bigger than COMP_INT, this bit will be |
| 1     | RW    | 0x0         | valid, which means temperature is high, and the application                |
| 1     | L A A | 0.00        | should in charge of this.                                                  |
|       |       |             | write 1 to it , this bit will be cleared.                                  |
|       |       |             | ht_irq_src0                                                                |
|       |       |             | When TSADC output is bigger than COMP_INT, this bit will be                |
| 0     | RW    | 0x0         | valid, which means temperature is high, and the application                |
|       |       |             | should in charge of this.                                                  |
|       |       |             | write 1 to it , this bit will be cleared.                                  |
| L     | I     | l           |                                                                            |

#### TSADC\_DATA0

Address: Operational Base + offset (0x0020)

| 11110 1 |      |                    |                                                                      |  |  |  |
|---------|------|--------------------|----------------------------------------------------------------------|--|--|--|
| Bit     | Attr | <b>Reset Value</b> | Description                                                          |  |  |  |
| 31:12   | RO   | 0x0                | reserved                                                             |  |  |  |
| 11:0    | RO   |                    | adc_data<br>A/D value of the channel 0 last conversion (DOUT[11:0]). |  |  |  |

This register contains the data after A/D Conversion.

#### TSADC\_DATA1

Address: Operational Base + offset (0x0024) This register contains the data after A/D Conversion.

| Bit   | Attr | <b>Reset Value</b> | Description                                                          |  |
|-------|------|--------------------|----------------------------------------------------------------------|--|
| 31:12 | RO   | 0x0                | eserved                                                              |  |
| 11:0  | RO   |                    | adc_data<br>A/D value of the channel 0 last conversion (DOUT[11:0]). |  |

#### TSADC\_COMP0\_INT

Address: Operational Base + offset (0x0030) TSADC high temperature level for source 0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                   |  |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| 31:12 | RO   | 0x0                | reserved                                                                                                                      |  |
| 11:0  | RW   | 0×000              | tsadc_comp_src0<br>TSADC high temperature level.<br>TSADC output is bigger than tsadc_comp, means the<br>temperature is high. |  |
|       |      |                    | TSADC_INT will be valid.                                                                                                      |  |

#### TSADC\_COMP1\_INT

Address: Operational Base + offset (0x0034) TSADC high temperature level for source 1

| Bit   | Attr | <b>Reset Value</b> | Description |  |
|-------|------|--------------------|-------------|--|
| 31:12 | RO   | 0x0                | reserved    |  |
| 11:0  | RW   |                    |             |  |

#### TSADC\_COMP0\_SHUT

Address: Operational Base + offset (0x0040) TSADC high temperature level for source 0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                               |  |
|-------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31:12 | RO   | 0x0                | reserved                                                                                                                                                  |  |
| 11:0  | RW   | 0×000              | tsadc_comp_src0<br>TSADC high temperature level.<br>TSADC output is bigger than tsadc_comp, means the<br>temperature is too high.<br>TSHUT will be valid. |  |

#### TSADC\_COMP1\_SHUT

Address: Operational Base + offset (0x0044) TSADC high temperature level for source 1

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                               |  |
|-------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31:12 | RO   | 0x0                | reserved                                                                                                                                                  |  |
| 11:0  | RW   | 0×000              | tsadc_comp_src1<br>TSADC high temperature level.<br>TSADC output is bigger than tsadc_comp, means the<br>temperature is too high.<br>TSHUT will be valid. |  |

#### TSADC\_HIGHT\_INT\_DEBOUNCE

Address: Operational Base + offset (0x0060)

high temperature debounce

| Bit  | Attr | <b>Reset Value</b>                                              | Description                                                 |
|------|------|-----------------------------------------------------------------|-------------------------------------------------------------|
| 31:8 | RO   | 0x0                                                             | reserved                                                    |
|      |      |                                                                 | debounce                                                    |
| 7:0  | RW   | / 0x03 TSADC controller will only generate interrupt or TSHUT w | TSADC controller will only generate interrupt or TSHUT when |
|      |      |                                                                 | temperature is higher than COMP_INT for "debounce" times.   |

#### TSADC\_HIGHT\_TSHUT\_DEBOUNCE

Address: Operational Base + offset (0x0064)

high temperature debounce

| Bit  | Attr | <b>Reset Value</b>                                            | Description                                                 |  |
|------|------|---------------------------------------------------------------|-------------------------------------------------------------|--|
| 31:8 | RO   | 0x0                                                           | served                                                      |  |
|      |      | debounceW0x03TSADC controller will only generate intermediate | debounce                                                    |  |
| 7:0  | RW   |                                                               | TSADC controller will only generate interrupt or TSHUT when |  |
|      |      | temperature is higher than COMP_SHUT for "debounce" times.    |                                                             |  |

#### TSADC\_AUTO\_PERIOD

Address: Operational Base + offset (0x0068) TSADC auto access period

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                              |  |
|------|------|--------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| 31:0 | RW   | 0x00010000         | auto_period<br>when auto mode is enabled, this register controls the interleave<br>between every two accessing of TSADC. |  |

#### TSADC\_AUTO\_PERIOD\_HT

Address: Operational Base + offset (0x006c) TSADC auto access period when temperature is high

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                |  |
|------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31:0 | RW   | 0x00010000         | auto_period<br>This register controls the interleave between every two accessing<br>of TSADC after the temperature is higher than COMP_SHUT or<br>COMP_INT |  |

#### TSADC\_COMP0\_LOW\_INT

Address: Operational Base + offset (0x0080) TSADC low temperature level for source 0

| Bit    | Attr | <b>Reset Value</b> | Description                                                  |  |
|--------|------|--------------------|--------------------------------------------------------------|--|
| 31:12  | RO   | 0x0                | reserved                                                     |  |
| 11:0 F |      | 0×000              | tsadc_comp_src0                                              |  |
|        |      |                    | TSADC low temperature level.                                 |  |
|        | RW   |                    | TSADC output is lower than tsadc_comp, means the temperature |  |
|        |      |                    | is low.                                                      |  |
|        |      |                    | TSADC_LOW_INT will be valid.                                 |  |

#### TSADC\_COMP1\_LOW\_INT

Address: Operational Base + offset (0x0084) TSADC low temperature level for source 1

| Bit                          | Attr | <b>Reset Value</b>           | Description                                                  |  |
|------------------------------|------|------------------------------|--------------------------------------------------------------|--|
| 31:12                        | RO   | 0x0                          | reserved                                                     |  |
|                              |      |                              | tsadc_comp_src1                                              |  |
|                              |      |                              | TSADC low temperature level.                                 |  |
| 11:0                         | RW   |                              | TSADC output is lower than tsadc_comp, means the temperature |  |
|                              |      |                              | is low.                                                      |  |
| TSADC_LOW_INT will be valid. |      | TSADC_LOW_INT will be valid. |                                                              |  |

### 9.5 Application Notes

#### 9.5.1 Single-sample conversion

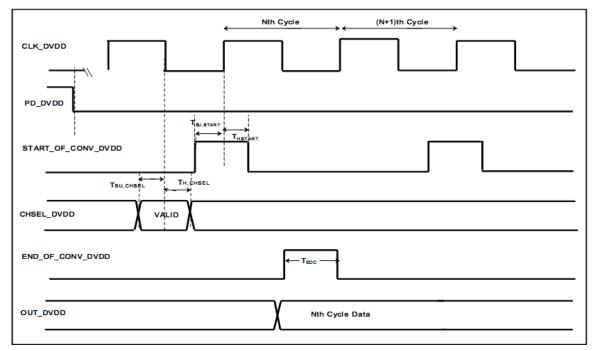



Fig. 9-2 the start flow to enable the sensor and adc

#### 9.5.2 Temperature-to-code mapping

Table 9-1 Temperature Code Mapping

| temp (C)<br>-40<br>-35<br>-30                                                                      | Code                                                                                                                         |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| -40                                                                                                | 3800                                                                                                                         |
| -35                                                                                                | 3792                                                                                                                         |
| -30                                                                                                | 3783                                                                                                                         |
| -25                                                                                                | 3774                                                                                                                         |
| -20                                                                                                | 3765                                                                                                                         |
| -15                                                                                                | 3756                                                                                                                         |
| -10                                                                                                | 3800<br>3792<br>3783<br>3774<br>3765<br>3756<br>3756<br>3747                                                                 |
| -25<br>-20<br>-15<br>-10<br>-5<br>0<br>5                                                           | 3737                                                                                                                         |
| 0                                                                                                  | 3737<br>3728<br>3718<br>3708<br>3698<br>3688<br>3688<br>3678<br>3667<br>3656<br>3645<br>3645<br>3634<br>3623<br>3611<br>3600 |
| 5                                                                                                  | 3718                                                                                                                         |
| 10                                                                                                 | 3708                                                                                                                         |
| 15                                                                                                 | 3698                                                                                                                         |
| 20                                                                                                 | 3688                                                                                                                         |
| 25                                                                                                 | 3678                                                                                                                         |
| 30                                                                                                 | 3667                                                                                                                         |
| 35                                                                                                 | 3656                                                                                                                         |
| 10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65<br>70<br>75<br>80<br>85<br>90 | 3645                                                                                                                         |
| 45                                                                                                 | 3634                                                                                                                         |
| 50                                                                                                 | 3623                                                                                                                         |
| 55                                                                                                 | 3611                                                                                                                         |
| 60                                                                                                 | 3600                                                                                                                         |
| 65                                                                                                 | 3588                                                                                                                         |
| 70                                                                                                 | 3588<br>3575<br>3563                                                                                                         |
| 75                                                                                                 | 3563                                                                                                                         |
| 80                                                                                                 | 3550                                                                                                                         |
| 85                                                                                                 | 3537<br>3524                                                                                                                 |
| 90                                                                                                 | 3524                                                                                                                         |
| 95                                                                                                 | 3510                                                                                                                         |
| 100                                                                                                | 3496                                                                                                                         |
| 105                                                                                                | 3482                                                                                                                         |
| 110                                                                                                | 3467                                                                                                                         |
| 115                                                                                                | 3452                                                                                                                         |
| 105<br>110<br>115<br>120                                                                           | 3482<br>3467<br>3452<br>3437<br>3421                                                                                         |
| 125                                                                                                | 3421                                                                                                                         |

Note:

Code to Temperature mapping of the Temperature sensor is a piece wise linear curve. Any temperature, code faling between to 2 give temperatures can be linearly interpolated.

Code to Temperature mapping should be updated based on sillcon results.

#### 9.5.3 User-Define Mode

- In user-define mode, the PD\_DVDD and CHSEL\_DVDD are generate by setting register TSADC\_USER\_CON, bit[3] and bit[2:0]. In order to ensure timing between PD\_DVDD and CHSEL\_DVDD, the CHSEL\_DVDD must be set before the PD\_DVDD.
- In user-define mode, you can choose the method to control the START\_OF\_CONVERSION by setting bit[4] of TSADC\_USER\_CON. If set to 0, the start\_of\_conversion will be assert after "inter\_pd\_soc" cycles, which could be set by bit[11:6] of TSADC\_USER\_CON. And

if start\_mode was set 1, the start\_of\_conversion will be controlled by bit[5] of TSADC\_USER\_CON.

• Software can get the four channel temperature from TSADC\_DATAn (n=0,1,2,3).

#### 9.5.4 Automatic Mode

You can use the automatic mode with the following step:

- Set TSADC\_AUTO\_PERIOD, configure the interleave between every two accessing of TSADC in normal operation.
- Set TSADC\_AUTO\_PERIOD\_HT. configure the interleave between every two accessing of TSADC after the temperature is higher than COMP\_SHUT or COMP\_INT.
- Set TSADC\_COMPn\_INT(n=0,1), configure the high temperature level, if tsadc output is smaller than the value, means the temperature is high, tsadc\_int will be asserted.
- Set TSADC\_COMPn\_SHUT(n=0,1), configure the super high temperature level, if tsadc output is smaller than the value, means the temperature is too high, TSHUT will be asserted.
- Set TSADC\_INT\_EN, you can enable the high temperature interrupt for all channel; and you can also set TSHUT output to gpio to reset the whole chip; and you can set TSHUT output to cru to reset the whole chip.
- Set TSADC\_HIGHT\_INT\_DEBOUNCE and TSADC\_HIGHT\_TSHUT\_DEBOUNCE, if the temperature is higher than COMP\_INT or COMP\_SHUT for "debounce" times, TSADC controller will generate interrupt or TSHUT.
- Set TSADC\_AUTO\_CON, enable the TSADC controller.

### Chapter 10 SARADC

### **10.1** Overview

The ADC is a 6-channel signal-ended 10-bit Successive Approximation Register (SAR) A/D Converter. It uses the supply and ground as it reference which avoid use of any external reference. It converts the analog input signal into 10-bit binary digital codes at maximum conversion rate of 1MSPS with 13MHz A/D converter clock.

### 10.2 Block Diagram

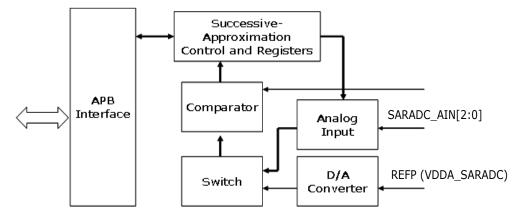



Fig. 10-1 SAR-ADC block diagram

#### Successive-Approximate Register and Control Logic Block

This block is exploited to realize binary search algorithm, storing the intermediate result and generate control signal for analog block.

#### **Comparator Block**

This block compares the analog input SARADC\_AIN[2:0] with the voltage generated from D/A Converter, and output the comparison result to SAR and Control Logic Block for binary search. Three level amplifiers are employed in this comparator to provide enough gain.

### **10.3 Function Description**

#### **10.3.1 APB Interface**

In RK3328, SAR-ADC works at single-sample operation mode.

This mode is useful to sample an analog input when there is a gap between two samples to be converted. In this mode START is asserted only on the rising edge of CLKIN where conversion is needed. At the end of every conversion EOC signal is made high and valid output data is available at the rising edge of EOC. The detailed timing diagram will be shown in the following.

### **10.4 Register description**

### 10.4.1 Registers Summary

| Name        | Offset | Size | Reset<br>Value | Description                                           |
|-------------|--------|------|----------------|-------------------------------------------------------|
| SARADC_DATA | 0x0000 | W    | 0x00000000     | This register contains the data after A/D Conversion. |
| SARADC_STAS | 0x0004 | W    | 0x00000000     | The status register of A/D<br>Converter.              |

| Name              | Offset | Size | Reset<br>Value | Description                               |
|-------------------|--------|------|----------------|-------------------------------------------|
| SARADC_CTRL       | 0x0008 | W    | 0x00000000     | The control register of A/D<br>Converter. |
| SARADC_DLY_PU_SOC | 0x000c | W    | 0x00000000     | delay between power up and start command  |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

### **10.4.2 Detail Register Description**

#### SARADC\_DATA

Address: Operational Base + offset (0x0000) This register contains the data after A/D Conversion.

| Bit   | Attr | <b>Reset Value</b> | Description                                               |  |  |
|-------|------|--------------------|-----------------------------------------------------------|--|--|
| 31:10 | RO   | 0x0                | reserved                                                  |  |  |
| 9:0   | RO   | 0x000              | adc_data<br>A/D value of the last conversion (DOUT[9:0]). |  |  |

#### SARADC\_STAS

Address: Operational Base + offset (0x0004) The status register of A/D Converter.

| Bit  | Attr | <b>Reset Value</b> | Description               |  |  |
|------|------|--------------------|---------------------------|--|--|
| 31:1 | RO   | 0x0                | reserved                  |  |  |
|      |      |                    | adc_status                |  |  |
|      |      | 0×0                | ADC status (EOC)          |  |  |
| 0    | 0 RO |                    | 0: ADC stop               |  |  |
|      |      |                    | 1: Conversion in progress |  |  |

#### SARADC\_CTRL

Address: Operational Base + offset (0x0008) The control register of A/D Converter.

| Bit  | Attr | <b>Reset Value</b> | Description                                      |  |  |  |
|------|------|--------------------|--------------------------------------------------|--|--|--|
| 31:7 | RO   | 0x0                | reserved                                         |  |  |  |
|      |      |                    | int_status                                       |  |  |  |
| c    | DW   | 0.20               | Interrupt status.                                |  |  |  |
| 6    | RW   | 0x0                | his bit will be set to 1 when end-of-conversion. |  |  |  |
|      |      |                    | Set 0 to clear the interrupt.                    |  |  |  |
|      |      |                    | int_en                                           |  |  |  |
| 5    | RW   | 0×0                | Interrupt enable.                                |  |  |  |
| 5    | ĸw   |                    | 0: Disable                                       |  |  |  |
|      |      |                    | 1: Enable                                        |  |  |  |
| 4    | RO   | 0x0                | reserved                                         |  |  |  |

| Bit | Attr | Reset Value | Description                                                      |
|-----|------|-------------|------------------------------------------------------------------|
|     |      |             | adc_power_ctrl                                                   |
|     |      |             | ADC power down control bit                                       |
| 3   | RW   | 0×0         | 0: ADC power down;                                               |
| 5   | RVV  | 0.00        | 1: ADC power up and reset.                                       |
|     |      |             | start signal will be asserted (DLY_PU_SOC + 2) sclk clock period |
|     |      |             | later after power up                                             |
|     |      |             | adc_input_src_sel                                                |
|     |      |             | ADC input source selection(CH_SEL[2:0]).                         |
|     |      | RW 0x0      | 000 : Input source 0 (SARADC_AIN[0])                             |
|     |      |             | 001 : Input source 1 (SARADC_AIN[1])                             |
| 2:0 | RW   |             | 010 : Input source 2 (SARADC_AIN[2])                             |
|     |      |             | 011 : Input source 3 (SARADC_AIN[3])                             |
|     |      |             | 100 : Input source 4 (SARADC_AIN[4])                             |
|     |      |             | 101 : Input source 5 (SARADC_AIN[5])                             |
|     |      |             | Others : Reserved                                                |

#### SARADC\_DLY\_PU\_SOC

Address: Operational Base + offset (0x000c) delay between power up and start command

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                  |  |  |
|------|------|--------------------|----------------------------------------------------------------------------------------------|--|--|
| 31:6 | RO   | 0x0                | reserved                                                                                     |  |  |
|      |      |                    | DLY_PU_SOC<br>delay between power up and start command                                       |  |  |
| 5:0  | RW   | 0x00               | The start signal will be asserted (DLY_PU_SOC + 2) sclk clock<br>period later after power up |  |  |

### **10.5 Timing Diagram**

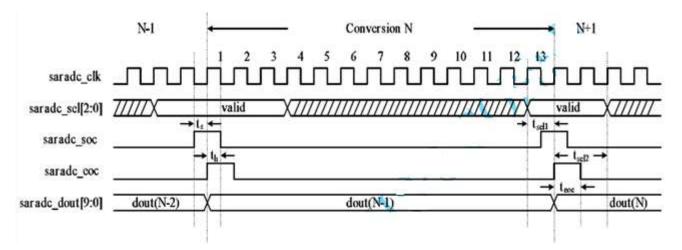



Fig. 10-2 SAR-ADC timing diagram in single-sample conversion mode

### **10.6 Application Notes**

Steps of adc conversion:

- Write SARADC\_CTRL[3] as 0 to power down adc converter.
- Write SARADC\_CTRL[2:0] as n to select adc channel(n).
- Write SARADC\_CTRL[5] as 1 to enable adc interrupt.
- Write SARADC\_CTRL[3] as 1 to power up adc converter.
- Wait for adc interrupt or poll SARADC\_STAS register to assert whether the conversion is completed
- Read the conversion result from SARADC\_DATA[9:0]

Note: The A/D converter was designed to operate at maximum 1MHZ.

### **Chapter 11 System Debug**

### **11.1 Overview**

The chip uses the DAPLITE Technology to support real-time debug.

#### 11.1.1 Features

- Invasive debug with core halted
- SW-DP

#### 11.1.2 Debug components address map

The following table shows the debug components address in memory map:

| Module  | Base Address |  |  |
|---------|--------------|--|--|
| DAP_ROM | 0xff800000   |  |  |

### 11.2 Block Diagram

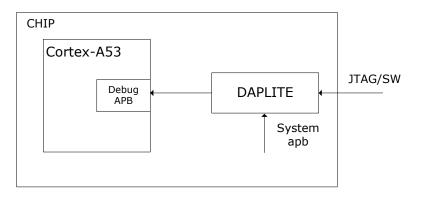



Fig. 11-1 Debug system structure

### **11.3 Function Description**

### 11.3.1 DAP

The DAP has following components:

- Serial Wire JTAG Debug Port(SWJ-DP)
- APB Access Port(APB-AP)
- ROM table

The debug port is the host tools interface to access the DAP-Lite. This interface controls any access ports provided within the DAP-Lite. The DAP-Lite supports a combined debug port which includes both JTAG and Serial Wire Debug(SWD), with a mechanism that supports switching between them.

The APB-AP acts as a bridge between SWJ-DP and APB bus which translate the Debug request to APB bus.

The DAP provides an internal ROM table connected to the master Debug APB port of the APB-Mux. The Debug ROM table is loaded at address 0x00000000 and 0x80000000 of this bus and is accessible from both APB-AP and the system APB input. Bit[31] of the address bus is not connected to the ROM Table, ensuring that both views read the same value. The ROM table stores the locations of the components on the Debug APB.

More information please refer to the document CoreSight\_DAPLite\_TRM.pdf for the debug detail description.

### **11.4 Register Description**

Please refer to the documentCoreSight\_DAPLite\_TRM.pdf for the debug detail description.

### **11.5 Interface Description**

#### 11.5.1 DAP SWJ-DP Interface

The following figure is the DAP SWJ-DP interface, the SWJ-DP is a combined JTAG-DP and SW-DP that enable you connect either a Serial Wire Debug(SWJ) to JTAG probe to a target.

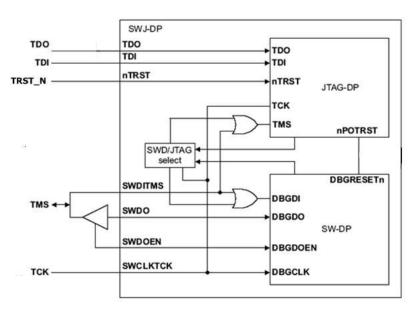



Fig. 11-2 DAP SWJ interface

#### 11.5.2 DAP SW-DP Interface

This implementation is taken from ADIv5.1 and operates with a synchronous serial interface. This uses a single bidirectional data signal, and a clock signal.

The figure below describes the interaction between the timing of transactions on the serial wire interface, and the DAP internal bus transfers. It shows when the target responds with a WAIT acknowledgement.

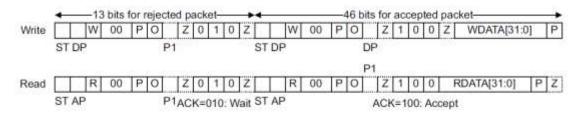



Fig. 11-3 SW-DP acknowledgement timing

| Module<br>pin | Direction | Pad name                | ΙΟΜUΧ                       |  |
|---------------|-----------|-------------------------|-----------------------------|--|
| jtag_tck      | I         | IO_SDMMC0d2_JTAGtck_GPI | GRF_GPIO1A_IOMUX[5:4]=2'b10 |  |
|               |           | O1A2vccio3              | & mmc0_detn                 |  |
| jtag_tm       | I/O       | IO_SDMMC0d3_JTAGtms_GPI | GRF_GPIO1A_IOMUX[7:6]=2'b10 |  |
| S             |           | O1A3vccio3              | & mmc0_detn                 |  |

| Table | 11_1    | SM-DP  | Interface | Description |
|-------|---------|--------|-----------|-------------|
| Table | T T - T | 310-01 | Interface | Description |

Note : mmc0\_detn, when high, no sd card is used.

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

### Chapter 12 eFuse

### 12.1 Overview

In this device, there are two eFuse. Both of them are organized as 32 bits by 32 one-time programmable electrical fuses with random access interface.

It is a type of non-volatile memory fabricated in standard CMOS logic process. The main features are as follows:

- Programming condition : VQPS\_EFUSE = 1.5V±10%
- Program time :  $10us \pm 0.2us$  .
- Read condition : VQPS\_EFUSE = 0V
- Provide standby mode

### 12.2 Block Diagram

In the following diagram, all the signals except power supply VDD\_EFUSE, VSS\_EFUSE and VQPS\_EFUSE are controlled by registers. For detailed description, please refer to detailed register descriptions.

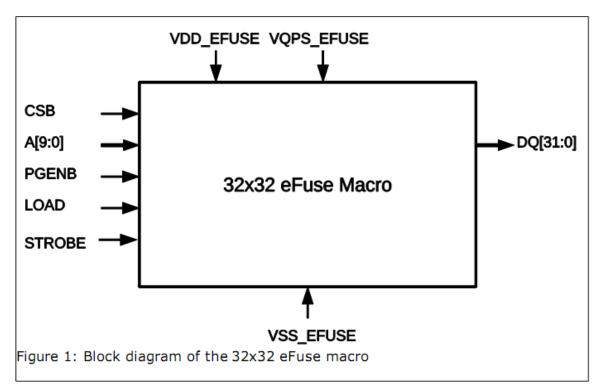



Fig. 12-1 eFuse block diagram

### **12.3 Function Description**

eFuse has three operation modes. They are defined as standby, read and programming. **Program (PGM) Mode** 

In order to enter programming mode, the following conditions need to be satisfied: VQPS\_EFUSE is at high voltage, LOAD signal is low, PGENB signal is low, and CSB signal is low. All bits can be individually programmed (one at a time) with the proper address selected, the STROBE signal high and the address bits satisfying setup and hold time with respect to STROBE.

#### **Read Mode**

In order to enter read mode the following conditions need to be satisfied: VQPS\_EFUSE is at ground, the LOAD signal is high, the PGENB signal is high, and the CSB is low. An entire 8-bit word of data can be read in one read operation with STROBE being high and a proper address selected (address signals A5~A7 are "don't cares").

#### Standby Mode

Standby is defined when the macro is not being programmed or read. The conditions for standby mode are: the LOAD signal is low, the STROBE signal is low, the CSB signal is high and PGENB is high.

| Signals/Supplies |      |      |      |             | Mode        |
|------------------|------|------|------|-------------|-------------|
| VQPS_EFUSE       |      |      |      |             |             |
| High             | Low  | Low  | Low  | Low to High | Programming |
| Low              | Low  | High | High | Low to High | Read        |
| Low              | High | High | Low  | Low         | Standby     |

### **12.4 Register Description**

#### 12.4.1 Registers Summary

| Name                       | Offset | Size | Reset<br>Value | Description                                      |
|----------------------------|--------|------|----------------|--------------------------------------------------|
| EFUSE_EFUSE_MOD            | 0x0000 | W    | 0x0000006      | EFUSE Mode Control Register                      |
| EFUSE_EFUSE_RD_MASK<br>_S  | 0x0004 | W    | 0x0000000      | EFUSE Read Mask control In Secure Mode           |
| EFUSE_EFUSE_PG_MASK_<br>S  | 0x0008 | w    | 0×00000000     | EFUSE Program Mask control In<br>Secure Mode     |
| EFUSE_EFUSE_RD_MASK<br>_NS | 0x000c | w    | 0x0000000      | EFUSE Read Mask control In Non-<br>Secure Mode   |
| EFUSE_EFUSE_PG_MASK_<br>NS | 0x0010 | W    | 0x0000000      | EFUSE Program Mask control In<br>Non-Secure Mode |
| EFUSE_EFUSE_INT_CON        | 0x0014 | W    | 0x00000000     | EFUSE Interrupt Control                          |
| EFUSE_EFUSE_INT_STAT<br>US | 0x0018 | w    | 0x0000000      | EFUSE Interrupt Status                           |
| EFUSE_EFUSE_USER_CTR<br>L  | 0x001c | w    | 0x0000009      | EFUSE User Mode Control                          |
| EFUSE_EFUSE_DOUT           | 0x0020 | W    | 0x00000000     | EFUSE Data Out                                   |
| EFUSE_EFUSE_AUTO_CTR<br>L  | 0x0024 | W    | 0x0000000      | EFUSE Auto Mode Control                          |
| EFUSE_T_CSB_P              | 0x0028 | w    | 0×000f0000     | EFUSE CSB timing control in<br>Program mode      |
| EFUSE_T_PGENB_P            | 0x002c | w    | 0×00000000     | EFUSE PGENB timing control in<br>Program mode    |
| EFUSE_T_LOAD_P             | 0x0030 | w    | 0×00000000     | EFUSE LOAD timing control in<br>Program mode     |
| EFUSE_T_ADDR_P             | 0x0034 | W    | 0x0000000      | EFUSE Address timing control in<br>Program mode  |

| Name             | Offset | Size | Reset<br>Value | Description                                    |
|------------------|--------|------|----------------|------------------------------------------------|
| EFUSE_T_STROBE_P | 0x0038 | W    | 0x00000000     | EFUSE STROBE timing control in<br>Program mode |
| EFUSE_T_CSB_R    | 0x003c | w    | 0x00000000     | EFUSE CSB timing control in Read mode          |
| EFUSE_T_PGENB_R  | 0x0040 | w    | 0x00000000     | EFUSE PGENB timing control in Read mode        |
| EFUSE_T_LOAD_R   | 0x0044 | w    | 0x00000000     | EFUSE LOAD timing control in<br>Read mode      |
| EFUSE_T_ADDR_R   | 0x0048 | W    | 0x00000000     | EFUSE ADDR timing control in Read mode         |
| EFUSE_T_STROBE_R | 0x004c | W    | 0x00000000     | EFUSE STROBE timing control in Read mode       |
| EFUSE_REVISION   | 0x0050 | W    | 0x0000010      | EFUSE Design Revision                          |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

### 12.4.2 Detail Register Description

#### EFUSE\_EFUSE\_MOD

Address: Operational Base + offset (0x0000) EFUSE Mode Control Register

| Bit  | Attr | <b>Reset Value</b> | Description                       |
|------|------|--------------------|-----------------------------------|
| 31:7 | RO   | 0x0                | reserved                          |
|      |      |                    | efuse_rd_enb_user                 |
| 6    | RW   | 0x0                | efuse read enable in user mode    |
| 0    | r vv | 0.00               | 0: disable                        |
|      |      |                    | 1: enable                         |
|      |      |                    | efuse_pg_enb_user                 |
| 5    | RW   | 0x0                | efuse program enable in user mode |
| 5    |      | 0.00               | 0: disable                        |
|      |      |                    | 1: enable                         |
|      |      | 0×0                | strobe_pol                        |
| 4    | RW   |                    | STROBE polarity                   |
| 4    | r vv |                    | 0: Active HIGH                    |
|      |      |                    | 1: Active LOW                     |
|      |      |                    | load_pol                          |
| 3    | RW   | 0.20               | LOAD polarity                     |
| 5    | r vv | W 0x0              | 0: Active HIGH                    |
|      |      |                    | 1: Active LOW                     |
|      |      |                    | pgenb_pol                         |
| 2    | RW   | N/ 0.1             | PGENB polarity                    |
| 2    | K VV | 0x1                | 0: Active HIGH                    |
|      |      |                    | 1: Active LOW                     |

| Bit | Attr | Reset Value      | Description                   |
|-----|------|------------------|-------------------------------|
|     |      |                  | csb_pol                       |
| 1   | R/W  | 0.v1             | CSB polarity                  |
| T   | SC   | 0×1              | 0: Active HIGH                |
|     |      |                  | 1: Active LOW                 |
|     |      | <sup>W</sup> 0×0 | work_mod                      |
|     | R/W  |                  | EFUSE controller working mode |
| 0   | SC   |                  | 0: auto_mode                  |
|     |      |                  | 1: user_mode                  |

#### EFUSE\_EFUSE\_RD\_MASK\_S

Address: Operational Base + offset (0x0004) EFUSE Read Mask control In Secure Mode

| Bit  | Attr | <b>Reset Value</b> | Description                                              |
|------|------|--------------------|----------------------------------------------------------|
| 31:1 | RO   | 0x0                | reserved                                                 |
| 0    | RO   | 0x0                | efuse_rd_mask_s<br>efuse read mask enable in secure mode |
|      |      |                    | 0: disable<br>1: enable                                  |

#### EFUSE\_EFUSE\_PG\_MASK\_S

Address: Operational Base + offset (0x0008) EFUSE Program Mask control In Secure Mode

| Bit  | Attr | <b>Reset Value</b> | Description                              |
|------|------|--------------------|------------------------------------------|
| 31:1 | RO   | 0x0                | reserved                                 |
|      |      | / 0×0              | efuse_pg_mask_s                          |
| 0    | RW   |                    | efuse program mask enable in secure mode |
| 0    | UKW  |                    | 0: disable                               |
|      |      |                    | 1: enable                                |

#### EFUSE\_EFUSE\_RD\_MASK\_NS

Address: Operational Base + offset (0x000c) EFUSE Read Mask control In Non-Secure Mode

 
 Bit
 Attr
 Reset Value
 Description

 31:1
 RO
 0x0
 reserved

 0
 W1 C
 0x0
 efuse\_rd\_mask\_ns efuse read mask enable in non-secure mode 0: disable 1: enable

#### EFUSE\_EFUSE\_PG\_MASK\_NS

Address: Operational Base + offset (0x0010)

EFUSE Program Mask control In Non-Secure Mode

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                 |
|------|------|--------------------|---------------------------------------------------------------------------------------------|
| 31:1 | RO   | 0x0                | reserved                                                                                    |
| 0    | RW   | 0x0                | efuse_pg_mask_ns<br>efuse program mask enable in non-secure mode<br>0: disable<br>1: enable |

#### EFUSE\_EFUSE\_INT\_CON

Address: Operational Base + offset (0x0014) EFUSE Interrupt Control

| Bit   | Attr | Reset Value | Description                                                                           |
|-------|------|-------------|---------------------------------------------------------------------------------------|
| 31:13 | RO   | 0x0         | reserved                                                                              |
| 12    | RW   | 0x0         | user_s_pg_mask_int_en<br>user_s_pg_mask interrupt enable<br>0: disable<br>1: enable   |
| 11    | RW   | 0×0         | user_s_rd_mask_int_en<br>user_s_rd_mask interrupt enable<br>0: disable<br>1: enable   |
| 10    | RW   | 0x0         | user_ns_pg_mask_int_en<br>user_ns_pg_mask interrupt enable<br>0: disable<br>1: enable |
| 9     | RW   | 0×0         | user_ns_rd_mask_int_en<br>user_ns_rd_mask interrupt enable<br>0: disable<br>1: enable |
| 8     | RW   | 0x0         | auto_s_pg_mask_int_en<br>auto_s_pg_mask interrupt enable<br>0: disable<br>1: enable   |
| 7     | RW   | 0×0         | auto_s_rd_mask_int_en<br>auto_s_rd_mask interrupt enable<br>0: disable<br>1: enable   |
| 6     | RW   | 0×0         | auto_ns_pg_mask_int_en<br>auto_ns_pg_mask interrupt enable<br>0: disable<br>1: enable |
| 5     | RW   | 0×0         | auto_ns_rd_mask_int_en<br>auto_ns_rd_mask interrupt enable<br>0: disable<br>1: enable |

| Bit | Attr | Reset Value | Description                           |  |           |
|-----|------|-------------|---------------------------------------|--|-----------|
|     |      |             | user_s_access_ns_err_int_en           |  |           |
| 4   | RW   | 0x0         | user_s_access_ns_err interrupt enable |  |           |
| 4   | RVV  | 0.00        | 0: disable                            |  |           |
|     |      |             | 1: enable                             |  |           |
|     |      |             | user_ns_access_s_err_int_en           |  |           |
| 3   | RW   | 0x0         | user_ns_access_s_err interrupt enable |  |           |
| 5   | R VV |             | 0: disable                            |  |           |
|     |      |             | 1: enable                             |  |           |
|     |      |             | auto_s_access_ns_err_int_en           |  |           |
| 2   | RW   | 0x0         | auto_s_access_ns_err interrupt enable |  |           |
| 2   |      | 0x0         | 0: disable                            |  |           |
|     |      |             | 1: enable                             |  |           |
|     |      | N 0x0       | auto_ns_access_s_err_int_en           |  |           |
| 1   | RW   |             | auto_ns_access_s_err interrupt enable |  |           |
| 1   |      |             | 0: disable                            |  |           |
|     |      |             | 1: enable                             |  |           |
|     |      |             | finish_int_en                         |  |           |
| 0   | RO   | 0×0         | finish interrupt enable               |  |           |
|     |      | 0.0         | 0: disable                            |  |           |
|     |      |             |                                       |  | 1: enable |

### EFUSE\_EFUSE\_INT\_STATUS

Address: Operational Base + offset (0x0018) EFUSE Interrupt Status

| Bit   | Attr | Reset<br>Value | Description                                                  |
|-------|------|----------------|--------------------------------------------------------------|
| 31:13 | RO   | 0x0            | reserved                                                     |
| 12    | W1C  | 0×0            | user_s_pg_mask_int_status<br>user_s_pg_mask_int status bit   |
| 11    | W1C  | 0x0            | user_s_rd_mask_int_status<br>user_s_rd_mask_int status bit   |
| 10    | W1C  | 0×0            | user_ns_pg_mask_int_status<br>user_ns_pg_mask_int status bit |
| 9     | W1C  | 0×0            | user_ns_rd_mask_int_status<br>user_ns_rd_mask_int status bit |
| 8     | W1C  | 0×0            | auto_s_pg_mask_int_status<br>auto_s_pg_mask_int status bit   |

| Bit | Attr | Reset<br>Value | Description                          |
|-----|------|----------------|--------------------------------------|
|     |      |                | auto_s_rd_mask_int_status            |
| 7   | W1C  | 0x0            | auto_s_rd_mask_int status bit        |
|     |      |                | auto_ns_pg_mask_int_status           |
| 6   | W1C  | 0x0            | auto_ns_pg_mask_int status bit       |
|     |      |                | auto_ns_rd_mask_int_status           |
| 5   | W1C  | 0x0            | auto_ns_rd_mask_int status bit       |
|     |      |                | user_s_access_ns_err_int_status      |
| 4   | W1C  | 0x0            | user_s_access_ns_err_int status bits |
|     |      |                | user_ns_access_s_err_int_status      |
| 3   | W1C  | 0x0            | user_ns_access_s_err_int status bit  |
|     |      |                | auto_s_access_ns_err_int_status      |
| 2   | W1C  | 0x0            | auto_s_access_ns_err_int status bit  |
| 1   |      |                | auto_ns_access_s_err_int_status      |
| 1   | W1C  | 0x0            | auto_ns_access_s_err_int status bit  |
| 0   | W1C  | 0x0            | finish_int_status                    |
| 0   | WIC  | 0,0            | finish_int status bit                |

#### EFUSE\_EFUSE\_USER\_CTRL

Address: Operational Base + offset (0x001c) EFUSE User Mode Control

| Bit   | Attr | <b>Reset Value</b> | Description                                                |
|-------|------|--------------------|------------------------------------------------------------|
| 31:26 | RO   | 0x0                | reserved                                                   |
| 25:16 | RW   | 0×000              | efuse_addr_user<br>efuse_addr bit control in user mode     |
| 15:4  | RO   | 0x0                | reserved                                                   |
| 3     | RW   | 0×1                | efuse_pgenb_user<br>efuse_pgenb bit control in user mode   |
| 2     | RW   | 0×0                | efuse_load_user<br>efuse_load bit control in user mode     |
| 1     | RW   | 0×0                | efuse_strobe_user<br>efuse_strobe bit control in user mode |
| 0     | RO   | 0×1                | efuse_csb_user<br>efuse_csb bit control in user mode       |

#### EFUSE\_EFUSE\_DOUT

Address: Operational Base + offset (0x0020) EFUSE Data Out

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit  | Attr | <b>Reset Value</b> | Description    |
|------|------|--------------------|----------------|
| 31:0 | RO   | 0x00000000         | efuse_dout     |
| 51.0 | κυ   | 0x00000000         | efuse data out |

#### EFUSE\_EFUSE\_AUTO\_CTRL

Address: Operational Base + offset (0x0024) EFUSE Auto Mode Control

| Bit   | Attr      | <b>Reset Value</b> | Description                                                                           |
|-------|-----------|--------------------|---------------------------------------------------------------------------------------|
| 31:26 | RO        | 0x0                | reserved                                                                              |
| 25:16 | RW        | 0×000              | efuse_addr_auto<br>efuse address in auto mode                                         |
| 15:2  | RO        | 0x0                | reserved                                                                              |
| 1     | RW        | 0×0                | p_r_mode<br>program and read control<br>0: programming mode<br>1: read mode           |
| 0     | R/W<br>SC | 0×0                | enb<br>enable of auto mode<br>0: disable<br>1: enable<br>Note, this bit is clear auto |

#### EFUSE\_T\_CSB\_P

Address: Operational Base + offset (0x0028) EFUSE CSB timing control in Program mode

| Bit   | Attr | <b>Reset Value</b> | Description                                          |  |  |
|-------|------|--------------------|------------------------------------------------------|--|--|
| 31:20 | RO   | 0x0                | reserved                                             |  |  |
| 19:16 | RO   | 0xf                | t_csb_p_s<br>csbstart delay time in programming mode |  |  |
| 15:10 | RO   | 0x0                | reserved                                             |  |  |
| 9:0   | RW   | 0x000              | t_csb_p_l<br>lasted time in programming mode         |  |  |

#### EFUSE\_T\_PGENB\_P

Address: Operational Base + offset (0x002c) EFUSE PGENB timing control in Program mode

| Bit   | Attr | Reset Value | Description                                               |
|-------|------|-------------|-----------------------------------------------------------|
| 31:20 | RO   | 0x0         | reserved                                                  |
| 19:16 | RW   | 0x0         | t_pgenb_p_s<br>pgenb start delay time in programming mode |
| 15:10 | RO   | 0x0         | reserved                                                  |
| 9:0   | RW   | 0x000       | t_pgenb_p_l<br>pgenb lasted time in programming mode      |

#### EFUSE\_T\_LOAD\_P

Address: Operational Base + offset (0x0030)

EFUSE LOAD timing control in Program mode

| Bit   | Attr | <b>Reset Value</b> | Description                                             |
|-------|------|--------------------|---------------------------------------------------------|
| 31:20 | RO   | 0x0                | reserved                                                |
| 19:16 | RW   | ()x()              | t_load_p_s<br>load start delay time in programming mode |
| 15:10 | RO   | 0x0                | reserved                                                |
| 9:0   | RW   | UX000              | t_load_p_l<br>load lasted time in programming mode      |

#### EFUSE\_T\_ADDR\_P

Address: Operational Base + offset (0x0034) EFUSE Address timing control in Program mode

| Bit   | Attr | <b>Reset Value</b> | Description                                  |
|-------|------|--------------------|----------------------------------------------|
| 31:20 | RO   | 0x0                | reserved                                     |
| 10.16 | RW   | $(0 \times 0)$     | t_addr_p_s                                   |
| 19.10 |      |                    | address start delay time in programming mode |
| 15:10 | RO   | 0x0                | reserved                                     |
| 9:0   | RW   | RM 10x000          | t_addr_p_l                                   |
| 9:0   |      |                    | address lasted time in programming mode      |

#### EFUSE\_T\_STROBE\_P

Address: Operational Base + offset (0x0038) EFUSE STROBE timing control in Program mode

| Bit   | Attr | <b>Reset Value</b> | Description                                                 |
|-------|------|--------------------|-------------------------------------------------------------|
| 31:20 | RO   | 0x0                | reserved                                                    |
| 19:16 | RW   | 0×0                | t_strobe_p_s<br>strobe start delay time in programming mode |
| 15:10 | RO   | 0x0                | reserved                                                    |
| 9:0   | RW   | 0×000              | t_strobe_p_l<br>strobe lasted time in programming mode      |

#### EFUSE\_T\_CSB\_R

Address: Operational Base + offset (0x003c) EFUSE CSB timing control in Read mode

| Bit   | Attr | <b>Reset Value</b> | Description                                    |
|-------|------|--------------------|------------------------------------------------|
| 31:20 | RO   | 0x0                | reserved                                       |
| 19:16 | RW   | 0×0                | t_csb_r_s<br>csb start delay time in read mode |
| 15:10 | RO   | 0x0                | reserved                                       |
| 9:0   | RW   | 0×000              | t_csb_r_l<br>csb lasted time in read mode      |

#### EFUSE\_T\_PGENB\_R

Address: Operational Base + offset (0x0040) EFUSE PGENB timing control in Read mode

| Bit   | Attr | <b>Reset Value</b> | Description                                        |
|-------|------|--------------------|----------------------------------------------------|
| 31:20 | RO   | 0x0                | reserved                                           |
| 19:16 | RW   | 0×0                | t_pgenb_r_s<br>pgenb start delay time in read mode |
| 15:10 | RO   | 0x0                | reserved                                           |
| 9:0   | RW   | 0×000              | t_pgenb_r_l<br>pgenb lasted time in read mode      |

#### EFUSE\_T\_LOAD\_R

Address: Operational Base + offset (0x0044) EFUSE LOAD timing control in Read mode

| Bit   | Attr | <b>Reset Value</b> | Description                        |
|-------|------|--------------------|------------------------------------|
| 31:20 | RO   | 0x0                | reserved                           |
| 10.16 | RW   | (0x()              | t_load_r_s                         |
| 19.10 |      |                    | load start delay time in read mode |
| 15:10 | RO   | 0x0                | reserved                           |
| 9:0   | RW   | W 10x000           | t_load_r_l                         |
|       |      |                    | load lasted time in read mode      |

#### EFUSE\_T\_ADDR\_R

Address: Operational Base + offset (0x0048) EFUSE ADDR timing control in Read mode

| Bit   | Attr | <b>Reset Value</b> | Description                           |
|-------|------|--------------------|---------------------------------------|
| 31:20 | RO   | 0x0                | reserved                              |
| 19:16 | RW   | 0x0                | t_addr_r_s                            |
| 19.10 |      | 0,0                | address start delay time in read mode |
| 15:10 | RO   | 0x0                | reserved                              |
| 9:0   | RW   | 0x000              | t_addr_r_l                            |
| 9.0   | KVV  | 0,000              | address lasted time in read mode      |

#### EFUSE\_T\_STROBE\_R

Address: Operational Base + offset (0x004c) EFUSE STROBE timing control in Read mode

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
| 31:20 | RO   | 0x0                | reserved                                             |
| 19:16 | RW   | ()X()              | t_strobe_r_s<br>strobe start delay time in read mode |
| 15:10 | RO   | 0x0                | reserved                                             |
| 9:0   | RW   | 0×000              | t_strobe_r_l<br>strobe lasted time in read mode      |

#### EFUSE\_REVISION

Address: Operational Base + offset (0x0050)

EFUSE Design Revision

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
| 31:8 | RO   | 0x0                | reserved    |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit | Attr | <b>Reset Value</b> | Description          |
|-----|------|--------------------|----------------------|
| 7:0 | RW   | 0x10               | revision             |
|     |      |                    | efuse design revsion |

### 12.5 Timing Diagram

• When efuse32×32 is in program(PGM) mode.

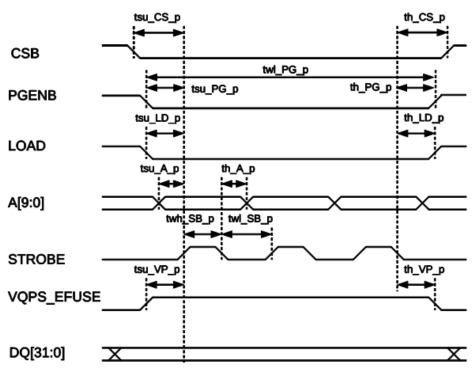



Fig. 12-2 efuse32  $\times$  32 timing diagram in program mode

• When efuse32×8 is in read mode.

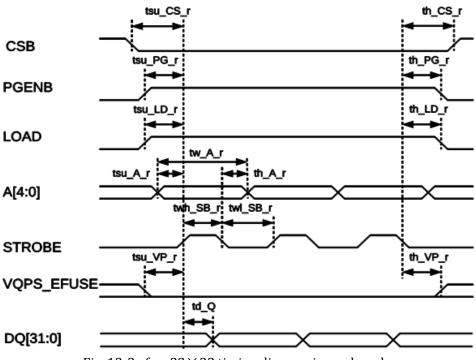



Fig. 12-3 efuse32  $\times$  32 timing diagram in read mode

The following table has shows the detailed value for timing parameters in the above diagram.

Table 12-2 eFuse timing parameters list

| Mode         | Item     | Description                                     | Min | Тур | Max  | Unit |
|--------------|----------|-------------------------------------------------|-----|-----|------|------|
| Read<br>Mode | twh_SB_r | Pulse width high of STROBE read strobe          | 20  |     | -    | ns   |
|              | twl_SB_r | Pulse width low of STROBE read strobe           | 15  |     | -    | ns   |
|              | tsu_A_r  | A[9:0] to STROBE setup time in read mode        | 25  |     | -    | ns   |
|              | th_A_r   | A[9:0] to STROBE hold time in read mode         | 3   |     | -    | ns   |
|              | tw_A_r   | A[9:0] pulse width while LOAD high in read mode | 48  |     | 100  | ns   |
|              | tsu_CS_r | CSB to STROBE setup time in read mode           | 16  |     | -    | ns   |
|              | th_CS_r  | CSB to STROBE hold time in read mode            | 6   |     | -    | ns   |
|              | tsu_PG_r | PGENB to STROBE setup time in read mode         | 14  |     | -    | ns   |
|              | th_PG_r  | PGENB to STROBE hold time in read mode          | 10  |     | -    | ns   |
|              | tsu_LD_r | LOAD to STROBE setup time in read mode          | 10  |     | -    | ns   |
|              | th_LD_r  | LOAD to STROBE hold time in read mode           | 7   |     | -    | ns   |
|              | tsu_VP_r | VQPS_EFUSE to STROBE setup time in read mode    | 20  |     | -    | ns   |
|              | th_VP_r  | VQPS_EFUSE to STROBE hold time in read mode     | 20  |     | -    | ns   |
|              | td_Q     | DQ[31:0] delay time after STROBE high           | 0   |     | 8    | ns   |
|              | twh_SB_p | Pulse width high of STROBE PGM strobe           | 9.8 | 10  | 10.2 | us   |
|              | twl_SB_p | Pulse width low of STROBE PGM strobe            | 15  |     | -    | ns   |
|              | tsu_A_p  | A[9:0] to STROBE setup time in PGM mode         | 12  |     | -    | ns   |
|              | th_A_p   | A[9:0] to STROBE hold time in PGM mode          | 3   |     | -    | ns   |
|              | tsu_CS_p | CSB to STROBE setup time in PGM mode            | 16  |     | -    | ns   |
|              | th_CS_p  | CSB to STROBE hold time in PGM mode             | 6   |     | -    | ns   |
| PGM<br>Mode  | tsu_PG_p | PGENB to STROBE setup time in PGM mode          | 14  |     | -    | ns   |
| moue         | th_PG_p  | PGENB to STROBE hold time in PGM mode           | 10  |     | -    | ns   |
|              | twl_PG_p | PGENB pulse width low (cumulative) in PGM mode  | -   |     | 100  | ms   |
|              | tsu_LD_p | LOAD to STROBE setup time in PGM mode           | 10  |     | -    | ns   |
|              | th_LD_p  | LOAD to STROBE hold time in PGM mode            | 7   |     | -    | ns   |
|              | tsu_VP_p | VQPS_EFUSE to STROBE setup time in PGM mode     | 20  |     | -    | ns   |
|              | th_VP_p  | VQPS_EFUSE to STROBE hold time in PGM mode      | 20  |     | -    | ns   |

### **12.6 Application Notes**

During usage of efuse, customers must pay more attention to the following items:

- 1. In condition of program(PGM) mode, VQPS\_EFUSE= 1.5V $\pm$ 10%.
- 2. Q0~Q7 will be reset to "0" once CSB at high.
- 3. No data access allowed at the rising edge of CSB.

4. All the program timing for each signal must be more than the value defined in the timing table. Please refer to the timing diagram of READ\_MODE and PGM\_MODE as well as the function description.

Configuration steps:

1. set csb(EFUSE\_CTRL[0]), pgenb(EFUSE\_CTRL[3]), load(EFUSE\_CTRL[2]) at proper value.

- 2. set addr(EFUSE\_CTRL[15:6]).
- 3. set strobe(EFUSE\_CTRL[1]).
- 4. stay for enough cycle. (Satisfy the timing parameter)
- 5. dis-assert strobe(EFUSE\_CTRL[1]).

set csb(EFUSE\_CTRL[0]), pgenb(EFUSE\_CTRL[3]), load(EFUSE\_CTRL[2]) at proper value.

7. read efuse\_data(EFUSE\_DOUT).

# **Chapter 13 WatchDog**

# 13.1 Overview

Watchdog Timer (WDT) is an APB slave peripheral that can be used to prevent system lockup that may becaused by conflicting parts or programs in a SoC.The WDT would generate interrupt or reset signal when it's counter reaches zero, then a reset controller would reset the system.

WDT supports the following features:

- 32 bits APB bus width
- WDT counter's clock is pclk
- 32 bits WDT counter width
- Counter counts down from a preset value to 0 to indicate the occurrence of a timeout
- WDT can perform two types of operations when timeout occurs:
  - Generate a system reset
  - First generate an interrupt and if this is not cleared by the service routine by the time a second timeout occurs then generate a system reset
- Programmable reset pulse length
- Total 16 defined-ranges of main timeout period

# **13.2 Block Diagram**

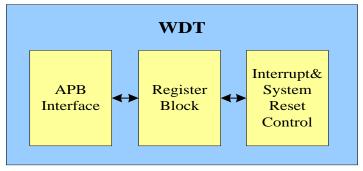



Fig. 13-1 WDT block diagram

## **Block Descriptions:**

- APB Interface
- The APB Interface implements the APB slave operation. Its data bus width is 32 bits.
- Register Block
- A register block that read coherence for the current count register.
- Interrupt & system reset control

An interrupt/system reset generation block is comprised of a decrementing counter and control logic.

# **13.3 Function Description**

# 13.3.1 Operation

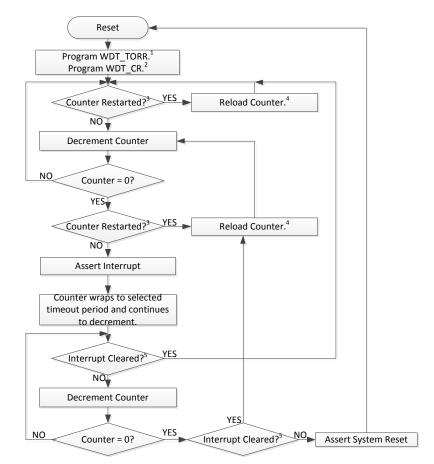
#### Counter

The WDT counts from a preset (timeout) value in descending order to zero. When the counter reaches zero, depending on the output response mode selected, either a system reset or an interrupt occurs. When the counter reaches zero, it wraps to the selected timeout value and continues decrementing. The user can restart the counter to its initial value. This is programmed by writing to the restart register at any time. The process of

restarting the watchdog counter is sometimes referred as kicking the dog. As a safety feature to prevent accidental restarts, the value 0x76 must be written to the Current Counter Value Register (WDT\_CRR).

#### Interrupts

The WDT can be programmed to generate an interrupt (and then a system reset) when a timeout occurs. When a 1 is written to the response mode field (RMOD, bit 1) of the Watchdog Timer Control Register (WDT\_CR), the WDT generates an interrupt. If it is not cleared by the time a second timeout occurs, then it generates a system reset. If a restart occurs at the same time the watchdog counter reaches zero, an interrupt is not generated.


#### **System Resets**

When a 0 is written to the output response mode field (RMOD, bit 1) of the Watchdog Timer Control Register (WDT\_CR), the WDT generates a system reset when a timeout occurs.

#### **Reset Pulse Length**

The reset pulse length is the number of pclk cycles for which a system reset is asserted. When a system reset is generated, it remains asserted for the number of cycles specified by the reset pulse length or until the system is reset. A counter restart has no effect on the system reset once it has been asserted.

## **13.3.2 Programming sequence** Operation Flow Chart (Response mode=1)



1. Select required timeout period.

2. Set reset pulse length, response mode, and enable WDT.

- 3. Write 0x76 to WDT\_CRR.
- 4. Starts back to selected timeout period.
- 5. Can clear by reading WDT\_EOI or restarting (kicking) the counter by writing 0x76 to WDT\_CRR.

Fig. 13-2 WDT Operation Flow

# **13.4 Register Description**

This section describes the control/status registers of the design.

## 13.4.1 Registers Summary

| Name     | Offset | Size | Reset<br>Value | Description                    |
|----------|--------|------|----------------|--------------------------------|
| WDT_CR   | 0x0000 | W    | 0x0000000a     | Control Register               |
| WDT_TORR | 0x0004 | W    | 0x00000000     | Timeout range Register         |
| WDT_CCVR | 0x0008 | W    | 0x00000000     | Current counter value Register |
| WDT_CRR  | 0x000c | W    | 0x00000000     | Counter restart Register       |
| WDT_STAT | 0x0010 | W    | 0x00000000     | Interrupt status Register      |
| WDT_EOI  | 0x0014 | W    | 0x00000000     | Interrupt clear Register       |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

# **13.4.2 Detail Register Description**

#### WDT\_CR

Address: Operational Base + offset (0x0000) Control Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                           |
|------|------|--------------------|-----------------------------------------------------------------------|
| 31:5 | RO   | 0x0                | reserved                                                              |
|      |      |                    | rst_pluse_lenth<br>Reset pulse length.                                |
|      |      |                    | This is used to select the number of pclk cycles                      |
|      |      |                    | for which the system reset stays asserted.                            |
|      |      |                    | 000: 2 pclk cycles                                                    |
| 4:2  | RW   | 0x2                | 001: 4 pclk cycles                                                    |
| 4.2  |      |                    | 010: 8 pclk cycles                                                    |
|      |      |                    | 011: 16 pclk cycles                                                   |
|      |      |                    | 100: 32 pclk cycles                                                   |
|      |      |                    | 101: 64 pclk cycles                                                   |
|      |      |                    | 110: 128 pclk cycles                                                  |
|      |      |                    | 111: 256 pclk cycles                                                  |
|      |      |                    | resp_mode                                                             |
|      |      |                    | Response mode.                                                        |
| 1    | RW   | 0x1                | Selects the output response generated to a timeout.                   |
| 1    |      |                    | 0: Generate a system reset.                                           |
|      |      |                    | 1: First generate an interrupt and if it is not cleared by the time a |
|      |      |                    | second timeout occurs then generate a system reset.                   |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | RW   | 0×0                | <ul> <li>wdt_en</li> <li>WDT enable</li> <li>Writable when the configuration parameter WDT_ALWAYS_EN=0,</li> <li>otherwise, it is readable. This bit is used to enable and disable the</li> <li>DW_apb_wdt. When disabled, the counter dose not</li> <li>decrement .Thus, no interrupt or system reset are generated.</li> <li>Once this bit has been enabled, it can be cleared only by a</li> <li>system reset.</li> <li>0: WDT disabled;</li> <li>1: WDT enabled.</li> </ul> |

### WDT\_TORR

Address: Operational Base + offset (0x0004) Timeout range Register

| Bit  | Attr | <b>Reset Value</b> | Description                        |
|------|------|--------------------|------------------------------------|
| 31:4 | RO   | 0x0                | reserved                           |
|      |      |                    |                                    |
|      |      |                    | 1110: 0x3ffffff<br>1111: 0x7ffffff |

## WDT\_CCVR

Address: Operational Base + offset (0x0008) Current counter value Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                      |
|------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RO   | 0x00000000         | cur_cnt<br>Current counter value<br>This register, when read, is the current value of the internal<br>counter. This value is read coherently whenever it is read |

# WDT\_CRR

Address: Operational Base + offset (0x000c)

Counter restart Register

| Bit  | Attr    | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                   |
|------|---------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO      | 0x0                | reserved                                                                                                                                                                                                                                                      |
| 7:0  | W1<br>C | 0x00               | cnt_restart<br>Counter restart<br>This register is used to restart the WDT counter. As a safety<br>feature to prevent accidental restarts, the value 0x76 must be<br>written. A restart also clears the WDT interrupt. Reading this<br>register returns zero. |

#### WDT\_STAT

Address: Operational Base + offset (0x0010)

Interrupt status Register

| Bit  | Attr     | Reset Value | Description                                          |
|------|----------|-------------|------------------------------------------------------|
| 31:1 | RO       | 0x0         | reserved                                             |
|      |          |             | wdt_status                                           |
| 0    | 0 RO 0x0 | 0.20        | This register shows the interrupt status of the WDT. |
| 0    |          | 0.00        | 1: Interrupt is active regardless of polarity;       |
|      |          |             | 0: Interrupt is inactive.                            |

#### WDT\_EOI

Address: Operational Base + offset (0x0014)

Interrupt clear Register

| Bit  | Attr   | <b>Reset Value</b> | Description                                                    |
|------|--------|--------------------|----------------------------------------------------------------|
| 31:1 | RO     | 0x0                | reserved                                                       |
|      |        |                    | wdt_int_clr                                                    |
| 0    | RC 0x0 | 0×0                | Clears the watchdog interrupt.                                 |
| U    |        | 0.00               | This can be used to clear the interrupt without restarting the |
|      |        |                    | watchdog counter.                                              |

# **13.5 Application Notes**

Please refer to the function description section

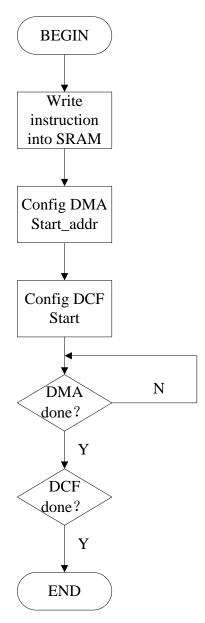



Fig. 13-3 DCF work flow

# 13.5.1 Instruction format

One piece of instruction, which is 64bit, should consist of the information of :

- 1、 Address
- 2、 Data
- 3、 Command

| 63:56    | 55:34      | 33:32   | 31:0 |  |
|----------|------------|---------|------|--|
| cmd[7:0] | addr[23:2] | (r1,r0) | data |  |

The overall principle of instruction information is:

1. addr[31:24] is reserved for 8bit command, which represents the corresponding operation

- 2. addr[1:0] is used to indicate operation of r0 or r1
- 3. addr[23:2] is the real bus address. If 0, it means no bus operation ; if not 0, it means a combination of 2 instructions with a bus operation ahead and an arithmetic c operation followed in order to improve efficiency.

For example, let us analyze the instruction: 01620002\_00000003

- 1. command is 1, which represents an bitwise AND operation
- 2、 address is 0xff620000, represents a bus-read operation
- 3. r1 is indicated, represents that the middle result is stored into internal register r1.
- 4. Data is 0x00000003, represents that the operation value is 0x3
- So, this instruction will do following operations:
- 1. LDR #0xff620000, r1 ; //read register 0xff620000, and store value into r1

2. AND r1, 0x0000003 ; //r1 is bitwise AND with 0x3, and re-store the result.

The following table lists all the supported command

| INSTR | cmd[7:0] | addr[23:2] | R1 | RO | Data[31:0] |                              |
|-------|----------|------------|----|----|------------|------------------------------|
| IDLE  | 8' h00   | NA         | NA | NA | #data      | IDL #data                    |
|       |          |            | 0  | 0  | NA         | ldr #addr r0 ; ldr #addr r1  |
|       |          | #addr      | 0  | 1  | #data      | ldr #addr r0 ; AND r0 #data  |
|       |          | #auur      | 1  | 0  | #data      | ldr #addr r1 ; AND r1 #data  |
| AND   | 8' h01   |            | 1  | 1  | NA         | ldr #addr r1 ; AND r1 r0     |
| AND   | 0 1101   |            | 0  | 0  | NA         | mov r0 r0 ; mov r1 r1        |
|       |          | A11 0      | 0  | 1  | #data      | AND r0 #data                 |
|       |          | AII U      | 1  | 0  | #data      | AND r1 #data                 |
|       |          |            | 1  | 1  | NA         | AND r1 r0                    |
|       |          |            | 0  | 0  | NA         | ldr #addr r0 ; ldr #addr r1  |
|       |          | #addr      | 0  | 1  | #data      | ldr #addr r0 ; OR r0 #data   |
|       |          | #auui      | 1  | 0  | #data      | ldr #addr r1 ; OR r1 #data   |
| OR    | 8' h02   |            | 1  | 1  | NA         | ldr #addr r1 ; OR r1 r0      |
| UK    | 0 1102   | A11 0      | 0  | 0  | NA         | mov r0 r0 ; mov r1 r1        |
|       |          |            | 0  | 1  | #data      | OR rO #data                  |
|       |          |            | 1  | 0  | #data      | OR r1 #data                  |
|       |          |            | 1  | 1  | NA         | OR r1 r0                     |
|       |          |            | 0  | 0  | NA         | ldr #addr r0 ; ldr #addr r1  |
|       |          | #addr      | 0  | 1  | #data      | ldr #addr r0 ; XOR r0 ^#data |
|       |          | #auui      | 1  | 0  | #data      | ldr #addr r1 ; XOR r1 ^#data |
| INV   | 8'h03    |            | 1  | 1  | #data      | ldr #addr r1 ; XOR r1 r0     |
| TINK  | 0 1105   |            | 0  | 0  | NA         | mov r0 r0 ; mov r1 r1        |
|       |          | A11 0      | 0  | 1  | NA         | INV r0                       |
|       |          | AII U      | 1  | 0  | NA         | INV R1                       |
|       |          |            | 1  | 1  | NA         | SWP r0 r1                    |
|       |          |            | 0  | 0  | NA         | ldr #addr r0 ; ldr #addr r1  |
|       |          | #addr      | 0  | 1  | #data      | ldr #addr r0 ; LSR r0 #data  |
|       |          | #auur      | 1  | 0  | #data      | ldr #addr r1 ; LSR r1 #data  |
| LSR   | 8' h04   |            | 1  | 1  | NA         | ldr #addr r1 ; LSR r1 r0     |
|       |          |            | 0  | 0  | NA         | mov r0 r0 ; mov r1 r1        |
|       |          | A11 0      | 0  | 1  | #data      | LSR r0 #data                 |
|       |          |            | 1  | 0  | #data      | LSR r1 #data                 |

|          |        |        | 1 | 1 | NA    | LSR r1 r0                          |
|----------|--------|--------|---|---|-------|------------------------------------|
|          |        | #- 11- | 0 | 0 | NA    | ldr #addr r0 ; ldr #addr r1        |
|          |        |        | 0 | 1 | #data | ldr #addr r0 ; RSR r0 #data        |
|          |        | #addr  | 1 | 0 | #data | ldr #addr r1 ; RSR r1 #data        |
| RSR      | 8'h05  |        | 1 | 1 | NA    | ldr #addr r1 ; RSR r1 r0           |
| КЗК      | 6 1105 |        | 0 | 0 | NA    | mov r0 r0 ; mov r1 r1              |
|          |        | A11 0  | 0 | 1 | #data | RSR rO #data                       |
|          |        | AII U  | 1 | 0 | #data | RSR r1 #data                       |
|          |        |        | 1 | 1 | NA    | RSR r1 r0                          |
|          |        |        | 0 | 0 | NA    | ldr #addr r0 ; ldr #addr r1        |
|          |        | #addr  | 0 | 1 | #data | ldr #addr r0 ; CMPEQ r0 #data,flag |
|          |        | #auui  | 1 | 0 | #data | ldr #addr r0 ; CMPEQ r1 #data,flag |
| CMPEQ    | 8'h06  |        | 1 | 1 | NA    | ldr #addr r0 ; CMPEQ r1 r0,flag    |
| UNIFEQ   | 0 1100 |        | 0 | 0 | NA    | mov r0 r0 ; mov r1 r1              |
|          |        | A11 0  | 0 | 1 | #data | CMPEQ rO #data, flag               |
|          |        | AII U  | 1 | 0 | #data | CMPEQ r1 #data, flag               |
|          |        |        | 1 | 1 | NA    | CMPEQ r1 r0, flag                  |
|          |        |        | 0 | 0 | NA    | ldr #addr r0 ; ldr #addr r1        |
|          |        | #addr  | 0 | 1 | #data | ldr #addr r0 ; CMPNE r0 #data,flag |
|          |        | #auui  | 1 | 0 | #data | ldr #addr r1 ; CMPNE r1 #data,flag |
| CMPNE    | 8'h07  |        | 1 | 1 | NA    | ldr #addr r1 ; CMPNE r1 r0,flag    |
| CMIF INE | 0 1107 | A11 0  | 0 | 0 | NA    | mov r0 r0 ; mov r1 r1              |
|          |        |        | 0 | 1 | #data | CMPNE rO #data, flag               |
|          |        | AII U  | 1 | 0 | #data | CMPNE r1 #data, flag               |
|          |        |        | 1 | 1 | NA    | CMPNE r1 r0, flag                  |
|          |        |        | 0 | 0 | NA    | ldr #addr r0 ; ldr #addr r1        |
|          |        | #addr  | 0 | 1 | #data | ldr #addr r0 ; ADD r0 #data        |
|          |        | Hadui  | 1 | 0 | #data | ldr #addr r0 ; ADD r1 #data        |
| ADD      | 8'h08  |        | 1 | 1 | NA    | ldr #addr r0 ; ADD r1 r0           |
| ADD      | 0 1100 |        | 0 | 0 | NA    | mov r0 r0 ; mov r1 r1              |
|          |        | A11 0  | 0 | 1 | #data | ADD rO #data                       |
|          |        | AII U  | 1 | 0 | #data | ADD r1 #data                       |
|          |        |        | 1 | 1 | NA    | ADD r1 r0                          |
|          |        |        | 0 | 0 | NA    | ldr #addr r0 ; ldr #addr r1        |
|          |        | #addr  | 0 | 1 | #data | ldr #addr r0 ; SUB r0 #data        |
|          |        | Hadui  | 1 | 0 | #data | ldr #addr r0 ; SUB r1 #data        |
| SUB      | 8'h09  |        | 1 | 1 | NA    | ldr #addr r0 ; SUB r1 r0           |
| 200      | 0 1109 |        | 0 | 0 | NA    | mov r0 r0 ; mov r1 r1              |
|          |        | A11 0  | 0 | 1 | #data | SUB r0 #data                       |
|          |        | ATT U  | 1 | 0 | #data | SUB r1 #data                       |
|          |        |        | 1 | 1 | NA    | SUB r1 r0                          |
|          |        |        | 0 | 0 | #data | STR #addr #data                    |
| STR      | 8' h0a | #addr  | 0 | 1 | NA    | STR #ADDR r0                       |
| ALC      | o nua  | #auur  | 1 | 0 | NA    | STR #ADDR r1                       |
|          |        |        | 1 | 1 | #data | STR #addr #data                    |

|        |        |       | 0    | 0    | #data | STR #addr #data                    |
|--------|--------|-------|------|------|-------|------------------------------------|
| 100    |        |       | 0    | 1    | NA    | STR #ADDR r0                       |
| ISB    | 8'h0b  | #addr | 1    | 0    | NA    | STR #ADDR r1                       |
|        |        |       | 1    | 1    | #data | STR #addr #data                    |
|        |        |       | 0    | 1    | #data | poll r0=#data, repeat last command |
| POLEQ  | 8' h0c | NA    | 1    | 0    | #data | poll r1=#data, repeat last command |
|        |        |       | 1    | 1    | NA    | poll r1=r0, repeat last command    |
|        |        |       | 0    | 1    | #data | poll r0!=#data,repeat last command |
| POLNEQ | 8' h0d | NA    | 1    | 0    | #data | poll r1!=#data,repeat last command |
|        |        |       | 1    | 1    | NA    | poll r1!=r0, repeat last command   |
|        |        | NA    | NA   | NA   | #data | brr #data,?flag (upwards)          |
| BL_U   | 8' h0e | NA    | 0    | 1    | NA    | brr r0, ?flag                      |
|        |        | NA    | 1    | 0    | NA    | brr r1, ?flag                      |
|        |        | NA    | NA   | NA   | #data | brr #data,?flag (downwards)        |
| BL_D   | 8' h0f | NA    | 0    | 1    | NA    | brr r0, ?flag                      |
|        |        | NA    | 1    | 0    | NA    | brr r1, ?flag                      |
| DMA_S  | 8' h10 | NA    | NA   | NA   | #data | set dma_start_addr = #data         |
| DMA_D  | 8'h11  | NA    | NA   | NA   | #data | set dma_end_addr = #data           |
| DMA DO | 8'h12  | NA    | NA   | NA   | #data | set dma_length = #data (byte)      |
|        | 0 1112 | NA NA | 11/1 | 11/1 | πυαια | dma_start                          |
| END    | 8' hed | NA    | NA   | NA   | NA    | End of instruction                 |

# 13.5.2 Hardware trigger flow

When DCF\_CTRL.vop\_hw\_en is enabled, DCF can be triggered by any of the followed three sources : dma\_finish  $\$  vop\_standby  $\$  vop\_clkgate\_en $_{\circ}$ 

DCF is edge sensitive for dma\_finish signal, and level sensitive for vop\_standby and vop\_clkgate\_en signal.

When DCF is working, a dcf\_idle is driven to low to indicate vop not to exit vop\_standby status. And when DCF is not working, dcf\_idle is driven to high for SOC and VOP to inquire.

# **Chapter 14 Timer**

# 14.1 Overview

Timer is a programmable timer peripheral. This component is an APB slave device. In RK3328 there are 6 Timers and 2 Secure Timers(STimer).

Timer5 and STimer0~1 count up from zero to a programmed value and generate an interrupt when the counter reaches the programmed value.

Timer0~4 count down from a programmed value to zero and generate an interrupt when the counter reaches zero.

Timer supports the following features:

- Timer0~5 is used for no-secure, STimer0~1 is used for secure.
- Two operation modes: free-running and user-defined count.
- Maskable for each individual interrupt.

# 14.2 Block Diagram

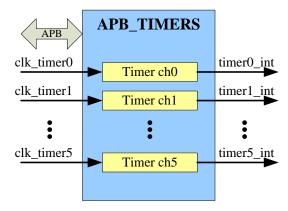



Fig. 14-1 Timer Block Diagram

The above figure shows the architecture of the APB timers (include six programmable timer channels) that in the bus subsystem. The Stimers that in the bus subsystem only include two programmable timer channels.

# **14.3 Function Description**

## 14.3.1 Timer clock

TIMER0~ TIMER5 and STIMER0~1 are in the pd\_bus subsystem. The timer clock is 24MHz OSC.

## 14.3.2 Programming sequence

1. Initialize the timer by the TIMERn\_CONTROLREG ( $0 \le n \le 5$ ) register:

- Disable the timer by writing a "0" to the timer enable bit (bit 0). Accordingly, the timer\_en output signal is de-asserted.
- Program the timer mode—user-defined or free-running—by writing a "0" or "1" respectively, to the timer mode bit (bit 1).
- Set the interrupt mask as either masked or not masked by writing a "0" or "1" respectively, to the timer interrupt mask bit (bit 2).

2. Load the timer count value into the TIMERn\_LOAD\_COUNT1 ( $0 \le n \le 5$ ) and TIMERn\_LOAD\_COUNT0 ( $0 \le n \le 5$ ) register.

3. Enable the timer by writing a "1" to bit 0 of TIMERn\_CONTROLREG ( $0 \le n \le 5$ ).

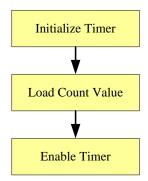



Fig. 14-2 Timer Usage Flow

# 14.3.3 Loading a timer count value

For the descending Timers(Timer0~4). The initial value for each timer—that is, the value from which it counts down—is loaded into the timer using the load count register (TIMERn\_LOAD\_COUNT1 and TIMERn\_ LOAD\_COUNT0). Two events can cause a timer to load the initial value from its load count register:

- Timer is enabled after reset or disabled.
- Timer counts down to 0, when timer is configured into free-running mode.

For the incremental Timers(Timer5 and STimer0~1).The initial value for each timer is zero. The count register will count up to the value loaded in the register TIMERn\_LOAD\_COUNT1 and TIMERn\_ LOAD\_COUNT0. Two events can cause a timer to load zero:

- Timer is enabled after reset or disabled.
- Timer counts up to the value stored in TIMERn\_LOAD\_COUNT1 and TIMERn\_ LOAD\_COUNT0, when timer is configured into free-running mode.

# 14.3.4 Timer mode selection

- User-defined count mode Timer loads TIMERn\_LOAD\_COUNT1 and TIMERn\_LOAD\_ COUNT0 registers (for descending timers) or zero (for incremental timers) as initial value. When the timer counts down to 0 (for descending timers) or counts up to the value in TIMERn\_LOAD\_COUNT1 and TIMERn\_LOAD\_COUNT0 (for incremental timers), it will not automatically reload the count register. User need to disable timer firstly and follow the programming sequence to make timer work again.
- Free-running mode Timer loads the TIMERn\_LOAD\_COUNT1 and TIMERn\_LOAD\_COUNT0(for descending timers) or zero (for incremental timers)register as initial value. Timer will automatically reload the count register, when timer counts down to 0 (for descending timers) or counts up to the value in TIMERn\_LOAD\_COUNT1 and TIMERn\_LOAD\_COUNT0 (for incremental timers).

# **14.4 Register Description**

This section describes the control/status registers of the design. Software should read and write these registers using 32-bits accesses.

# 14.4.1 Registers Summary

| Name                    | Offset | Size | <b>Reset Value</b> | Description                 |
|-------------------------|--------|------|--------------------|-----------------------------|
| TIMER_n_LOAD_COUNT0     | 0x0000 | W    | 0x00000000         | Timer n Load Count Register |
| TIMER_n_LOAD_COUNT1     | 0x0004 | W    | 0x00000000         | Timer n Load Count Register |
| TIMER n CURRENT VALUE0  | 0x0008 | w    | 0×00000000         | Timer n Current Value       |
| TIMER_II_CORRENT_VALUEU | 00000  |      |                    | Register                    |
| TIMER n CURRENT VALUE1  | 0x000c | W    | 0x00000000         | Timer n Current Value       |
| TIMER_II_CORRENT_VALUEI | 00000  |      |                    | Register                    |
| TIMER_n_CONTROLREG      | 0x0010 | W    | 0x00000000         | Timer n Control Register    |
| TIMER_n_INTSTATUS       | 0x0018 | W    | 0x00000000         | Timer Interrupt Stauts      |
| TIMER_II_INTSTATOS      | 0X0018 |      | 0x00000000         | Register                    |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

# 14.4.2 Detail Register Description

## TIMER\_n\_LOAD\_COUNT0

Address: Operational Base + offset (0x00)

Timer n Load Count Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                    |
|------|------|--------------------|----------------------------------------------------------------|
|      |      |                    | load_count_low bits                                            |
| 31:0 | RW   | 0x00000000         | Low 32 bits value to be loaded into Timer n. This is the value |
|      |      |                    | from which counting commences.                                 |

#### TIMER\_n\_LOAD\_COUNT1

Address: Operational Base + offset (0x04)

Timer n Load Count Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                               |
|------|------|--------------------|---------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | load_count_high bits<br>High 32 bits value to be loaded into Timer n. This is the value<br>from which counting commences. |

#### TIMER\_n\_CURRENT\_VALUE0

Address: Operational Base + offset (0x08)

Timer n Current Value Register

| Bit     | Attr              | <b>Reset Value</b>                       | Description |
|---------|-------------------|------------------------------------------|-------------|
| 31:0    | 31:0 RO 0x0000000 | current_cnt_lowbits                      |             |
| 31:0 RU | 0x00000000        | Low 32 bits of current value of timer n. |             |

#### TIMER\_n\_CURRENT\_VALUE1

Address: Operational Base + offset (0x0c) Timer n Current Value Register

| Bit               | Attr           | <b>Reset Value</b>                      | Description                               |
|-------------------|----------------|-----------------------------------------|-------------------------------------------|
| 31:0              | 31:0 RO 0x0000 | 0x00000000                              | current_cnt_highbits                      |
| 51:0 RO 0X0000000 |                | 0,0000000000000000000000000000000000000 | High 32 bits of current value of timer n. |

### TIMER\_n\_CONTROLREG

Address: Operational Base + offset (0x10)

Timer n Control Register

| Bit  | Attr | <b>Reset Value</b> | Description                |
|------|------|--------------------|----------------------------|
| 31:3 | RO   | 0x0                | reserved                   |
|      |      |                    | int_en                     |
| 2    | RW   | 0x0                | Timer interrupt mask       |
| Z    | RVV  | UXU                | 0: mask                    |
|      |      |                    | 1: not mask                |
|      |      | W 0x0              | timer_mode                 |
| 1    | RW   |                    | Timer mode.                |
| 1    | ĸw   |                    | 0: free-running mode       |
|      |      |                    | 1: user-defined count mode |
|      |      |                    | timer_en                   |
| 0    | RW   | V 0x0              | Timer enable.              |
| 0    | K VV |                    | 0: disable                 |
|      |      |                    | 1: enable                  |

#### TIMER\_n\_INTSTATUS

Address: Operational Base + offset (0x18) Timer Interrupt Stauts Register

| -    |        |                    |                                                          |  |  |  |  |
|------|--------|--------------------|----------------------------------------------------------|--|--|--|--|
| Bit  | Attr   | <b>Reset Value</b> | Description                                              |  |  |  |  |
| 31:1 | RO     | 0x0                | reserved                                                 |  |  |  |  |
|      | W1     |                    | int_pd                                                   |  |  |  |  |
| 0    | 0 0 0x | 0x0                | This register contains the interrupt status for timer n. |  |  |  |  |
| C    | C      |                    | Write 1 to this register will clear the interrupt.       |  |  |  |  |

# **14.5 Application Notes**

In the chip, the timer\_clk is from 24MHz OSC, asynchronous to the pclk. When user disables the timer enables bit (bit 0 of TIMERn\_CONTROLREG ( $0 \le n \le 5$ )), the timer en output signal is de-asserted, and timer\_clk will stop. When user enables the timer, the timer\_en signal is asserted and timer\_clk will start running.

The application is only allowed to re-config registers when timer\_en is low.

| timer_clk |      |          |
|-----------|------|----------|
| timer_en  | \$\$ | <u> </u> |

Fig. 14-3 Timing between timer\_en and timer\_clk Please refer to function description section for the timer usage flow.

# Chapter 15 Transport Stream Processing Module (TSP)

# **15.1 Overview**

The Transport Stream Processing Module(TSP) is designed for processing Transport Stream Packets, including receiving TS packets, PID filtering, TS descrambling, De-multiplexing and TS outputting. Processed data are transferred to memory buffer which are continued to be processing by software.

TSP supports the following features:

- Supports 1 TS input channels
- Supports 4 TS Input Mode: sync/valid mode in the case of serial TS input; nosync/valid mode, sync/valid, sync/burst mode in the case of parallel TS input
- Supports 2 TS sources: demodulators and local memory
- Supports 1 Built-in PTIs(Programmable Transport Interface) to process TS simultaneously
- Supports 1 PVR(Personal Video Recording) output channel
- 1 built-in multi-channel DMA Controller
- Support DMA LLP transfer
- Each PTI supports
  - 64 PID filters
  - TS descrambling with 16 sets of Control Word under CSA v2.0 standard, up to 104Mbps
  - 16 PES/ES filters with PTS/DTS extraction and ES start code detection
  - 4/8 PCR extraction channels
  - 64 Section filters with CRC check, and three interrupt mode: stop per unit, fullstop, recycle mode with version number check
  - PID done and error interrupts for each channel
  - PCR/DTS/PTS extraction interrupt for each channel
- Support 32 bit AXI MMU.

# **15.2 Block Diagram**

The TSP wrapper comprises of following components:

- TSP module (include: AHB slave, register block ,PTI ,DMAC, AHB master)
- AHB/AXI bridge
- 32bit AXI MMU

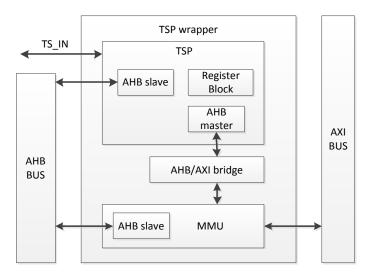



Fig. 15-1 TSP architecture

## AHB Slave INTERFACE

The host processor can get access to the TSP and MMU register block through AHB slave interface. The slave interface supports 32bit access.

### **Register block**

All registers in the TSP are addressed at 32-bit boundaries to remain consistent with the AHB bus. Where the physical size of any register is less than 32-bits wide, the upper unused bits of the 32-bit boundary are reserved. Writing to these bits has no effect; reading from these bits returns 0.

### PTI

Most of the TS processing are dealt with PTI. TS packets are re-synchronized, filtered, descrambled and demultiplexing, and the processed packets are transferred to memory buffer to be processed further by software. The embedded TS in interface can receive TS packets by connecting to a compliant TS demodulator. TS stream stored in the local memory is another source to fed into PTI through by using LLP DMA mode.

## DMAC

The DMAC performs all DMA transfers which get access to memory.

## AHB/AXI bridge

Convert AHB master to AXI master.

## MMU

Support AXI interface,4K page size and TLB pre-fetch. Data bus width is 32 bit.

# **15.3 Function Description**

# 15.3.1 TS Stream of TS\_IN Interface

TS\_IN interface supports 4 input TS stream mode: sync/valid serial mode, sync/valid parallel mode, sync/burst parallel mode, nosync/valid parallel mode.

## A.Sync/Valid Serial Mode

In this mode, TS\_IN interface takes use of TSI\_SYNC and TSI\_VALID clocked with TSI\_CLK signal to sample input serial TS packet data.

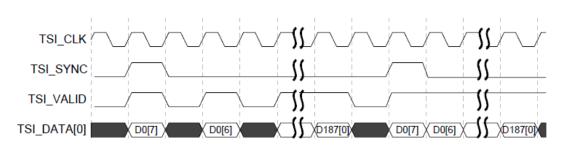



Fig. 15-2 Sync/Valid Serial Mode with Msb-Lsb Bit Ordering

TSI\_SYNC must be active high together with TSI\_VALID when indicating the first valid bit of a TS packet, and TSI\_VALID indicates the 188\*8 valid bits of a TS packet. TSI supports both msb-lsb and lsb-msb bit ordering.

### **B. Sync/Valid Parallel Mode**

In this mode, TS\_IN interface takes use of TSI\_SYNC and TSI\_VALID clocked with TSI\_CLK signal to sample input parallel TS packet data.

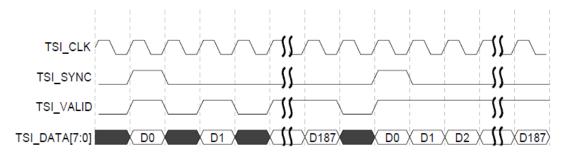



Fig. 15-3 Sync/valid Parallel Mode

TSI\_SYNC must be active high together with TSI\_VALID when indicating the first valid byte of a TS packet, and TSI\_VALID indicates the 188 valid byte of a TS packet.

## C. Sync/Burst Parallel Mode

In this mode, TSI only takes use of TSI\_SYNC to sample input parallel TS packet data.

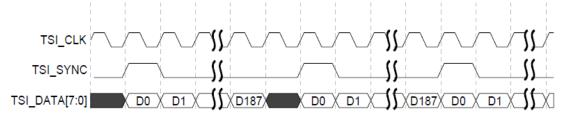
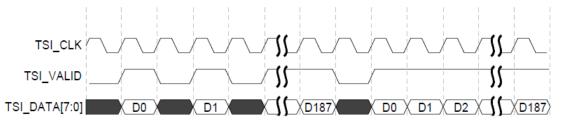





Fig. 15-4 Sync/Burst Parallel Mode

When active high, TSI\_SYNC implies the first valid byte of a TS packet and remaining 187 valid bytes of a TS packet are upcoming within the following successive 187 clock cycles.

#### D. Nosync/Valid Parallel Mode

In this mode, TSI only takes uses of TSI\_VALID to sample input parallel TS packet data.





When active high, TSI\_VALID implies a valid byte of a TS packet.

# 15.3.2 TS output of TS Out Interface

TS out interface transmit the TS data in two mode: serial mode and parallel mode. In the serial mode, the bit order can be lsb-msb or msb-lsb.

The TS\_SYNC will be active high when indicating the header of the TS packets, and it only lasts for one cycle. TS\_VALID will be active high when the output TS data is valid. The output data is 188 byte TS packet data.

TS out interface also stamp the TS output stream with new PCR value, making PCR adjustment. PCR is used to measure the transport rate.

$$PCR(i) = PCR\_base(i) \times 300 + PCR\_ext(i)$$

where:

 $PCR\_base(i) = ((system\_clock\_frequency \times t(i)) DIV 300) \% 2^{33}$ 

PCR  $ext(i) = ((system \ clock \ frequency \times t(i)) \ DIV 1) \% 300$ 

 $transport\_rate(i) = \frac{((i' - i'') \times system\_clock\_frequency)}{PCR(i') - PCR(i'')}$ 

### Where

i' is the index of the byte containing the last bit of the immediately following program\_clock\_reference\_base field applicable to the program being decoded. i is the is the index of any byte in the Transport Stream for i''< i < i'. i''is the index of the byte containing the last bit of the most recent program\_clock\_reference\_base fieldapplicable to the program being decoded. System clock is 27Mhz.

# 15.3.3 Demux and descrambling

Each PTI has 64 PID channels to deal with demultiplexing and descrambling operation. The PTI can descramble the TS Packets which are scrambled with CSA v2.0 standard. The TS packets can be scrambled either in TS level or PES level.

The demux module can do the section filtering, pes filtering and es filtering, or directly output TS packets.

# **15.4 Register Description**

| Name              | Offset | Size | Reset<br>Value | Description                   |
|-------------------|--------|------|----------------|-------------------------------|
| TSP_GCFG          | 0x0000 | W    | 0x00000000     | Global Configuration Register |
| TSP_PVR_CTRL      | 0x0004 | W    | 0x00000000     | PVR Control Register          |
| TSP_PVR_LEN       | 0x0008 | W    | 0x00000000     | PVR DMA Transaction Length    |
| TSP_PVR_BASE_ADDR | 0x000c | w    | 0x000000000    | PVR DMA transaction starting  |
| ISP_PVR_BASE_ADDR | 0x0000 | vv   |                | address                       |
|                   | 0.0010 | ۱۸/  | 0x00000000     | PVR DMA Interrupt Status      |
| TSP_PVR_INT_STS   | 0x0010 | W    |                | Register                      |

# 15.4.1 TSP Register Summary

| Name                  | Offset | Size | Reset<br>Value | Description                                    |  |
|-----------------------|--------|------|----------------|------------------------------------------------|--|
| TSP_PVR_INT_ENA       | 0x0014 | W    | 0x0000000      | DMA Interrupt Enable Register                  |  |
| TSP_TSOUT_CTRL        | 0x0018 | W    | 0x0000000      | TS Out Control Register                        |  |
| TSP_PVR_TOP_ADDR      | 0x001c | W    | 0x0000000      | PVR buffer top address                         |  |
| TSP_PVR_WRITE_ADDR    | 0x0020 | W    | 0x00000000     | PVR buffer write point                         |  |
| TSP_PTIx_CTRL         | 0x0100 | W    | 0x0000000      | PTI Channel Control Register                   |  |
| TSP_PTIx_LLP_CFG      | 0x0104 | W    | 0x0000000      | LLP DMA Control Register                       |  |
| TSP_PTIX_LLP_BASE     | 0x0108 | W    | 0x0000000      | LLP Descriptor BASE Address                    |  |
| TSP_PTIx_LLP_WRITE    | 0x010c | w    | 0x00000000     | LLP DMA Writing Software<br>Descriptor Counter |  |
| TSP_PTIx_LLP_READ     | 0x0110 | w    | 0×00000000     | LLP DMA Reading Hardware<br>Descriptor Counter |  |
| TSP_PTIx_PID_STS0     | 0x0114 | W    | 0x00000000     | PTI PID Channel Status 0 Register              |  |
| TSP_PTIx_PID_STS1     | 0x0118 | W    |                | PTI PID Channel Status 1 Register              |  |
| TSP_PTIx_PID_STS2     | 0x011c | W    |                | PTI PID Channel Status 2 Register              |  |
| TSP PTIX PID STS3     | 0x0120 | W    | 0x00000000     | PTI PID Channel Status 3 Register              |  |
| TSP_PTIX_PID_INT_ENA0 | 0x0124 | W    |                | PID Interrupt Enable Register 0                |  |
| TSP_PTIX_PID_INT_ENA1 | 0x0128 | W    | 0x00000000     | PID Interrupt Enable Register 1                |  |
| TSP_PTIX_PID_INT_ENA2 | 0x012c | W    | 0x00000000     | PID Interrupt Enable Register 2                |  |
| TSP_PTIX_PID_INT_ENA3 | 0x0130 | W    |                | PID Interrupt Enable Register 3                |  |
| TSP_PTIX_PCR_INT_STS  | 0x0134 | W    |                | PTI PCR Interrupt Status Register              |  |
| TSP_PTIX_PCR_INT_ENA  | 0x0138 | W    | 0x00000000     | PTI PCR Interrupt Enable Register              |  |
| TSP_PTIx_PCRn_CTRL    | 0x013c | W    | 0x00000000     | PID PCR Control Register                       |  |
| TSP_PTIx_PCRn_H       | 0x015c | W    | 0x00000000     | High Order PCR value                           |  |
| TSP_PTIx_PCRn_L       | 0x0160 | W    | 0x00000000     | Low Order PCR value                            |  |
| TSP_PTIx_DMA_STS      | 0x019c | W    | 0x00000000     | LLP DMA Interrupt Status Register              |  |
| TSP_PTIx_DMA_ENA      | 0x01a0 | W    | 0x00000000     | DMA Interrupt Enable Register                  |  |
| TSP_PTIx_DATA_FLAG0   | 0x01a4 | W    | 0x00000000     | PTI_PID_WRITE Flag 0                           |  |
| TSP_PTIx_DATA_FLAG1   | 0x01a8 | W    | 0x00000000     | PTI_PID_WRITE Flag 1                           |  |
| TSP_PTIx_LIST_FLAG    | 0x01ac | W    | 0x00000000     | PTIx_LIST_WRITE Flag                           |  |
| TSP_PTIx_DST_STS0     | 0x01b0 | W    | 0x00000000     | PTI Destination Status Register                |  |
| TSP_PTIx_DST_STS1     | 0x01b4 | W    | 0x00000000     | PTI Destination Status Register                |  |
| TSP_PTIx_DST_ENA0     | 0x01b8 | w    | 0x00000000     | PTI Destination Interrupt Enable<br>Register   |  |
| TSP_PTIx_DST_ENA1     | 0x01bc | w    | 0x00000000     | PTI Destination Interrupt Enable<br>Register   |  |
| TSP_PTIx_ECWn_H       | 0x0200 | w    | 0x00000000     | The Even Control Word High<br>Order            |  |
| TSP_PTIx_ECWn_L       | 0x0204 | W    | 0x00000000     | The Even Control Word Low Order                |  |
| TSP_PTIx_OCWn_H       | 0x0208 | W    | 0x00000000     | The Odd Control Word High Order                |  |
| TSP_PTIx_OCWn_L       | 0x020c | W    | 0x00000000     | The Odd Control Word Low Order                 |  |
| TSP_PTIx_PIDn_CTRL    | 0x0300 | W    | 0x00000000     | PID Channel Control Register                   |  |
| TSP_PTIx_PIDn_BASE    | 0x0400 | W    | 0×00000000     | PTI Data Memory Buffer Base<br>Address         |  |

| Name                 | Offset | Size | Reset<br>Value | Description                                        |
|----------------------|--------|------|----------------|----------------------------------------------------|
| TSP_PTIx_PIDn_TOP    | 0x0404 | w    | 0x00000000     | PTI Data Memory Buffer Top<br>Address              |
| TSP_PTIx_PIDn_WRITE  | 0x0408 | w    | 0×00000000     | PTI Data Memory Buffer Hardware<br>Writing Address |
| TSP_PTIx_PIDn_READ   | 0x040c | W    | 0×00000000     | PTI Data Memory Buffer Software<br>Reading Address |
| TSP_PTIx_LISTn_BASE  | 0x0800 | W    | 0x0000000      | PTI List Memory Buffer Base<br>Address             |
| TSP_PTIx_LISTn_TOP   | 0x0804 | w    | 0x0000000      | PTI List Memory Buffer Top<br>Address              |
| TSP_PTIx_LISTn_WRITE | 0x0808 | W    | 0x0000000      | PTI List Memory Buffer Hardware<br>Writing Address |
| TSP_PTIx_LISTn_READ  | 0x080c | w    | 0x0000000      | PTI List Memory Buffer Software<br>Reading Address |
| TSP_PTIx_PIDn_CFG    | 0x0900 | W    | 0x0000008      | PID Demux Configure Register                       |
| TSP_PTIx_PIDn_FILT_0 | 0x0904 | W    | 0x0000000      | Fliter Word 0                                      |
| TSP_PTIx_PIDn_FILT_1 | 0x0908 | W    | 0x0000000      | Fliter Word 1                                      |
| TSP_PTIx_PIDn_FILT_2 | 0x090c | W    | 0x00000000     | Fliter Word 2                                      |
| TSP_PTIx_PIDn_FILT_3 | 0x0910 | W    | 0x0000000      | Fliter Word 3                                      |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

# 15.4.2 TSP Detail Register Description

## TSP\_GCFG

Address: Operational Base + offset (0x0000) Global Configuration Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:7 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6:4  | RW   | 0x0                | arbit_cnt<br>DMA channel arbiter counter<br>This field is used to adjust the priority of DMA channels to<br>prevent one channel holds the highest priority for a long time.<br>The 3-bit field sets the largest times for a DMA channel to hold<br>the highest priority to send the bus request. After requested<br>times reach this limit, the highest priority is passed to next DMA<br>channel in order. |
| 3    | RW   | 0x0                | tsout_on<br>TS Output Module Switch<br>1: TS output module switched on<br>0: TS output module switched off                                                                                                                                                                                                                                                                                                  |
| 2    | RW   | 0×0                | pvr_on<br>PVR Module Switch<br>1: PVR function turned on ;<br>0: PVR function turned off ;                                                                                                                                                                                                                                                                                                                  |

| Bit | Attr | Reset Value | Description                  |
|-----|------|-------------|------------------------------|
|     |      |             | pti1_on                      |
| 1   |      | 0×0         | PTI0 channel switch          |
| T   | RW   |             | 1: PTI1 channel switched on  |
|     |      |             | 0: PTI1 channel switched off |
|     |      | 0×0         | pti0_on                      |
|     |      |             | PTI0 channel switch          |
| 0   | RW   |             | 1: PTI0 channel switched on  |
|     |      |             | 0: PTI1 channel switched off |

## TSP\_PVR\_CTRL

Address: Operational Base + offset (0x0004) PVR Control Register

| Bit  | Attr      | <b>Reset Value</b> | Description                                                                                                                                                                                                                      |
|------|-----------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:7 | RO        | 0x0                | reserved                                                                                                                                                                                                                         |
| 6    | RW        | 0x0                | fixaddr_en<br>Fix Address Mode Select<br>1: fixed address mode;<br>0: incrementing address mode;                                                                                                                                 |
| 5:4  | RW        | 0×0                | burst_mode<br>PVR burst mode<br>PVR DMA burst mode<br>2'b00: INCR4<br>2'b01: INCR8<br>2'b10: INCR16<br>2'b11: Reserverd                                                                                                          |
| 3:2  | RW        | 0×0                | source<br>PVR Source Select<br>TS source for PVR output.<br>00: non-PID-filtered TS packets in PTI0;<br>01: PID filtered TS packets in PTI0;<br>10: non-PID-filtered TS packets in PTI1;<br>11: PID-filtered TS packets in PTI1; |
| 1    | R/W<br>SC | 0×0                | stop<br>PVR stop<br>Write 1 to stop DMA channel. DMA will complete current burst<br>transfer and then stop. It may takes several cycles.<br>1: PVR Stop ;<br>0: no effect ;                                                      |
| 0    | R/W<br>SC | 0×0                | start<br>PVR start<br>Write 1 to start PVR. This bit will be cleared if PVR is stopped or<br>PVR transaction is completed.<br>1: start PVR<br>0: no effect.                                                                      |

#### TSP\_PVR\_LEN

Address: Operational Base + offset (0x0008) PVR DMA Transaction Length

| Bit  | Attr | <b>Reset Value</b> | Description        |
|------|------|--------------------|--------------------|
|      |      |                    | len                |
| 31:0 | RW   | 0x00000000         | Transaction Length |
|      |      |                    | Transaction Length |

#### TSP\_PVR\_BASE\_ADDR

Address: Operational Base + offset (0x000c) PVR DMA transaction starting address

| Bit  | Attr | <b>Reset Value</b> | Description                          |
|------|------|--------------------|--------------------------------------|
|      |      |                    | addr                                 |
| 31:0 | RW   | 0x00000000         | PVR DMA transaction starting address |
|      |      |                    | PVR DMA transaction starting address |

#### TSP\_PVR\_INT\_STS

Address: Operational Base + offset (0x0010) PVR DMA Interrupt Status Register

| Bit  | Attr    | <b>Reset Value</b> | Description                                                                                                                                                                                                              |
|------|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:3 | RO      | 0x0                | reserved                                                                                                                                                                                                                 |
| 2    | W1<br>C | 0×0                | <pre>pvr_update_flag pvr address pageover flag When write_addr &gt;= (base + top_addr/2), or write addr &gt;= top_addr, the pvr_update_flag will assert HIGH. The application can write 1 to this bit to clear it.</pre> |
| 1    | W1<br>C | 0×0                | pvr_error<br>PVR DMA transaction error<br>1: error response during PVR DMA transaction;<br>0: no error response during PVR DMA transaction;                                                                              |
| 0    | W1<br>C | 0x0                | pvr_done<br>PVR DMA transaction done<br>1: PVR DMA transaction completed;<br>0: PVR DMA transaction not completed;                                                                                                       |

#### TSP\_PVR\_INT\_ENA

Address: Operational Base + offset (0x0014)

DMA Interrupt Enable Register

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
| 31:3 | RO   | 0x0                | reserved    |

| Bit | Attr | <b>Reset Value</b> | Description                                |
|-----|------|--------------------|--------------------------------------------|
|     |      |                    | pvr_update_ena                             |
| 2   | RW   | 0x0                | 1: pvr_update interrupt enable             |
|     |      |                    | 0: pvr_update interrupt disable            |
|     | RW   | 0×0                | pvr_error_ena                              |
| 1   |      |                    | PVR DMA Transcation Error Interrupt Enable |
| L . |      |                    | 1: Error Interrupt Enabled                 |
|     |      |                    | 0: Error Interrupt Disabled                |
|     |      | 0×0                | pvr_done_ena                               |
| 0   | RW   |                    | PVR DMA Transaction Done Interrupt Enable  |
| 0   |      |                    | 1: Done Interrupt Enabled                  |
|     |      |                    | 0: Done Interrupt Disabled                 |

# TSP\_TSOUT\_CTRL

Address: Operational Base + offset (0x0018) TS Out Control Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                        |
|------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:7 | RO   | 0x0                | reserved                                                                                                                                                                                                                           |
| 6    | RW   | 0×0                | tso_sdo_sel<br>TS serial data output<br>1: bit[0] use as serial data output ;<br>0: bit[7] use as serial data output ;                                                                                                             |
| 5    | RW   | 0×0                | tso_clk_phase<br>TS output clock phase<br>0: ts output clock;<br>1: inverse of ts output clock.                                                                                                                                    |
| 4    | RW   | 0×0                | mode<br>TS Output mode Selection<br>Output mode select:<br>0: Serial Mode<br>1: Parallel Mode                                                                                                                                      |
| 3    | RW   | 0x0                | bit_order<br>ts output serial data byte order<br>Indicates that the output serial data byte order, ignored in the<br>parallel:<br>0: MSB to LSB<br>1: LSB to MSB                                                                   |
| 2:1  | RW   | 0×0                | source<br>TS Output Source Select<br>TS source for TS out.<br>00: non-PID-filtered TS packets in PTI0;<br>01: PID filtered TS packets in PTI0;<br>10: non-PID-filtered TS packets in PTI1;<br>11: PID-filtered TS packets in PTI1; |

| Bit | Attr | <b>Reset Value</b> | Description                   |
|-----|------|--------------------|-------------------------------|
|     |      | 0x0                | start                         |
| 0   | RW   |                    | TS out start                  |
| 0   |      |                    | 1: to start TS out function ; |
|     |      |                    | 0: to stop TS out function;   |

## TSP\_PVR\_TOP\_ADDR

Address: Operational Base + offset (0x001c)

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
| 31:0 | RW   | 0x00000000         | pvr_top_addr            |
| 5110 |      |                    | top address in pvr mode |

# TSP\_PVR\_WRITE\_ADDR

Address: Operational Base + offset (0x0020)

| Bit  | Attr | <b>Reset Value</b> | Description                                                   |
|------|------|--------------------|---------------------------------------------------------------|
| 31:0 |      | 0x00000000         | pvr_write_addr                                                |
| 51.0 | κυ   | 0,00000000         | The core will update this register to show the PVR write addr |

#### TSP\_PTIx\_CTRL

Address: Operational Base + offset (0x0100) PTI Channel Control Register

| Bit   | Attr  | <b>Reset Value</b> | Description                        |
|-------|-------|--------------------|------------------------------------|
| 31:22 | RO    | 0x0                | reserved                           |
|       |       |                    | tsi_sdi_sel                        |
| 21    | RW    | 0x0                | TS Serial Data Input Select        |
| 21    | ĸw    | 0.00               | 1: bit[0] use as serial input data |
|       |       |                    | 0: bit[7] use as serial input data |
|       |       | W 0×0              | tsi_error_handle                   |
|       |       |                    | TS ERROR Handle                    |
| 20:19 | RW    |                    | 00: don't output                   |
|       |       |                    | 01: set the error indicator to 1   |
|       |       |                    | 10: don't care                     |
|       |       |                    | clk_phase_sel                      |
| 18    | RW    | W 0×0              | ts input clock phase select        |
| 10    | r. vv |                    | 1'b0: ts input clock               |
|       |       |                    | 1'b1: inverse of ts input clock    |

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                            |
|-------|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17:16 | RW   | 0x0         | demux_burst_mode<br>Demux DMA Burst Mode<br>Demux DMA Mode<br>2'b00: INCR4<br>2'b01: INCR8<br>2'b10: INCR16<br>2'b11: Reserved                                                                                                                                         |
| 15    | RW   | 0×0         | sync_bypass<br>Bypass mode Selection<br>1'b1: Bypass mode, indicating that input TS packets will not be<br>resynchronized and directly fed into the following modules;<br>1'b0: Synchronous mode, default, indicating that input TS<br>packets will be resynchronized; |
| 14    | RW   | 0×0         | cw_byteorder<br>Control Word format Configuration<br>0: Default: first byte of the word is the highest byte<br>1: first byte of the word is the lowest byte                                                                                                            |
| 13    | RW   | 0×0         | cm_on<br>CSA Conformance Mechanism Configuration<br>CSA Conformance Mechanism<br>0: CM turned off<br>1: CM turned on                                                                                                                                                   |
| 12:11 | RW   | 0x0         | tsi_mode<br>TSI Input Mode Selection<br>Input mode selection:<br>00: Serial Sync/valid Mode<br>01: Parallel Sync/valid Mode<br>10: Parallel Sync/burst Mode<br>11: Parallel Nosync/valid Mode                                                                          |
| 10    | RW   | 0x0         | tsi_bit_order<br>input serial data order<br>Indicates that the input serial data byte order, ignored in the<br>parallel mode:<br>0: MSB to LSB<br>1: LSB to MSB                                                                                                        |
| 9     | RW   | 0×0         | tsi_sel<br>TS Input Source Select<br>Select input TS source<br>1'b1: HSADC ;<br>1'b0: internel memory ;                                                                                                                                                                |
| 8     | RW   | 0x0         | out_byteswap<br>Output byteswap function<br>When enabled, the word to be transferred to memory buffer<br>"B4B3B2B1" is performed byteswapping to "B1B2B3B4".                                                                                                           |

| Bit | Attr      | Reset Value | Description                                                                                                                                                                                                |
|-----|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | RW        | 0×0         | in_byteswap<br>Input TS Word Byteswap<br>When enabled, the input TS word "B4B3B2B1" is perfomed<br>byteswapping to "B1B2B3B4".                                                                             |
| 6:4 | RW        | 0×0         | unsync_times<br>TS Header Unsynchronized Times<br>If synchronous mode is selected. This field sets the successive<br>times of TS packet header error to re-lock TS header when TS is<br>in locked status;  |
| 3:1 | RW        | 0×0         | sync_times<br>TS Header Synchronized Times<br>If synchronous mode is selected. This field sets the successive<br>times of finding TS packet header to lock the TS header when TS<br>is in unlocked status; |
| 0   | R/W<br>SC | 0×0         | clear<br>Software clear signal<br>It will reset the core register . It will table several cycles. After<br>reset done, soft_reset will be low.<br>1. reset;<br>0. no effect.                               |

## TSP\_PTIx\_LLP\_CFG

Address: Operational Base + offset (0x0104)

LLP DMA Control Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                        |
|-------|------|--------------------|--------------------------------------------------------------------|
| 31:10 | RO   | 0x0                | reserved                                                           |
|       |      |                    | threshold                                                          |
|       |      |                    | LLP Transfer Threshold                                             |
|       |      |                    | The depth for LLP descriptors is 64. An interrupt will be asserted |
|       |      |                    | when transfer reaches the threshold set if DMA transfer interrupt  |
| 9:8   | RW   | 0x0                | is enabled.                                                        |
|       |      |                    | 00: 1/1 depth                                                      |
|       |      |                    | 01: 1/2 depth                                                      |
|       |      |                    | 10: 1/4 depth                                                      |
|       |      |                    | 11: 1/8 depth                                                      |
|       |      |                    | burst_mode                                                         |
|       |      |                    | LLP DMA Burst Mode                                                 |
|       |      |                    | LLP DMA Burst Mode                                                 |
| 7:6   | RW   | 0x0                | 2'b00: INCR4                                                       |
|       |      |                    | 2'b01: INCR8                                                       |
|       |      |                    | 2'b10: INCR16                                                      |
|       |      |                    | 2'b11: Reserverd                                                   |

| Bit | Attr | Reset Value | Description                                                         |
|-----|------|-------------|---------------------------------------------------------------------|
|     |      |             | hw_trigger                                                          |
| 5   | RW   | 0x0         | Hardware Trigger Select                                             |
| 5   | K VV | 0.00        | 1. hardware trigger;                                                |
|     |      |             | 0. software trigger;                                                |
|     |      |             | fix_addr_en                                                         |
| 4   | RW   | 0x0         | Fix Address Mode Select                                             |
| 4   | L AA | 0.00        | 1: fixed address mode;                                              |
|     |      |             | 0: incrementing address mode;                                       |
|     |      |             | cfg_done                                                            |
| 3   | W1   | 0×0         | LLP DMA Configuration Done                                          |
| 5   | С    | 0.00        | When all descriptors of LLP are configured, write 1 to to this bit. |
|     |      |             | The core will clear this bit when llp transction is finished ;      |
|     |      |             | pause                                                               |
|     |      |             | LLP DMA Pause                                                       |
|     |      | 0x0         | Write 1 to Pause DMA channel . DMA will complete current burst      |
| 2   | RW   |             | transfer and then pause. All register stay unchange. If software    |
| 2   |      |             | write 0 later , It will continue to work. It may take several       |
|     |      |             | cycles to pause.                                                    |
|     |      |             | 1: pause;                                                           |
|     |      |             | 0: continue to work ;                                               |
|     |      | L 0×0       | stop                                                                |
|     |      |             | LLP DMA Stop                                                        |
| 1   | W1   |             | Write 1 to stop DMA channel. DMA will complete current burst        |
| 1   | С    |             | transter and then stop. It may takes several cycles.                |
|     |      |             | 1: stop ;                                                           |
|     |      |             | 0: no effect ;                                                      |
|     |      |             | start                                                               |
|     | W1   |             | LLP DMA start                                                       |
| 0   | C    | 0x0         | Write 1 to start DMA Channel , self clear after 1 cycle.            |
|     |      |             | 1: start ;                                                          |
|     |      |             | 0: no effect                                                        |

### TSP\_PTIx\_LLP\_BASE

Address: Operational Base + offset (0x0108)

LLP Descriptor BASE Address

| Bit  | Attr | <b>Reset Value</b> | Description                 |
|------|------|--------------------|-----------------------------|
|      |      |                    | addr                        |
| 31:0 | RW   | 0x00000000         | LLP Descriptor BASE Address |
|      |      |                    | LLP Descriptor BASE address |

## TSP\_PTIx\_LLP\_WRITE

Address: Operational Base + offset (0x010c) LLP DMA Writing Software Descriptor Counter

| Bit  | Attr | <b>Reset Value</b> | Description                                            |
|------|------|--------------------|--------------------------------------------------------|
| 31:8 | RO   | 0x0                | reserved                                               |
| 7:0  | RW   | 0x00               | counter<br>LLP DMA Writing Software Descriptor Counter |
| 7.0  | ĸw   |                    | LLP DMA Writing Software Descriptor Counter            |

## TSP\_PTIx\_LLP\_READ

Address: Operational Base + offset (0x0110) LLP DMA Reading Hardware Descriptor Counter

| Bit  | Attr | <b>Reset Value</b> | Description                                 |
|------|------|--------------------|---------------------------------------------|
| 31:8 | RO   | 0x0                | reserved                                    |
|      |      |                    | counter                                     |
| 7:0  | RO   | 0x00               | LLP DMA Reading Hardware Descriptor Counter |
|      |      |                    | LLP DMA Reading Hardware Descriptor Counter |

#### TSP\_PTIx\_PID\_STS0

Address: Operational Base + offset (0x0114) PTI PID Channel Status 0 Register

| Bit | Attr | <b>Reset Value</b> | Description          |  |              |
|-----|------|--------------------|----------------------|--|--------------|
|     |      |                    | pid31_done           |  |              |
| 31  | RW   | 0x0                | PID31 Channel Status |  |              |
|     |      |                    | 1 means done         |  |              |
|     | W1   |                    | pid30_done           |  |              |
| 30  | C    | 0x0                | PID30 Channel Status |  |              |
|     | C    |                    | 1 means done         |  |              |
|     | W1   |                    | pid29_done           |  |              |
| 29  | C    | 0x0                | PID29 Channel Status |  |              |
|     | C    |                    | 1 means done         |  |              |
|     | W1   | 0x0                | pid28_done           |  |              |
| 28  | C    |                    | PID28 Channel Status |  |              |
|     | C    |                    | 1 means done         |  |              |
|     | W1   | <sup>/1</sup> 0×0  | pid27_done           |  |              |
| 27  | C    |                    | PID27 Channel Status |  |              |
|     | C    |                    | 1 means done         |  |              |
|     | W1   | 10x0               | pid26_done           |  |              |
| 26  | C    |                    | PID26 Channel Status |  |              |
|     | C    | C                  | C                    |  | 1 means done |
|     | W1   |                    | pid25_done           |  |              |
| 25  | C    | 0x0                | PID25 Channel Status |  |              |
|     | C    |                    | 1 means done         |  |              |
|     | W1   |                    | pid24_done           |  |              |
| 24  | C    | <sup>1</sup> 0x0   | PID24 Channel Status |  |              |
|     |      | L                  | C                    |  | 1 means done |

| Bit | Attr    | Reset Value | Description          |
|-----|---------|-------------|----------------------|
|     | 14/4    | 0×0         | pid23_done           |
| 23  | W1      |             | PID23 Channel Status |
|     | С       |             | 1 means done         |
|     |         |             | pid22_done           |
| 22  | W1      | 0x0         | PID22 Channel Status |
|     | С       |             | 1 means done         |
|     |         |             | pid21_done           |
| 21  | W1      | 0x0         | PID21 Channel Status |
|     | С       |             | 1 means done         |
|     |         |             | pid20_done           |
| 20  | W1      | 0x0         | PID20 Channel Status |
|     | С       |             | 1 means done         |
|     |         |             | pid19_done           |
| 19  | W1      | 0x0         | PID19 Channel Status |
|     | С       |             | 1 means done         |
|     |         |             | pid18_done           |
| 18  | W1      | 0x0         | PID18 Channel Status |
|     | С       |             | 1 means done         |
|     |         |             | pid17_done           |
| 17  | W1      | 0x0         | PID17 Channel Status |
|     | С       |             | 1 means done         |
|     |         |             | pid16_done           |
| 16  | W1      | 0x0         | PID16 Channel Status |
|     | С       |             | 1 means done         |
|     |         |             | pid15_done           |
| 15  | W1<br>C | 0×0         | PID15 Channel Status |
|     |         |             | 1 means done         |
|     |         |             | pid14_done           |
| 14  | W1<br>C | 0×0         | PID14 Channel Status |
|     |         |             | 1 means done         |
|     |         |             | pid13_done           |
| 13  | W1      | 0x0         | PID13 Channel Status |
|     | С       |             | 1 means done         |
|     |         |             | pid12_done           |
| 12  | W1      | 0x0         | PID12 Channel Status |
|     | С       |             | 1 means done         |
|     |         |             | pid11_done           |
| 11  | W1      | 0x0         | PID11 Channel Status |
|     | С       |             | 1 means done         |
|     |         |             | pid10_done           |
| 10  | W1      | 0x0         | PID10 Channel Status |
|     | С       |             | 1 means done         |
|     |         |             | pid9_done            |
| 9   | W1      | 0x0         | PID9 Channel Status  |
|     | С       |             | 1 means done         |

| Bit | Attr    | <b>Reset Value</b> | Description         |
|-----|---------|--------------------|---------------------|
|     | \\/1    |                    | pid8_done           |
| 8   | W1<br>C | 0x0                | PID8 Channel Status |
|     | C       |                    | 1 means done        |
|     | W1      |                    | pid7_done           |
| 7   | C       | 0x0                | PID7 Channel Status |
|     | C       |                    | 1 means done        |
|     | W1      |                    | pid6_done           |
| 6   | C       | 0x0                | PID6 Channel Status |
|     | C       |                    | 1 means done        |
|     | W1      |                    | pid5_done           |
| 5   | C       | 0x0                | PID5 Channel Status |
|     | C       |                    | 1 means done        |
|     | W1      | 0×0                | pid4_done           |
| 4   | C       |                    | PID4 Channel Status |
|     | C       |                    | 1 means done        |
|     | W1<br>C | 0×0                | pid3_done           |
| 3   |         |                    | PID3 Channel Status |
|     |         |                    | 1 means done        |
|     |         |                    | pid2_done           |
| 2   | RW      | 0x0                | PID2 Channel Status |
|     |         |                    | 1 means done        |
|     | W1      |                    | pid1_done           |
| 1   | C       | 0x0                | PID1 Channel Status |
|     | C       |                    | 1 means done        |
|     | W1      |                    | pid0_done           |
| 0   | C       | 0x0                | PID0 Channel Status |
|     |         |                    | 1 means done        |

# TSP\_PTIx\_PID\_STS1

Address: Operational Base + offset (0x0118) PTI PID Channel Status 1 Register

| Bit | Attr    | <b>Reset Value</b> | Description          |
|-----|---------|--------------------|----------------------|
|     | W1      |                    | pid63_done           |
| 31  | C       | 0x0                | PID63 Channel Status |
|     | C       |                    | 1 means done         |
|     | W1      |                    | pid62_done           |
| 30  | C       | 0×0                | PID62 Channel Status |
|     |         |                    | 1 means done         |
|     | W1<br>C | 1 0×0              | pid61_done           |
| 29  |         |                    | PID61 Channel Status |
|     |         |                    | 1 means done         |
|     | W1      | 1 0x0              | pid60_done           |
| 28  |         |                    | PID60 Channel Status |
|     | С       |                    | 1 means done         |

| Bit | Attr    | <b>Reset Value</b> | Description          |   |  |              |
|-----|---------|--------------------|----------------------|---|--|--------------|
|     | \\/1    | 0×0                | pid59_done           |   |  |              |
| 27  | W1<br>C |                    | PID59 Channel Status |   |  |              |
|     | C       |                    | 1 means done         |   |  |              |
|     | W1      |                    | pid58_done           |   |  |              |
| 26  | C       | 0x0                | PID58 Channel Status |   |  |              |
|     | C       |                    | 1 means done         |   |  |              |
|     | W1      |                    | pid57_done           |   |  |              |
| 25  | C       | 0x0                | PID57 Channel Status |   |  |              |
|     | C       |                    | 1 means done         |   |  |              |
|     | W1      |                    | pid56_done           |   |  |              |
| 24  | C       | 0x0                | PID56 Channel Status |   |  |              |
|     | C       |                    | 1 means done         |   |  |              |
|     | W1      |                    | pid55_done           |   |  |              |
| 23  | C       | 0x0                | PID55 Channel Status |   |  |              |
|     | C       |                    | 1 means done         |   |  |              |
|     | W1      |                    | pid54_done           |   |  |              |
| 22  | C       | 0x0                | PID54 Channel Status |   |  |              |
|     | C       |                    | 1 means done         |   |  |              |
|     | W1      | 0×0                | pid53_done           |   |  |              |
| 21  | C       |                    | PID53 Channel Status |   |  |              |
|     | C       |                    | 1 means done         |   |  |              |
|     | W1      | 0×0                | pid52_done           |   |  |              |
| 20  | C       |                    | PID52 Channel Status |   |  |              |
|     | Ŭ       |                    | 1 means done         |   |  |              |
|     | W1      | 0×0                | pid51_done           |   |  |              |
| 19  | C       |                    | PID51 Channel Status |   |  |              |
|     |         |                    | 1 means done         |   |  |              |
|     | W1      | 0×0                | pid50_done           |   |  |              |
| 18  | С       |                    | PID51 Channel Status |   |  |              |
|     | _       | <u> </u>           | -                    | _ |  | 1 means done |
|     | W1      |                    | pid49_done           |   |  |              |
| 17  | С       | 0x0                | PID49 Channel Status |   |  |              |
|     |         |                    | 1 means done         |   |  |              |
|     | W1      |                    | pid48_done           |   |  |              |
| 16  | С       | 0×0                | PID48 Channel Status |   |  |              |
|     |         |                    | 1 means done         |   |  |              |
|     | W1      |                    | pid47_done           |   |  |              |
| 15  | С       | 0×0                | PID47 Channel Status |   |  |              |
|     |         |                    | 1 means done         |   |  |              |
|     | W1      |                    | pid46_done           |   |  |              |
| 14  | С       | 0×0                | PID46 Channel Status |   |  |              |
|     |         |                    | 1 means done         |   |  |              |
| 10  | W1      |                    | pid45_done           |   |  |              |
| 13  | С       | 0×0                | PID45 Channel Status |   |  |              |
| 1   | 1       |                    | 1 means done         |   |  |              |

| Bit | Attr    | <b>Reset Value</b> | Description          |
|-----|---------|--------------------|----------------------|
|     |         |                    | pid44_done           |
| 12  | W1<br>C | 0×0                | PID44 Channel Status |
|     |         |                    | 1 means done         |
| 11  | 14/1    |                    | pid43_done           |
|     | W1      | 0x0                | PID43 Channel Status |
|     | С       |                    | 1 means done         |
|     | 14/1    |                    | pid42_done           |
| 10  | W1      | 0x0                | PID42 Channel Status |
|     | С       |                    | 1 means done         |
|     | 14/1    |                    | pid41_done           |
| 9   | W1      | 0x0                | PID41 Channel Status |
|     | С       |                    | 1 means done         |
|     | W1      | 0×0                | pid40_done           |
| 8   |         |                    | PID40 Channel Status |
|     | С       |                    | 1 means done         |
|     | W1      | 0×0                | pid39_done           |
| 7   | C       |                    | PID39 Channel Status |
|     | C       |                    | 1 means done         |
|     | W1      | 0x0                | pid38_done           |
| 6   | C       |                    | PID38 Channel Status |
|     | C       |                    | 1 means done         |
|     | W1<br>C | 0×0                | pid37_done           |
| 5   |         |                    | PID37 Channel Status |
|     |         |                    | 1 means done         |
|     | W1<br>C | 0×0                | pid36_done           |
| 4   |         |                    | PID36 Channel Status |
|     | Ŭ       |                    | 1 means done         |
|     | RW      | 0x0                | pid35_done           |
| 3   |         |                    | PID35 Channel Status |
|     |         |                    | 1 means done         |
|     | W1      | 0×0                | pid34_done           |
| 2   | C       |                    | PID34 Channel Status |
|     |         |                    | 1 means done         |
| 1   | W1<br>C | 0×0                | pid33_done           |
|     |         |                    | PID33 Channel Status |
|     |         |                    | 1 means done         |
|     |         | 0x0                | pid32_done           |
| 0   | RW      |                    | PID32 Channel Status |
|     |         |                    | 1 means done         |

#### TSP\_PTIx\_PID\_STS2

Address: Operational Base + offset (0x011c) PTI PID Channel Status 2 Register

| Bit | Attr    | Reset Value | Description                  |
|-----|---------|-------------|------------------------------|
|     |         |             | pid31_error                  |
| 31  | RW      | 0x0         | PID31 Error Interrupt Status |
|     |         |             | 1 means error detected       |
|     | W1      |             | pid30_error                  |
| 30  | C       | 0x0         | PID30 Error Interrupt Status |
|     | C       |             | 1 means error detected       |
|     | W1      |             | pid29_error                  |
| 29  | C       | 0x0         | PID29 Error Interrupt Status |
|     | C       |             | 1 means error detected       |
|     | W1      | 0×0         | pid28_error                  |
| 28  | C       |             | PID28 Error Interrupt Status |
|     | C       |             | 1 means error detected       |
|     | W1      |             | pid27_error                  |
| 27  | C       | 0x0         | PID27 Error Interrupt Status |
|     | C       |             | 1 means error detected       |
|     | W1      |             | pid26_error                  |
| 26  | C       | 0x0         | PID26 Error Interrupt Status |
|     | C       |             | 1 means error detected       |
|     | W1      |             | pid25_error                  |
| 25  | C       | 0x0         | PID25 Error Interrupt Status |
|     | Ŭ       |             | 1 means error detected       |
|     | W1      |             | pid24_error                  |
| 24  | C       | 0×0         | PID24 Error Interrupt Status |
|     | Ŭ       |             | 1 means error detected       |
|     | W1<br>C | 0×0         | pid23_error                  |
| 23  |         |             | PID23 Error Interrupt Status |
|     | -       |             | 1 means error detected       |
|     | W1<br>C | 0×0         | pid22_error                  |
| 22  |         |             | PID22 Error Interrupt Status |
|     |         |             | 1 means error detected       |
|     | W1      | 0×0         | pid21_error                  |
| 21  | С       |             | PID21 Error Interrupt Status |
|     |         |             | 1 means error detected       |
| 20  | W1      | 0x0         | pid20_error                  |
| 20  | C       |             | PID20 Error Interrupt Status |
|     |         |             | 1 means error detected       |
| 10  | W1      | 0×0         | pid19_error                  |
| 19  | С       |             | PID19 Error Interrupt Status |
|     |         |             | 1 means error detected       |
| 10  | W1<br>C | 0×0         | pid18_error                  |
| 18  |         |             | PID18 Error Interrupt Status |
|     |         |             | 1 means error detected       |
| 17  | W1      | 00          | pid17_error                  |
| 17  | С       | 0x0         | PID17 Error Interrupt Status |
|     | 1       | 1           | 1 means error detected       |

| Bit | Attr    | Reset Value | Description                  |
|-----|---------|-------------|------------------------------|
|     |         |             | pid16_error                  |
| 16  | W1      | 0x0         | PID16 Error Interrupt Status |
|     | С       |             | 1 means error detected       |
| 15  |         |             | pid15_error                  |
|     | W1      | 0x0         | PID15 Error Interrupt Status |
|     | С       |             | 1 means error detected       |
|     |         |             | pid14_error                  |
| 14  | W1      | 0x0         | PID14 Error Interrupt Status |
|     | С       |             | 1 means error detected       |
|     |         |             | pid13_error                  |
| 13  | W1      | 0x0         | PID13 Error Interrupt Status |
|     | С       |             | 1 means error detected       |
|     |         |             | pid12_error                  |
| 12  | W1      | 0x0         | PID12 Error Interrupt Status |
|     | С       |             | 1 means error detected       |
|     |         |             | pid11_error                  |
| 11  | W1      | 0x0         | PID11 Error Interrupt Status |
|     | С       |             | 1 means error detected       |
|     | 14/4    |             | pid10_error                  |
| 10  | W1      | 0x0         | PID10 Error Interrupt Status |
|     | С       |             | 1 means error detected       |
|     | 14/1    | 0×0         | pid9_error                   |
| 9   | W1<br>C |             | PID9 Error Interrupt Status  |
|     | C       |             | 1 means error detected       |
|     | \\/1    | 0×0         | pid8_error                   |
| 8   | W1<br>C |             | PID8 Error Interrupt Status  |
|     |         |             | 1 means error detected       |
|     | W1      |             | pid7_error                   |
| 7   | C       | 0x0         | PID7 Error Interrupt Status  |
|     |         |             | 1 means error detected       |
|     | W1<br>C | 0×0         | pid6_error                   |
| 6   |         |             | PID6 Error Interrupt Status  |
|     | C       |             | 1 means error detected       |
|     | W1      |             | pid5_error                   |
| 5   | C       | 0x0         | PID5 Error Interrupt Status  |
|     | C       |             | 1 means error detected       |
|     | W1      |             | pid4_error                   |
| 4   | C       | 0x0         | PID4 Error Interrupt Status  |
|     | J       |             | 1 means error detected       |
|     | W1      |             | pid3_error                   |
| 3   | C       | 0×0         | PID3 Error Interrupt Status  |
|     |         |             | 1 means error detected       |
|     | W1      |             | pid2_error                   |
| 2   | C       | 0x0         | PID2 Error Interrupt Status  |
|     |         |             | 1 means error detected       |

| Bit | Attr    | <b>Reset Value</b> | Description                 |
|-----|---------|--------------------|-----------------------------|
|     | W1<br>C |                    | pid1_error                  |
| 1   |         |                    | PID1 Error Interrupt Status |
|     |         |                    | 1 means error detected      |
|     | W1<br>C |                    | pid0_error                  |
| 0   |         |                    | PID0 Error Interrupt Status |
|     |         |                    | 1 means error detected      |

#### TSP\_PTIx\_PID\_STS3

Address: Operational Base + offset (0x0120) PTI PID Channel Status 3 Register

| Bit | Attr | Reset<br>Value | Description                  |
|-----|------|----------------|------------------------------|
|     |      |                | pid63_error                  |
| 31  | W1C  | 0x0            | PID63 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid62_error                  |
| 30  | W1C  | 0x0            | PID62 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid61_error                  |
| 29  | W1C  | 0x0            | PID61 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid60_error                  |
| 28  | W1C  | 0x0            | PID60 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid59_error                  |
| 27  | W1C  | 0x0            | PID59 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid58_error                  |
| 26  | W1C  | 0x0            | PID58 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid57_error                  |
| 25  | W1C  | 0x0            | PID57 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid56_error                  |
| 24  | W1C  | 0x0            | PID56 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid55_error                  |
| 23  | W1C  | 0x0            | PID55 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid54_error                  |
| 22  | W1C  | 0x0            | PID54 Error Interrupt Status |
|     |      |                | 1 means error detected       |

| Bit | Attr | Reset<br>Value | Description                  |
|-----|------|----------------|------------------------------|
|     |      |                | pid53_error                  |
| 21  | W1C  | 0x0            | PID53 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid52_error                  |
| 20  | W1C  | 0x0            | PID52 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid51_error                  |
| 19  | W1C  | 0x0            | PID51 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid50_error                  |
| 18  | W1C  | 0x0            | PID50 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid49_error                  |
| 17  | W1C  | 0x0            | PID49 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid48_error                  |
| 16  | W1C  | 0x0            | PID48 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid47_error                  |
| 15  | W1C  | 0x0            | PID47 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid46_error                  |
| 14  | W1C  | 0x0            | PID46 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid45_error                  |
| 13  | W1C  | 0x0            | PID45 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid44_error                  |
| 12  | W1C  | 0x0            | PID44 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid43_error                  |
| 11  | W1C  | 0x0            | PID43 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid42_error                  |
| 10  | W1C  | 0x0            | PID42 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     | W1C  | 0x0            | pid41_error                  |
| 9   |      |                | PID41 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid40_error                  |
| 8   | W1C  | 0x0            | PID40 Error Interrupt Status |
|     |      |                | 1 means error detected       |

| Bit | Attr | Reset<br>Value | Description                  |
|-----|------|----------------|------------------------------|
|     |      |                | pid39_error                  |
| 7   | W1C  | 0x0            | PID39 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid38_error                  |
| 6   | W1C  | 0x0            | PID38 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid37_error                  |
| 5   | W1C  | 0x0            | PID37 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid36_error                  |
| 4   | W1C  | 0x0            | PID36 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid35_error                  |
| 3   | W1C  | 0x0            | PID35 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid34_error                  |
| 2   | W1C  | 0x0            | PID34 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid33_error                  |
| 1   | W1C  | 0x0            | PID33 Error Interrupt Status |
|     |      |                | 1 means error detected       |
|     |      |                | pid32_error                  |
| 0   | W1C  | 0x0            | PID32 Error Interrupt Status |
|     |      |                | 1 means error detected       |

## TSP\_PTIx\_PID\_INT\_ENA0

Address: Operational Base + offset (0x0124) PID Interrupt Enable Register 0

| Bit | Attr | <b>Reset Value</b> | Description       |
|-----|------|--------------------|-------------------|
| 21  |      | 0×0                | pid31_done_ena    |
|     | RW   |                    | PID31 Done Enable |
| 31  | ĸw   |                    | 1:enabled         |
|     |      |                    | 0:disabled        |
|     | RW   | 0x0                | pid30_done_ena    |
| 20  |      |                    | PID30 Done Enable |
| 30  |      |                    | 1:enabled         |
|     |      |                    | 0:disabled        |
|     | RW   | 0×0                | pid29_done_ena    |
| 29  |      |                    | PID29 Done Enable |
| 29  |      |                    | 1:enabled         |
|     |      |                    | 0:disabled        |

| Bit | Attr | Reset Value | Description                         |
|-----|------|-------------|-------------------------------------|
| _   |      |             | pid28_done_ena                      |
| ~ ~ |      |             | PID28 Done Enable                   |
| 28  | RW   | 0x0         | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid27_done_ena                      |
| 27  |      | 0.40        | PID27 Done Enable                   |
| 27  | RW   | 0x0         | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid26_done_ena                      |
| 26  | RW   | 0x0         | PID26 Done Enable                   |
| 20  |      | 0.00        | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid25_done_ena                      |
| 25  | RW   | 0x0         | PID25 Done Enable                   |
|     |      |             | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid24_done_ena                      |
| 24  | RW   | 0x0         | PID24 Done Enable                   |
|     |      |             | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      | 0x0         | pid23_done_ena<br>PID23 Done Enable |
| 23  | RW   |             | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid22_done_ena                      |
|     |      |             | PID22 Done Enable                   |
| 22  | RW   | 0x0         | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid21_done_ena                      |
| 24  |      | 00          | PID21 Done Enable                   |
| 21  | RW   | 0x0         | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid20_done_ena                      |
| 20  | RW   | 0x0         | PID20 Done Enable                   |
| 20  |      | 0.00        | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid19_done_ena                      |
| 19  | RW   | 0x0         | PID19 Done Enable                   |
|     |      |             | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid18_done_ena                      |
| 18  | RW   | 0×0         | PID18 Done Enable                   |
|     |      |             | 1:enabled                           |
|     |      |             | 0:disabled                          |

| Bit | Attr | Reset Value | Description                         |
|-----|------|-------------|-------------------------------------|
|     |      |             | pid17_done_ena                      |
|     |      |             | PID17 Done Enable                   |
| 17  | RW   | 0×0         | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid16_done_ena                      |
| 16  | RW   | 0x0         | PID16 Done Enable                   |
| 10  | K VV | UXU         | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid15_done_ena                      |
| 15  | RW   | 0x0         | PID15 Done Enable                   |
| 10  |      |             | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid14_done_ena                      |
| 14  | RW   | 0x0         | PID14 Done Enable                   |
|     |      |             | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid13_done_ena<br>PID13 Done Enable |
| 13  | RW   | 0x0         | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid12_done_ena                      |
|     |      | 0×0         | PID12 Done Enable                   |
| 12  | RW   |             | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid11_done_ena                      |
|     |      |             | PID11 Done Enable                   |
| 11  | RW   | 0x0         | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid10_done_ena                      |
| 10  | RW   | 0x0         | PID10 Done Enable                   |
| 10  | RW   | UXU         | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid9_done_ena                       |
| 9   | RW   | 0x0         | PID9 Done Enable                    |
| 5   |      |             | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid8_done_ena                       |
| 8   | RW   | 0x0         | PID8 Done Enable                    |
|     |      |             | 1:enabled                           |
|     |      |             | 0:disabled                          |
|     |      |             | pid7_done_ena                       |
| 7   | RW   | W 0×0       | PID7 Done Enable                    |
|     |      |             | 1:enabled<br>0:disabled             |
|     |      |             | บ.นเรลมเซน                          |

| Bit | Attr | <b>Reset Value</b> | Description      |  |  |  |  |  |  |  |            |
|-----|------|--------------------|------------------|--|--|--|--|--|--|--|------------|
|     |      |                    | pid6_done_ena    |  |  |  |  |  |  |  |            |
| 6   | RW   | 0x0                | PID6 Done Enable |  |  |  |  |  |  |  |            |
| 0   | ĸvv  | 0.00               | 1:enabled        |  |  |  |  |  |  |  |            |
|     |      |                    | 0:disabled       |  |  |  |  |  |  |  |            |
|     |      |                    | pid5_done_ena    |  |  |  |  |  |  |  |            |
| 5   | RW   | 0x0                | PID5 Done Enable |  |  |  |  |  |  |  |            |
| Э   | RW   | UXU                | 1:enabled        |  |  |  |  |  |  |  |            |
|     |      |                    | 0:disabled       |  |  |  |  |  |  |  |            |
|     |      |                    | pid4_done_ena    |  |  |  |  |  |  |  |            |
| 4   | RW   | 0.40               | PID4 Done Enable |  |  |  |  |  |  |  |            |
| 4   | RW   | 0×0                | 1:enabled        |  |  |  |  |  |  |  |            |
|     |      |                    | 0:disabled       |  |  |  |  |  |  |  |            |
|     |      | 0x0                | pid3_done_ena    |  |  |  |  |  |  |  |            |
| 3   | RW   |                    | PID3 Done Enable |  |  |  |  |  |  |  |            |
| 5   | RVV  |                    | 1:enabled        |  |  |  |  |  |  |  |            |
|     |      |                    | 0:disabled       |  |  |  |  |  |  |  |            |
|     |      | 0x0                | pid2_done_ena    |  |  |  |  |  |  |  |            |
| 2   | RW   |                    | PID2 Done Enable |  |  |  |  |  |  |  |            |
| Z   | RVV  |                    | 1:enabled        |  |  |  |  |  |  |  |            |
|     |      |                    |                  |  |  |  |  |  |  |  | 0:disabled |
|     |      |                    | pid1_done_ena    |  |  |  |  |  |  |  |            |
| 4   | RW   | 0.40               | PID1 Done Enable |  |  |  |  |  |  |  |            |
| 1   | RW   | 0x0                | 1:enabled        |  |  |  |  |  |  |  |            |
|     |      |                    | 0:disabled       |  |  |  |  |  |  |  |            |
|     |      |                    | pid0_done_ena    |  |  |  |  |  |  |  |            |
| 0   | RW   |                    | PID0 Done Enable |  |  |  |  |  |  |  |            |
| U   |      | N 0x0              | 1:enabled        |  |  |  |  |  |  |  |            |
|     |      |                    | 0:disabled       |  |  |  |  |  |  |  |            |

#### TSP\_PTIx\_PID\_INT\_ENA1

Address: Operational Base + offset (0x0128) PID Interrupt Enable Register 1

| Bit | Attr | <b>Reset Value</b> | Description       |
|-----|------|--------------------|-------------------|
|     |      | 0x0                | pid63_done        |
| 31  | RW   |                    | PID63 Done Enable |
| 51  | KW   |                    | 1:enabled         |
|     |      |                    | 0:disabled        |
|     | RW   | W 0x0              | pid62_done        |
| 20  |      |                    | PID62 Done Enable |
| 30  |      |                    | 1:enabled         |
|     |      |                    | 0:disabled        |

| Bit | Attr | Reset Value | Description                                                |
|-----|------|-------------|------------------------------------------------------------|
| 29  | RW   | 0×0         | pid61_done<br>PID61 Done Enable<br>1:enabled               |
|     |      |             | 0:disabled<br>pid60_done                                   |
| 28  | RW   | 0×0         | PID60 Done Enable<br>1:enabled<br>0:disabled               |
| 27  | RW   | 0×0         | pid59_done<br>PID59 Done Enable<br>1:enabled<br>0:disabled |
| 26  | RW   | 0×0         | pid58_done<br>PID58 Done Enable<br>1:enabled<br>0:disabled |
| 25  | RW   | 0×0         | pid57_done<br>PID57 Done Enable<br>1:enabled<br>0:disabled |
| 24  | RW   | 0×0         | pid56_done<br>PID56 Done Enable<br>1:enabled<br>0:disabled |
| 23  | RW   | 0x0         | pid55_done<br>PID55 Done Enable<br>1:enabled<br>0:disabled |
| 22  | RW   | 0×0         | pid54_done<br>PID54 Done Enable<br>1:enabled<br>0:disabled |
| 21  | RW   | 0×0         | pid53_done<br>PID53 Done Enable<br>1:enabled<br>0:disabled |
| 20  | RW   | 0x0         | pid52_done<br>PID52 Done Enable<br>1:enabled<br>0:disabled |
| 19  | RW   | 0×0         | pid51_done<br>PID51 Done Enable<br>1:enabled<br>0:disabled |

| Bit | Attr | <b>Reset Value</b> | Description                     |
|-----|------|--------------------|---------------------------------|
|     |      |                    | pid50_done                      |
| 18  | RW   | 0x0                | PID50 Done Enable               |
| 10  | K VV | UXU                | 1:enabled                       |
|     |      |                    | 0:disabled                      |
|     |      |                    | pid49_done                      |
| 17  | RW   | 0x0                | PID49 Done Enable               |
| 1/  | L AN | 0.00               | 1:enabled                       |
|     |      |                    | 0:disabled                      |
|     |      |                    | pid48_done                      |
| 16  | RW   | 0x0                | PID48 Done Enable               |
| 10  |      | 0,0                | 1:enabled                       |
|     |      |                    | 0:disabled                      |
|     |      |                    | pid47_done                      |
| 15  | RW   | 0x0                | PID47 Done Enable               |
| 10  |      | 0,0                | 1:enabled                       |
|     |      |                    | 0:disabled                      |
|     |      |                    | pid46_done                      |
| 14  | RW   | 0x0                | PID46 Done Enable               |
|     |      |                    | 1:enabled                       |
|     |      |                    | 0:disabled                      |
|     |      | 0×0                | pid45_done                      |
| 13  | RW   |                    | PID45 Done Enable               |
|     |      |                    | 1:enabled                       |
|     |      |                    | 0:disabled                      |
|     |      |                    | pid44_done                      |
| 12  | RW   | V 0×0              | PID44 Done Enable               |
|     |      |                    | 1:enabled<br>0:disabled         |
|     |      |                    |                                 |
|     |      |                    | pid43_done<br>PID43 Done Enable |
| 11  | RW   | 0x0                | 1:enabled                       |
|     |      |                    | 0:disabled                      |
|     |      |                    | pid42_done                      |
|     |      |                    | PID42 Done Enable               |
| 10  | RW   | 0x0                | 1:enabled                       |
|     |      |                    | 0:disabled                      |
|     |      |                    | pid41_done                      |
|     |      |                    | PID41 Done Enable               |
| 9   | RW   | 0x0                | 1:enabled                       |
|     |      |                    | 0:disabled                      |
| ļ   |      |                    | pid40_done                      |
|     |      |                    | PID40 Done Enable               |
| 8   | RW   | V 0×0              | 1:enabled                       |
|     |      |                    | 0:disabled                      |

| Bit | Attr | <b>Reset Value</b> | Description                                                |
|-----|------|--------------------|------------------------------------------------------------|
| 7   | RW   | 0×0                | pid39_done<br>PID39 Done Enable<br>1:enabled<br>0:disabled |
| 6   | RW   | 0×0                | pid38_done<br>PID38 Done Enable<br>1:enabled<br>0:disabled |
| 5   | RW   | 0x0                | pid37_done<br>PID37 Done Enable<br>1:enabled<br>0:disabled |
| 4   | RW   | 0×0                | pid36_done<br>PID36 Done Enable<br>1:enabled<br>0:disabled |
| 3   | RW   | 0×0                | pid35_done<br>PID35 Done Enable<br>1:enabled<br>0:disabled |
| 2   | RW   | 0×0                | pid34_done<br>PID34 Done Enable<br>1:enabled<br>0:disabled |
| 1   | RW   | 0×0                | pid33_done<br>PID33 Done Enable<br>1:enabled<br>0:disabled |
| 0   | RW   | 0x0                | pid32_done<br>PID32 Done Enable<br>1:enabled<br>0:disabled |

## TSP\_PTIx\_PID\_INT\_ENA2

Address: Operational Base + offset (0x012c) PID Interrupt Enable Register 2

| Bit | Attr | <b>Reset Value</b> | Description                  |
|-----|------|--------------------|------------------------------|
|     | RW   | 0x0                | pid31_error                  |
| 21  |      |                    | PID31 Error Interrupt Enable |
| 51  |      |                    | 1:enabled                    |
|     |      |                    | 0:disabled                   |

| Bit | Attr | Reset Value | Description                  |
|-----|------|-------------|------------------------------|
|     |      |             | pid30_error                  |
| 20  |      |             | PID30 Error Interrupt Enable |
| 30  | RW   | 0×0         | 1:enabled                    |
|     |      |             | 0:disabled                   |
|     |      |             | pid29_error                  |
| 20  |      | 00          | PID29 Error Interrupt Enable |
| 29  | RW   | 0x0         | 1:enabled                    |
|     |      |             | 0:disabled                   |
|     |      |             | pid28_error                  |
| 20  |      | 0.40        | PID28 Error Interrupt Enable |
| 28  | RW   | 0x0         | 1:enabled                    |
|     |      |             | 0:disabled                   |
|     |      |             | pid27_error                  |
| 27  | RW   | 0.40        | PID27 Error Interrupt Enable |
| 27  | RVV  | 0x0         | 1:enabled                    |
|     |      |             | 0:disabled                   |
|     |      |             | pid26_error                  |
| 26  | RW   | 0x0         | PID26 Error Interrupt Enable |
| 20  | r vv |             | 1:enabled                    |
|     |      |             | 0:disabled                   |
|     |      | 0×0         | pid25_error                  |
| 25  | RW   |             | PID25 Error Interrupt Enable |
| 25  | r vv |             | 1:enabled                    |
|     |      |             | 0:disabled                   |
|     |      |             | pid24_error                  |
| 24  | RW   | 0x0         | PID24 Error Interrupt Enable |
| 27  | ĸw   | 0.00        | 1:enabled                    |
|     |      |             | 0:disabled                   |
|     |      | / 0×0       | pid23_error                  |
| 23  | RW   |             | PID23 Error Interrupt Enable |
| 25  |      |             | 1:enabled                    |
|     |      |             | 0:disabled                   |
|     |      |             | pid22_error                  |
| 22  | RW   | 0x0         | PID22 Error Interrupt Enable |
|     |      |             | 1:enabled                    |
|     |      |             | 0:disabled                   |
|     |      |             | pid21_error                  |
| 21  | RW   | 0x0         | PID21 Error Interrupt Enable |
|     |      |             | 1:enabled                    |
|     |      |             | 0:disabled                   |
|     |      |             | pid20_error                  |
| 20  | RW   | 0x0         | PID20 Error Interrupt Enable |
| -   |      |             | 1:enabled                    |
|     |      |             | 0:disabled                   |

| Bit | Attr         | <b>Reset Value</b> | Description                  |
|-----|--------------|--------------------|------------------------------|
|     |              |                    | pid19_error                  |
|     |              |                    | PID19 Error Interrupt Enable |
| 19  | RW           | 0x0                | 1:enabled                    |
|     |              |                    | 0:disabled                   |
|     |              |                    | pid18_error                  |
|     |              |                    | PID18 Error Interrupt Enable |
| 18  | RW           | 0x0                | 1:enabled                    |
|     |              |                    | 0:disabled                   |
|     |              |                    | pid17_error                  |
|     |              |                    | PID17 Error Interrupt Enable |
| 17  | RW           | 0x0                | 1:enabled                    |
|     |              |                    | 0:disabled                   |
|     |              |                    | pid16_error                  |
|     |              |                    | PID16 Error Interrupt Enable |
| 16  | RW           | 0x0                | 1:enabled                    |
|     |              |                    | 0:disabled                   |
|     |              |                    | pid15_error                  |
|     |              | 0×0                | PID15 Error Interrupt Enable |
| 15  | RW           |                    | 1:enabled                    |
|     |              |                    | 0:disabled                   |
|     |              | 0×0                | pid14_error                  |
|     |              |                    | PID14 Error Interrupt Enable |
| 14  | RW           |                    | 1:enabled                    |
|     |              |                    | 0:disabled                   |
|     |              |                    | pid13_error                  |
| 10  | <b>D</b> 14/ |                    | PID13 Error Interrupt Enable |
| 13  | RW           | 0x0                | 1:enabled                    |
|     |              |                    | 0:disabled                   |
|     |              |                    | pid12_error                  |
| 10  |              | 0.40               | PID12 Error Interrupt Enable |
| 12  | RW           | 0×0                | 1:enabled                    |
|     |              |                    | 0:disabled                   |
|     |              |                    | pid11_error                  |
| 1 1 |              | 0.40               | PID11 Error Interrupt Enable |
| 11  | RW           | 0x0                | 1:enabled                    |
|     |              |                    | 0:disabled                   |
|     |              |                    | pid10_error                  |
| 10  | RW           | 0.40               | PID10 Error Interrupt Enable |
|     | RVV          | 0x0                | 1:enabled                    |
|     |              |                    | 0:disabled                   |
|     |              |                    | pid9_error                   |
| 9   | RW           | 0x0                | PID9 Error Interrupt Enable  |
| 2   |              |                    | 1:enabled                    |
|     |              |                    | 0:disabled                   |

| Bit | Attr | <b>Reset Value</b> | Description                 |
|-----|------|--------------------|-----------------------------|
|     |      |                    | pid8_error                  |
| 0   | RW   | 0x0                | PID8 Error Interrupt Enable |
| 8   | RW   | UXU                | 1:enabled                   |
|     |      |                    | 0:disabled                  |
|     |      |                    | pid7_error                  |
| 7   |      | 0.40               | PID7 Error Interrupt Enable |
| 7   | RW   | 0x0                | 1:enabled                   |
|     |      |                    | 0:disabled                  |
|     |      |                    | pid6_error                  |
| c   |      | 0.40               | PID6 Error Interrupt Enable |
| 6   | RW   | 0x0                | 1:enabled                   |
|     |      |                    | 0:disabled                  |
|     |      |                    | pid5_error                  |
| -   |      | 00                 | PID5 Error Interrupt Enable |
| 5   | RW   | 0x0                | 1:enabled                   |
|     |      |                    | 0:disabled                  |
|     |      | 0×0                | pid4_error                  |
| 4   |      |                    | PID4 Error Interrupt Enable |
| 4   | RW   |                    | 1:enabled                   |
|     |      |                    | 0:disabled                  |
|     |      | W 0x0              | pid3_error                  |
| 2   | RW   |                    | PID3 Error Interrupt Enable |
| 3   |      |                    | 1:enabled                   |
|     |      |                    | 0:disabled                  |
|     |      |                    | pid2_error                  |
| 2   | RW   | 0.20               | PID2 Error Interrupt Enable |
| 2   | RVV  | / 0x0              | 1:enabled                   |
|     |      |                    | 0:disabled                  |
|     |      |                    | pid1_error                  |
| 1   | DW   | 0.40               | PID1 Error Interrupt Enable |
| 1   | RW   | 0x0                | 1:enabled                   |
|     |      |                    | 0:disabled                  |
|     |      |                    | pid0_error                  |
|     |      |                    | PID0 Error Interrupt Enable |
| 0   | RW   | V UXU              | 1:enabled                   |
|     |      |                    | 0:disabled                  |

## TSP\_PTIx\_PID\_INT\_ENA3

Address: Operational Base + offset (0x0130) PID Interrupt Enable Register 3

| Bit | Attr | Reset Value | Description                               |
|-----|------|-------------|-------------------------------------------|
|     |      |             | pid63_error                               |
| 31  |      |             | PID63 Error Interrupt Enable              |
|     | RW   | 0×0         | 1:enabled                                 |
|     |      |             | 0:disabled                                |
|     |      |             | pid62_error                               |
| 20  |      | 00          | PID62 Error Interrupt Enable              |
| 30  | RW   | 0x0         | 1:enabled                                 |
|     |      |             | 0:disabled                                |
|     |      |             | pid61_error                               |
| 29  | RW   | 0x0         | PID61 Error Interrupt Enable              |
| 29  | r vv | 0.00        | 1:enabled                                 |
|     |      |             | 0:disabled                                |
|     |      |             | pid60_error                               |
| 28  | RW   | 0x0         | PID60 Error Interrupt Enable              |
| 20  | 1    | 0,0         | 1:enabled                                 |
|     |      |             | 0:disabled                                |
|     |      | 0×0         | pid59_error                               |
| 27  | RW   |             | PID59 Error Interrupt Enable              |
|     |      |             | 1:enabled                                 |
|     |      |             | 0:disabled                                |
|     |      | 0×0         | pid58_error                               |
| 26  | RW   |             | PID58 Error Interrupt Enable              |
|     |      |             | 1:enabled                                 |
|     |      |             | 0:disabled                                |
|     |      |             | pid57_error                               |
| 25  | RW   | 0x0         | PID57 Error Interrupt Enable              |
|     |      |             | 1:enabled                                 |
|     |      |             | 0:disabled                                |
|     |      |             | pid56_error                               |
| 24  | RW   | 0x0         | PID56 Error Interrupt Enable<br>1:enabled |
|     |      |             | 0:disabled                                |
|     |      |             | pid55_error                               |
|     |      |             | PID55 Error Interrupt Enable              |
| 23  | RW   | 0x0         | 1:enabled                                 |
|     |      |             | 0:disabled                                |
|     |      |             | pid54_error                               |
|     |      |             | PID54 Error Interrupt Enable              |
| 22  | RW   | 0x0         | 1:enabled                                 |
|     |      |             | 0:disabled                                |
|     |      |             | pid53_error                               |
|     |      |             | PID53 Error Interrupt Enable              |
| 21  | RW   | 0×0         | 1:enabled                                 |
|     |      |             | 0:disabled                                |

| Bit | Attr         | Reset Value | Description                  |
|-----|--------------|-------------|------------------------------|
|     |              |             | pid52_error                  |
| 2.0 |              |             | PID52 Error Interrupt Enable |
| 20  | RW           | 0×0         | 1:enabled                    |
|     |              |             | 0:disabled                   |
|     |              |             | pid51_error                  |
| 10  | <b>D</b> 144 |             | PID51 Error Interrupt Enable |
| 19  | RW           | 0x0         | 1:enabled                    |
|     |              |             | 0:disabled                   |
|     |              |             | pid50_error                  |
| 10  |              | 0.40        | PID50 Error Interrupt Enable |
| 18  | RW           | 0x0         | 1:enabled                    |
|     |              |             | 0:disabled                   |
|     |              |             | pid49_error                  |
| 17  | RW           | 0.40        | PID49 Error Interrupt Enable |
| 1/  | RVV          | 0x0         | 1:enabled                    |
|     |              |             | 0:disabled                   |
|     |              |             | pid48_error                  |
| 16  | RW           | 0x0         | PID48 Error Interrupt Enable |
| 10  | r vv         | 0.00        | 1:enabled                    |
|     |              |             | 0:disabled                   |
|     |              | 0×0         | pid47_error                  |
| 15  | RW           |             | PID47 Error Interrupt Enable |
| 13  | r vv         |             | 1:enabled                    |
|     |              |             | 0:disabled                   |
|     |              |             | pid46_error                  |
| 14  | RW           | 0x0         | PID46 Error Interrupt Enable |
| 14  | K VV         | 0.00        | 1:enabled                    |
|     |              |             | 0:disabled                   |
|     |              |             | pid45_error                  |
| 13  | RW           | 0×0         | PID45 Error Interrupt Enable |
|     |              |             | 1:enabled                    |
|     |              |             | 0:disabled                   |
|     |              |             | pid44_error                  |
| 12  | RW           | 0x0         | PID44 Error Interrupt Enable |
|     |              | 0.00        | 1:enabled                    |
|     |              |             | 0:disabled                   |
| 11  |              |             | pid43_error                  |
|     | RW           | 0x0         | PID43 Error Interrupt Enable |
|     |              |             | 1:enabled                    |
|     |              |             | 0:disabled                   |
|     |              |             | pid42_error                  |
| 10  | RW           | 0x0         | PID42 Error Interrupt Enable |
|     |              |             | 1:enabled                    |
|     |              |             | 0:disabled                   |

| Bit | Attr | <b>Reset Value</b> | Description                  |
|-----|------|--------------------|------------------------------|
|     |      |                    | pid41_error                  |
| 0   |      |                    | PID41 Error Interrupt Enable |
| 9   | RW   | 0x0                | 1:enabled                    |
|     |      |                    | 0:disabled                   |
|     |      |                    | pid40_error                  |
| 8   | RW   | 0x0                | PID40 Error Interrupt Enable |
| 0   | RVV  | UXU                | 1:enabled                    |
|     |      |                    | 0:disabled                   |
|     |      |                    | pid39_error                  |
| 7   | RW   | 0x0                | PID39 Error Interrupt Enable |
| /   |      | 0.00               | 1:enabled                    |
|     |      |                    | 0:disabled                   |
|     |      |                    | pid38_error                  |
| 6   | RW   | 0x0                | PID38 Error Interrupt Enable |
| 0   |      | 0.00               | 1:enabled                    |
|     |      |                    | 0:disabled                   |
|     |      | 0×0                | pid37_error                  |
| 5   | RW   |                    | PID37 Error Interrupt Enable |
| 5   | 1    |                    | 1:enabled                    |
|     |      |                    | 0:disabled                   |
|     |      |                    | pid36_error                  |
| 4   | RW   | 0x0                | PID36 Error Interrupt Enable |
|     |      |                    | 1:enabled                    |
|     |      |                    | 0:disabled                   |
|     |      |                    | pid35_error                  |
| 3   | RW   | 0x0                | PID35 Error Interrupt Enable |
|     |      |                    | 1:enabled                    |
|     |      |                    | 0:disabled                   |
|     |      |                    | pid34_error                  |
| 2   | RW   | 0x0                | PID34 Error Interrupt Enable |
|     |      |                    | 1:enabled                    |
|     |      |                    | 0:disabled                   |
|     |      |                    | pid33_error                  |
| 1   | RW   | 0x0                | PID33 Error Interrupt Enable |
|     |      |                    | 1:enabled                    |
|     |      |                    | 0:disabled                   |
|     |      |                    | pid32_error                  |
| 0   | RW   | 0x0                | PID32 Error Interrupt Enable |
|     |      | -                  | 1:enabled                    |
|     |      |                    | 0:disabled                   |

#### TSP\_PTIx\_PCR\_INT\_STS

Address: Operational Base + offset (0x0134) PTI PCR Interrupt Status Register

| Bit  | Attr | Reset<br>Value | Description  |
|------|------|----------------|--------------|
| 31:8 | RO   | 0x0            | reserved     |
|      |      |                | pcr7_done    |
| 7    | W1C  | 0x0            | PCR7 Status  |
| /    | WIC  | UXU            | 1: done;     |
|      |      |                | 0: not done; |
|      |      |                | pcr6_done    |
| ~    | W1C  | 00             | PCR6 Status  |
| 6    | W1C  | 0x0            | 1: done;     |
|      |      |                | 0: not done; |
|      |      |                | pcr5_done    |
| _    |      |                | PCR5 Status  |
| 5    | W1C  | 0x0            | 1: done;     |
|      |      |                | 0: not done; |
|      |      | 0x0            | pcr4_done    |
|      |      |                | PCR4 Status  |
| 4    | W1C  |                | 1: done;     |
|      |      |                | 0: not done; |
|      |      | 0x0            | pcr3_done    |
| 2    | W1C  |                | PCR3 Status  |
| 3    |      |                | 1: done;     |
|      |      |                | 0: not done; |
|      |      |                | pcr2_done    |
| 2    | W1C  | 00             | PCR2 Status  |
| 2    | W1C  | 0x0            | 1: done;     |
|      |      |                | 0: not done; |
|      |      |                | pcr1_done    |
| 4    |      | 00             | PCR1 Status  |
| 1    | W1C  | 0x0            | 1: done;     |
|      |      |                | 0: not done; |
|      |      |                | pcr0_done    |
| 0    | W1C  | 0.0            | PCR0 Status  |
| 0    | W1C  | 0x0            | 1: done;     |
|      |      |                | 0: not done; |

### TSP\_PTIx\_PCR\_INT\_ENA

Address: Operational Base + offset (0x0138) PTI PCR Interrupt Enable Register

| Bit  | Attr | <b>Reset Value</b> | Description                |
|------|------|--------------------|----------------------------|
| 31:8 | RO   | 0x0                | reserved                   |
|      | RW   | V 0×0              | pcr7_done_ena              |
| 7    |      |                    | pcr7 done interrupt enable |
| /    |      |                    | 1: enabled;                |
|      |      |                    | 0: disabled;               |

| Bit | Attr  | <b>Reset Value</b> | Description                |
|-----|-------|--------------------|----------------------------|
|     |       |                    | pcr6_done_ena              |
| 6   | RW    | 0x0                | pcr6 done interrupt enable |
| 0   | RVV   | 0.00               | 1: enabled;                |
|     |       |                    | 0: disabled;               |
|     |       |                    | pcr5_done_ena              |
| E   |       | 0.40               | pcr5 done interrupt enable |
| 5   | RW    | 0x0                | 1: enabled;                |
|     |       |                    | 0: disabled;               |
|     |       |                    | pcr4_done_ena              |
| 4   | RW    | 0.40               | pcr4 done interrupt enable |
| 4   | K VV  | 0x0                | 1: enabled;                |
|     |       |                    | 0: disabled;               |
|     |       | 0×0                | pcr3_done_ena              |
| 3   | RW    |                    | pcr3 done interrupt enable |
| 5   | K VV  |                    | 1: enabled;                |
|     |       |                    | 0: disabled;               |
|     | RW    | V 0×0              | pcr2_done_ena              |
| 2   |       |                    | pcr2 done interrupt enable |
| 2   |       |                    | 1: enabled;                |
|     |       |                    | 0: disabled;               |
|     |       |                    | pcr1_done_ena              |
| 1   | RW    | 0x0                | pcr1 done interrupt enable |
| 1   |       | 0.00               | 1: enabled;                |
|     |       |                    | 0: disabled;               |
|     |       |                    | pcr0_done_ena              |
| 0   | RW    | 0×0                | pcr0 done interrupt enable |
|     | IN VV |                    | 1: enabled;                |
|     |       |                    | 0: disabled;               |

#### TSP\_PTIx\_PCRn\_CTRL

Address: Operational Base + offset (0x013c) PID PCR Control Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                      |
|-------|------|--------------------|------------------------------------------------------------------|
| 31:14 | RO   | 0x0                | reserved                                                         |
|       |      |                    | pid                                                              |
| 13:1  | RW   | 0x0000             | PCR Extraction PID number                                        |
|       |      |                    | This 13-bit field sets the PID number that needs PCR extraction. |
|       | RW   | W 0×0              | on                                                               |
| 0     |      |                    | PCR Extraction Switch                                            |
| 0     |      |                    | 1'b1: PCR extraction switched on ;                               |
|       |      |                    | 1'b0: PCR extraction switched off ;                              |

#### TSP\_PTIx\_PCRn\_H

Address: Operational Base + offset (0x015c)

High Order PCR value

| Bit  | Attr | <b>Reset Value</b> | Description               |
|------|------|--------------------|---------------------------|
| 31:1 | RO   | 0x0                | reserved                  |
| 0    | RO   | 0x0                | pcr<br>PCR[32]<br>pcr[32] |

#### TSP\_PTIx\_PCRn\_L

Address: Operational Base + offset (0x0160) Low Order PCR value

| Bit  | Attr | <b>Reset Value</b> | Description                   |
|------|------|--------------------|-------------------------------|
| 31:0 | RO   | 0x00000000         | pcr<br>pcr[31:0]<br>pcr[31:0] |

#### TSP\_PTIx\_DMA\_STS

Address: Operational Base + offset (0x019c) LLP DMA Interrupt Status Register

| Bit  | Attr    | Reset Value | Description                                  |
|------|---------|-------------|----------------------------------------------|
| 31:2 | RO      | 0x0         | reserved                                     |
|      |         |             | llp_error                                    |
| 1    | W1<br>C | 0x0         | LLP DMA Error Status                         |
| 1    |         | 0.00        | 1: error response during DMA transaction;    |
|      |         |             | 0: no error response during DMA transaction; |
|      | W1      | /1          | llp_done                                     |
| 0    |         |             | LLP DMA Done Status                          |
| 0    | С       | 0x0         | 1: DMA transaction completed;                |
|      |         |             | 0: DMA transaction not completed;            |

#### TSP\_PTIx\_DMA\_ENA

Address: Operational Base + offset (0x01a0) DMA Interrupt Enable Register

| Bit  | Attr | <b>Reset Value</b> | Description                    |
|------|------|--------------------|--------------------------------|
| 31:2 | RO   | 0x0                | reserved                       |
|      |      |                    | llp_error_ena                  |
| 1    | RW   | 0×0                | LLP DMA Error Interrupt Enable |
|      |      |                    | 1: enabled                     |
|      |      |                    | 0: disabled                    |
|      | RW   |                    | llp_done_ena                   |
| 0    |      |                    | LLP DMA Done Interrupt Enable  |
| U    |      |                    | 1: enabled                     |
|      |      |                    | 0: disabled                    |

#### TSP\_PTIx\_DATA\_FLAG0

Address: Operational Base + offset (0x01a4) PTI\_PID\_WRITE Flag 0

| Bit  | Attr | <b>Reset Value</b> | Description        |
|------|------|--------------------|--------------------|
| 31:0 | RW   | 0x00000000         | data_write_flag_0  |
| 51.0 |      | 0,00000000         | From PID0 TO PID31 |

#### TSP\_PTIx\_DATA\_FLAG1

Address: Operational Base + offset (0x01a8)

PTI\_PID\_WRITE Flag 1

| Bit  | Attr | <b>Reset Value</b> | Description         |
|------|------|--------------------|---------------------|
| 31:0 | RW   | 10x000000000       | data_write_flag_1   |
| 31:0 |      |                    | From PID32 TO PID63 |

#### TSP\_PTIx\_LIST\_FLAG

Address: Operational Base + offset (0x01ac)

PTIx\_LIST\_WRITE Flag

| Bit   | Attr | <b>Reset Value</b> | Description                           |
|-------|------|--------------------|---------------------------------------|
| 31:16 | RO   | 0x0                | reserved                              |
| 15:0  | RW   | UXUUUU             | list_write_flag<br>From PID0 TO PID15 |

#### TSP\_PTIx\_DST\_STS0

Address: Operational Base + offset (0x01b0) PTI Destination Status Register

| Bit  | Attr | <b>Reset Value</b> | Description          |
|------|------|--------------------|----------------------|
| 31:0 | W1   | 0x00000000         | demux_dma_status_0   |
| 51.0 | С    | 0x00000000         | From 0 to 31 channel |

#### TSP\_PTIx\_DST\_STS1

Address: Operational Base + offset (0x01b4) PTI Destination Status Register

| Bit  | Attr | <b>Reset Value</b> | Description           |
|------|------|--------------------|-----------------------|
| 31:0 | W1   | 0x00000000         | demux_dma_status_0    |
| 51.0 | С    | 0x00000000         | From 32 to 63 channel |

#### TSP\_PTIx\_DST\_ENA0

Address: Operational Base + offset (0x01b8) PTI Destination Interrupt Enable Register

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit  | Attr | <b>Reset Value</b> | Description                                |
|------|------|--------------------|--------------------------------------------|
| 31:0 | RW   | 0x000000000        | demux_dma_enable_0<br>From 0 to 31 channel |

#### TSP\_PTIx\_DST\_ENA1

Address: Operational Base + offset (0x01bc)

PTI Destination Interrupt Enable Register

| Bit    | Attr         | <b>Reset Value</b>    | Description        |
|--------|--------------|-----------------------|--------------------|
| 31:0 R | DW           | 0,000,000,000         | demux_dma_enable_1 |
| 51.0   | RW 0x0000000 | From 32 to 63 channel |                    |

#### TSP\_PTIx\_ECWn\_H

Address: Operational Base + offset (0x0200) The Even Control Word High Order

| Bit  | Attr | <b>Reset Value</b> | Description                                             |
|------|------|--------------------|---------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | ecw_h<br>The Even Control Word High Order<br>ECW[63:32] |

#### TSP\_PTIx\_ECWn\_L

Address: Operational Base + offset (0x0204) The Even Control Word Low Order

| Bit  | Attr | <b>Reset Value</b> | Description                              |
|------|------|--------------------|------------------------------------------|
| 31:0 | RW   | 0x00000000         | ecw_l<br>The Even Control Word Low Order |
|      |      |                    | ECW[31:0]                                |

#### TSP\_PTIx\_OCWn\_H

Address: Operational Base + offset (0x0208)

The Odd Control Word High Order

| Bit  | Attr | <b>Reset Value</b> | Description                     |
|------|------|--------------------|---------------------------------|
|      |      |                    | ocw_h                           |
| 31:0 | RW   | 0x00000000         | The Odd Control Word High order |
|      |      |                    | OCW[63:32]                      |

#### TSP\_PTIx\_OCWn\_L

Address: Operational Base + offset (0x020c) The Odd Control Word Low Order

| Bit  | Attr | <b>Reset Value</b> | Description                                          |
|------|------|--------------------|------------------------------------------------------|
| 31:0 | RW   |                    | ocw_l<br>The Odd Control Word Low Order<br>OCW[31:0] |

#### TSP\_PTIx\_PIDn\_CTRL

Address: Operational Base + offset (0x0300) PID Channel Control Register

| Bit   | Attr      | <b>Reset Value</b> | Description                                                                                                                                         |
|-------|-----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:20 | RO        | 0x0                | reserved                                                                                                                                            |
| 19:16 | RW        | 0×0                | cw_num<br>Control Word Order Number<br>This fields indicates the corresponding order number of control<br>word to be used to descramble TS packets. |
| 15:3  | RW        | 0x0000             | pid<br>PID number<br>This 13-bit sets the desired PID number to be processed by PTI<br>channel.                                                     |
| 2     | RW        | 0×0                | csa_on<br>Descrambling Switch<br>1'b1: Descrambling function turned on;<br>1'b0: Descrambling function turned off;                                  |
| 1     | R/W<br>SC | 0×0                | clear<br>PID Channel Clear<br>Write 1 to clear PID channel. This bit will be set to 0 if the<br>channel is clear.                                   |
| 0     | R/W<br>SC | 0x0                | en<br>PID Channel Enable<br>Write 1 to enable channel. Write 0 to this bit will not take any<br>effect. This bit will be 0 when channel is cleared. |

#### TSP\_PTIx\_PIDn\_BASE

Address: Operational Base + offset (0x0400) PTI Data Memory Buffer Base Address

| Bit  | Attr | <b>Reset Value</b> | Description                         |
|------|------|--------------------|-------------------------------------|
|      |      |                    | address                             |
| 31:0 | RW   | 0x00000000         | PTI Data Memory Buffer Base Address |
|      |      |                    | PTI Data Memory Buffer Base Address |

#### TSP\_PTIx\_PIDn\_TOP

Address: Operational Base + offset (0x0404) PTI Data Memory Buffer Top Address

| Bit  | Attr | <b>Reset Value</b> | Description                        |
|------|------|--------------------|------------------------------------|
|      |      |                    | address                            |
| 31:0 | RW   | 0x00000000         | PTI Data Memory Buffer Top Address |
|      |      |                    | PTI Data Memory Buffer Top Address |

#### TSP\_PTIx\_PIDn\_WRITE

Address: Operational Base + offset (0x0408) PTI Data Memory Buffer Hardware Writing Address

| Bit  | Attr | <b>Reset Value</b> | Description                                     |
|------|------|--------------------|-------------------------------------------------|
|      |      |                    | address                                         |
| 31:0 | RO   | 0x00000000         | PTI Data Memory Buffer Hardware Writing Address |
|      |      |                    | PTI Data Memory Buffer Hardware Writing Address |

#### TSP\_PTIx\_PIDn\_READ

Address: Operational Base + offset (0x040c) PTI Data Memory Buffer Software Reading Address

| Bit  | Attr | <b>Reset Value</b> | Description                                     |
|------|------|--------------------|-------------------------------------------------|
|      |      |                    | address                                         |
| 31:0 | RW   | 0x00000000         | PTI Data Memory Buffer Software Reading Address |
|      |      |                    | PTI Data Memory Buffer Software Reading Address |

#### TSP\_PTIx\_LISTn\_BASE

Address: Operational Base + offset (0x0800)

PTI List Memory Buffer Base Address

| Bit  | Attr | <b>Reset Value</b> | Description                                     |
|------|------|--------------------|-------------------------------------------------|
|      |      |                    | address                                         |
| 31:0 | RW   | 0x00000000         | PTI Data Memory Buffer Software Reading Address |
|      |      |                    | PTI Data Memory Buffer Software Reading Address |

#### TSP\_PTIx\_LISTn\_TOP

Address: Operational Base + offset (0x0804) PTI List Memory Buffer Top Address

 Bit
 Attr
 Reset Value
 Description

 31:0
 RW
 0x00000000
 PTI List Memory Buffer Top Address

 PTI List Memory Buffer Top Address

#### TSP\_PTIx\_LISTn\_WRITE

Address: Operational Base + offset (0x0808) PTI List Memory Buffer Hardware Writing Address

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                   |
|------|------|--------------------|---------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | address<br>PTI List Memory Buffer Hardware Writing Address<br>PTI List Memory Buffer Hardware Writing Address |

#### TSP\_PTIx\_LISTn\_READ

Address: Operational Base + offset (0x080c) PTI List Memory Buffer Software Reading Address

| Bit  | Attr | <b>Reset Value</b> | Description                                     |
|------|------|--------------------|-------------------------------------------------|
|      |      |                    | address                                         |
| 31:0 | RW   | 0x00000000         | PTI List Memory Buffer Software Reading Address |
|      |      |                    | PTI List Memory Buffer Software Reading Address |

#### TSP\_PTIx\_PIDn\_CFG

Address: Operational Base + offset (0x0900) PID Demux Configure Register

| Bit   | r  | Reset Value | Description                                                       |
|-------|----|-------------|-------------------------------------------------------------------|
|       |    |             | filter_en                                                         |
|       |    |             | Filter Byte Enable                                                |
|       |    |             | The proper position of filter byte Enable.                        |
| 31:16 | RW | 0x0000      | For Section filter. the 1st,4th,5th,18th byte of section header   |
|       |    |             | are used to be filtered; For PES filter, the 4th,7th,8th21th byte |
|       |    |             | of pes header are used to be filtered.                            |
| 15:12 | RO | 0x0         | reserved                                                          |
|       |    |             | scd_en                                                            |
|       |    |             | Start Code Detection Switch                                       |
|       |    |             | Start code detection                                              |
| 11    | RW | 0×0         | 1: enabled;                                                       |
|       |    |             | 0: disabled;                                                      |
|       |    |             | This bit is only valid when $n < 16$ .                            |
|       |    |             | cni_on                                                            |
|       |    |             | Current Next Indicator Abort                                      |
| 10    | RW | W 0×0       | when current_next_indicator == 1'b1,                              |
|       |    |             | 1'b1: abort ;                                                     |
|       |    |             | 1'b0: do nothing ;                                                |
|       |    |             | filt_mode                                                         |
|       |    |             | Section Filter Mode                                               |
|       |    |             | Filter Mode when the filter mode is configured as section filter. |
| 9:8   | RW | 0x0         | 2'b00: stop per unit;                                             |
|       |    |             | 2'b01: full stop;                                                 |
|       |    |             | 2'b10: recycle, update when version number change                 |
|       |    |             | 2'b11: reserverd                                                  |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                 |
|-----|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 | RW   | 0×0         | video_type<br>Video filtering Type<br>2'b00: MPEG2<br>2'b01: H264<br>2'b10: VC-1<br>2'b11: Reserved                                                                                                         |
| 5:4 | RW   | 0×0         | <pre>filt_type Filter Type 2'b00: section filtering; 2'b01: pes filtering; 2'b10: es filtering; 2'b11: ts filtering; if n&gt;=16, it is reserved as only section filtering, other values are invalid.</pre> |
| 3   | RW   | 0x1         | cc_abort<br>Continue Counter Error Abort<br>when continuity counter error happens:<br>1: abort;<br>0: do nothing;                                                                                           |
| 2   | RW   | 0×0         | <pre>tei_abort Ts_error_indicator Abort when ts_error_indicator == 1: 1'b1: abort; 1'b0: do nothing;</pre>                                                                                                  |
| 1   | RW   | 0×0         | crc_abort<br>CRC Error Abort<br>This bit is valid only when crc_on == 1'b1.<br>When crc error happens,<br>1'b1: abort ;<br>1'b0: do nothing.                                                                |
| 0   | RW   | 0x0         | crc_on<br>CRC Check<br>1'b1: CRC check function turned on<br>1'b0: CRC check function turned off                                                                                                            |

## TSP\_PTIx\_PIDn\_FILT\_0

Address: Operational Base + offset (0x0904) Fliter Word 0

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                 |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------|
| 31:24 | RW   | 0x00               | filt_byte_3<br>Fliter Byte 2<br>This byte refers to 6th byte of section header or 9th byte of pes<br>header |

| Bit   | Attr | Reset Value | Description                                                       |
|-------|------|-------------|-------------------------------------------------------------------|
|       |      |             | filt_byte_2                                                       |
| 23:16 | DW   | 0x00        | Fliter Byte 2                                                     |
| 23.10 |      | 0,00        | This byte refers to 5th byte of section header or 8th byte of pes |
|       |      |             | header                                                            |
|       |      |             | filt_byte_1                                                       |
| 1 5.0 |      |             | Fliter Byte 1                                                     |
| 15:8  | RW   |             | This byte refers to 4th byte of section header or 7th byte of pes |
|       |      |             | header                                                            |
|       |      |             | filt_byte_0                                                       |
| 7:0   | עעם  |             | Fliter Byte 0                                                     |
| 7:0   | RW   |             | This byte refers to 1st byte of section header or 4th byte of pes |
|       |      |             | header                                                            |

## TSP\_PTIx\_PIDn\_FILT\_1

Address: Operational Base + offset (0x0908)

Fliter Word 1

| Bit   | Attr | <b>Reset Value</b> | Description                                                        |
|-------|------|--------------------|--------------------------------------------------------------------|
|       |      |                    | filt_byte_3                                                        |
| 31:24 | DW   | 0x00               | Fliter Byte 2                                                      |
| 51.24 | L AN | 0,00               | This byte refers to 10th byte of section header or 13rd byte of    |
|       |      |                    | pes header                                                         |
|       |      |                    | filt_byte_2                                                        |
| 23:16 |      | 0.400              | Fliter Byte 2                                                      |
| 23:10 | RW   | V 0×00             | This byte refers to 9th byte of section header or 12nd byte of pes |
|       |      |                    | header                                                             |
|       |      | W 0×00             | filt_byte_1                                                        |
| 15.0  |      |                    | Fliter Byte 1                                                      |
| 15:8  | RVV  |                    | This byte refers to 8th byte of section header or 11st byte of pes |
|       |      |                    | header                                                             |
|       |      | RW 0x00            | filt_byte_0                                                        |
| 7.0   |      |                    | Fliter Byte 0                                                      |
| 7:0   | ĸvv  |                    | This byte refers to 7th byte of section header or 10th byte of pes |
|       |      |                    | header                                                             |

## TSP\_PTIx\_PIDn\_FILT\_2

Address: Operational Base + offset (0x090c) Fliter Word 2

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                   |
|-------|------|--------------------|---------------------------------------------------------------------------------------------------------------|
| 31:24 | RW   | 0x00               | filt_byte_3<br>Fliter Byte 2<br>This byte refers to 14th byte of section header or 17th byte of<br>pes header |

| Bit   | Attr | <b>Reset Value</b> | Description                                                         |
|-------|------|--------------------|---------------------------------------------------------------------|
|       |      |                    | filt_byte_2                                                         |
| 23:16 | DW   | 0x00               | Fliter Byte 2                                                       |
| 25.10 | K VV | 0,000              | This byte refers to 13rd byte of section header or 16th byte of     |
|       |      |                    | pes header                                                          |
|       |      | W 0x00             | filt_byte_1                                                         |
| 1     |      |                    | Fliter Byte 1                                                       |
| 15:8  | RW   |                    | This byte refers to 12nd byte of section header or 15th byte of     |
|       |      |                    | pes header                                                          |
|       |      | W 0×00             | filt_byte_0                                                         |
| 7.0   |      |                    | Fliter Byte 0                                                       |
| 7:0   | ĸw   |                    | This byte refers to 11st byte of section header or 14th byte of pes |
|       |      |                    | header                                                              |

## TSP\_PTIx\_PIDn\_FILT\_3

Address: Operational Base + offset (0x0910)

Fliter Word 3

| Bit   | Attr | <b>Reset Value</b> | Description                                                         |
|-------|------|--------------------|---------------------------------------------------------------------|
|       |      |                    | filt_byte_3                                                         |
| 31:24 |      | 0x00               | Fliter Byte 2                                                       |
| 51.24 | r vv | 0,00               | This byte refers to 18th byte of section header or 21st byte of pes |
|       |      |                    | header                                                              |
|       |      |                    | filt_byte_2                                                         |
| 23:16 |      | 0.400              | Fliter Byte 2                                                       |
| 23:10 | RVV  | 0×00               | This byte refers to 17th byte of section header or 20th byte of     |
|       |      |                    | pes header                                                          |
|       |      | V 0×00             | filt_byte_1                                                         |
| 15:8  |      |                    | Fliter Byte 1                                                       |
| 12:0  | RW   |                    | This byte refers to 16th byte of section header or 19th byte of     |
|       |      |                    | pes header                                                          |
|       |      |                    | filt_byte_0                                                         |
| 7:0   |      | W 0x00             | Fliter Byte 0                                                       |
| /.0   | r.vv |                    | This byte refers to 15th byte of section header or 18th byte of     |
|       |      |                    | pes header                                                          |

## 15.4.3 MMU Register Summary

| Name                    | Offset  | Size | Reset<br>Value | Description                            |
|-------------------------|---------|------|----------------|----------------------------------------|
| TSP_MMU_DTE_ADDR        | 0x08800 | W    | 0×00000000     | MMU current page Table<br>address      |
| TSP_MMU_STATUS          | 0x08804 | W    | 0x0000018      | MMU status register                    |
| TSP_MMU_COMMAND         | 0x08808 | W    | 0x00000000     | MMU command register                   |
| TSP_MMU_PAGE_FAULT_ADDR | 0x0880c | W    | 0x00000000     | MMU logical address of last page fault |
| TSP_MMU_ZAP_ONE_LINE    | 0x08810 | W    | 0x00000000     | MMU Zap cache line register            |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Name                | Offset  | Size | Reset<br>Value | Description                          |
|---------------------|---------|------|----------------|--------------------------------------|
| TSP_MMU_INT_RAWSTAT | 0x08814 | W    | 0x00000000     | MMU raw interrupt status<br>register |
| TSP_MMU_INT_CLEAR   | 0x08818 | W    | 0x00000000     | MMU interrupt clear register         |
| TSP_MMU_INT_MASK    | 0x0881c | W    | 0x00000000     | MMU interrupt mask register          |
| TSP_MMU_INT_STATUS  | 0x08820 | W    | 0x00000000     | MMU interrupt status<br>register     |
| TSP_MMU_AUTO_GATING | 0x08824 | W    | 0x0000001      | MMU auto gating                      |
| TSP_MMU_MISS_CNT    | 0x08828 | W    | 0x0000000      | MMU miss counter                     |
| TSP_MMU_BURST_CNT   | 0x0882c | W    | 0x00000000     | MMU burst counter                    |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 15.4.4 MMU Detail Register Description

#### TSP\_MMU\_DTE\_ADDR

Address: Operational Base + offset (0x08800)

MMU current page Table address

| Bit  | Attr | Reset Value | Description                                                                      |
|------|------|-------------|----------------------------------------------------------------------------------|
| 31:0 | RW   | 0×0000000   | MMU_DTE_ADDR<br>MMU dte base addr<br>MMU dte base addr , the address must be 4kb |
|      |      |             | aligned                                                                          |

#### TSP\_MMU\_STATUS

Address: Operational Base + offset (0x08804)

MMU status register

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
| 31:11 | RO   | 0x0                | reserved                                                     |
| 10:6  | RO   | 0x00               | PAGE_FAULT_BUS_ID                                            |
| 10.0  | ĸŬ   | 0x00               | Index of master reponsible for last page fault               |
|       |      |                    | PAGE_FAULT_IS_WRITE                                          |
| 5     | RO   | 0x0                | The direction of access for last page fault:                 |
| J     | κυ   | 0.00               | 0 = Read                                                     |
|       |      |                    | 1 = Write                                                    |
| 4     | RO   | 0 0x1              | REPLAY_BUFFER_EMPTY                                          |
| 4     | κυ   |                    | The MMU replay buffer is empty                               |
|       |      |                    | MMU_IDLE                                                     |
| 3     | RO   | 0x1                | The MMU is idle when accesses are being translated and there |
|       |      |                    | are no unfinished translated accesses.                       |
|       |      |                    | STAIL_ACTIVE                                                 |
| 2     | RO   | 0x0                | MMU stall mode currently enabled. The mode is enabled by     |
|       |      |                    | command                                                      |
|       |      |                    | PAGE_FAULT_ACTIVE                                            |
| 1     | RO   | 0x0                | MMU page fault mode currently enabled . The mode is enabled  |
|       |      |                    | by command.                                                  |

| Bit | Attr | <b>Reset Value</b> | Description       |
|-----|------|--------------------|-------------------|
| 0   | RO   | 0x0                | PAGING_ENABLED    |
| U   | κU   | 0.00               | Paging is enabled |

#### TSP\_MMU\_COMMAND

Address: Operational Base + offset (0x08808) MMU command register

| Bit  | Attr | <b>Reset Value</b> | Description            |
|------|------|--------------------|------------------------|
| 31:3 | RO   | 0x0                | reserved               |
|      |      |                    | MMU_CMD                |
|      |      |                    | MMU_CMD. This can be:  |
|      |      |                    | 0: MMU_ENABLE_PAGING   |
|      |      |                    | 1: MMU_DISABLE_PAGING  |
| 2:0  | WO   | 0x0                | 2: MMU_ENABLE_STALL    |
|      |      |                    | 3: MMU_DISABLE_STALL   |
|      |      |                    | 4: MMU_ZAP_CACHE       |
|      |      |                    | 5: MMU_PAGE_FAULT_DONE |
|      |      |                    | 6: MMU_FORCE_RESET     |

#### TSP\_MMU\_PAGE\_FAULT\_ADDR

Address: Operational Base + offset (0x0880c) MMU logical address of last page fault

| Bit  | Attr | <b>Reset Value</b>                      | Description                |  |  |  |
|------|------|-----------------------------------------|----------------------------|--|--|--|
| 31:0 | RO   | 0x00000000                              | PAGE_FAULT_ADDR            |  |  |  |
| 51.0 |      | 0.0000000000000000000000000000000000000 | address of last page fault |  |  |  |

#### TSP\_MMU\_ZAP\_ONE\_LINE

Address: Operational Base + offset (0x08810) MMU Zap cache line register

| Bit  | Attr | <b>Reset Value</b> | Description                                         |
|------|------|--------------------|-----------------------------------------------------|
| 31:0 | WO   | 0x00000000         | MMU_ZAP_ONE_LINE                                    |
| 51.0 | 100  | 0200000000000      | address to be invalidated from the page table cache |

#### TSP\_MMU\_INT\_RAWSTAT

Address: Operational Base + offset (0x08814) MMU raw interrupt status register

| Bit  | Attr | <b>Reset Value</b> | Description    |
|------|------|--------------------|----------------|
| 31:2 | RO   | 0x0                | reserved       |
| 1    | RW   | $0 \times 0$       | READ_BUS_ERROR |
| 1    | ĸw   |                    | read bus error |
| 0    |      | W DYD              | PAGE_FAULT     |
| 0    | RW   |                    | page fault     |

#### TSP\_MMU\_INT\_CLEAR

Address: Operational Base + offset (0x08818) MMU raw interrupt status register

| Bit  | Attr | <b>Reset Value</b> | Description                      |
|------|------|--------------------|----------------------------------|
| 31:2 | RO   | 0x0                | reserved                         |
| 1    | WO   | ()x()              | READ_BUS_ERROR<br>read bus error |
| 0    | WO   | ()x()              | PAGE_FAULT<br>page fault         |

#### TSP\_MMU\_INT\_MASK

Address: Operational Base + offset (0x0881c) MMU raw interrupt status register

| Bit  | Attr | <b>Reset Value</b> | Description                                                     |
|------|------|--------------------|-----------------------------------------------------------------|
| 31:2 | RO   | 0x0                | reserved                                                        |
|      |      |                    | READ_BUS_ERROR                                                  |
| 1    | RW   | 0.20               | read bus error                                                  |
| Ŧ    | ĸvv  | 0x0                | enable an interrupt source if the corresponding mask bit is set |
|      |      |                    | to 1                                                            |
|      |      | W 0×0              | PAGE_FAULT                                                      |
| 0    | RW   |                    | page fault                                                      |
| 0    | r vv |                    | enable an interrupt source if the corresponding mask bit is set |
|      |      |                    | to 1                                                            |

#### TSP\_MMU\_INT\_STATUS

Address: Operational Base + offset (0x08820) MMU raw interrupt status register

| Bit  | Attr | <b>Reset Value</b> | Description    |  |  |  |
|------|------|--------------------|----------------|--|--|--|
| 31:2 | RO   | 0x0                | reserved       |  |  |  |
| 1    | RO   | 0x0                | READ_BUS_ERROR |  |  |  |
| L.   | кU   |                    | read bus error |  |  |  |
| 0    | RO   | $(\mathbf{x})$     | PAGE_FAULT     |  |  |  |
| U    |      |                    | page fault     |  |  |  |

#### TSP\_MMU\_AUTO\_GATING

Address: Operational Base + offset (0x08824)

mmu auto gating

| Bit  | Attr | <b>Reset Value</b> | Description                                                          |  |  |  |
|------|------|--------------------|----------------------------------------------------------------------|--|--|--|
| 31:1 | RO   | 0x0                | reserved                                                             |  |  |  |
| 0    | RW   | 0x1                | mmu_auto_gating<br>when it is 1'b1, the mmu will auto gating it self |  |  |  |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

#### TSP\_MMU\_mmu\_miss\_cnt

Address: Operational Base + offset (0x08828) Register0000 Abstract

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                      |  |  |
|------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 31   | RW   | 0×0                | cnt_ctrl_sel<br>sel the counter for mmu_miss or mmu_real_miss<br>1'b0: mmu_real_miss<br>1'b1: mmu_miss<br>When sel 1'b1, an axi command miss may count for several<br>times; when sel 1'b0, an axi command only count for a time |  |  |
| 30   | RW   | 0×0                | miss_cnt_overflow_flag<br>miss cnt overflow flag                                                                                                                                                                                 |  |  |
| 29:0 | RW   | 0×00000000         | miss_cnt<br>count for miss AXI command                                                                                                                                                                                           |  |  |

#### TSP\_MMU\_mmu\_burst\_cnt

Address: Operational Base + offset (0x0882c) Register0001 Abstract

| Bit  | Attr | <b>Reset Value</b> | Description                 |  |  |  |  |
|------|------|--------------------|-----------------------------|--|--|--|--|
| 31   | RO   | 0x0                | reserved                    |  |  |  |  |
| 30   | RW   | 0x0                | bust_cnt_overflow_flag      |  |  |  |  |
| 29:0 | RW   | 0x00000000         | burst_cnt                   |  |  |  |  |
|      |      | 0,00000000         | The AXI input burst counter |  |  |  |  |

## **15.5 Interface Description**

Table 15-1 TSP interface description

| Module Pin   | Dir                                                                                           | Pad Name                                                                                      | IOMUX Setting                         |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
|              | ΙΟΜUΧΟ                                                                                        |                                                                                               |                                       |  |  |  |
|              |                                                                                               |                                                                                               |                                       |  |  |  |
| tsp_valid    | I                                                                                             | IO_TSPvalidm0_CIFvsyncm0_SDMMC0EXTcmd_<br>SPIclkm2_USB3PHYdebug1_I2S2sclkm1_GPIO3<br>A0vccio6 | GRF_GPIO3AL_iomux<br>[2:0] = 3'b001   |  |  |  |
| tsp_fail     | tsp_fail I IO_TSPfail_CIFhref_SDMMC0EXTdet_SPItxdm2_<br>USB3PHYdebug2_I2S2sdom1_GPIO3A1vccio6 |                                                                                               | GRF_GPIO3AL_iomux<br>[5:3] = 3'b001   |  |  |  |
| tsp_clk      | I                                                                                             | IO_TSPclk_CIFclkin_SDMMC0EXTclkout_SPIrxd<br>m2_USB3PHYdebug3_I2S2sdim1_GPIO3A2vccio<br>6     | GRF_GPIO3AL_iomux<br>[8:6] = 3'b001   |  |  |  |
| tsp_syncm0 I |                                                                                               | IO_TSPsync_CIFclkout_SDMMC0EXTwp_GPIO3A<br>3vccio6                                            | GRF_GPIO3AL_iomux<br>[11:9] = 3'b001  |  |  |  |
| tsp_d0 I     |                                                                                               | IO_TSPd0_CIFda0_SDMMC0EXTd0_UART1tx_US<br>B3PHYdebug4_GPIO3A4vccio6                           | GRF_GPIO3AL_iomux<br>[14:12] = 3'b001 |  |  |  |

| Module Pin | Dir | Pad Name                                  | IOMUX Setting     |
|------------|-----|-------------------------------------------|-------------------|
| ten di     | I   | IO_TSPd1_CIFdata1_SDMMC0EXTd1_UART1rtsn   | GRF_GPIO3AH_iomux |
| tsp_d1     |     | _USB3PHYdebug5_GPIO3A5vccio6              | [2:0] = 3'b001    |
| ten dD     | Ŧ   | IO_TSPd2_CIFdata2_SDMMC0EXTd2_UART1rx_    | GRF_GPIO3AH_iomux |
| tsp_d2     | I   | USB3PHYdebug6_GPIO3A6vccio6               | [5:3] = 3'b001    |
| top d2     | -   | IO_TSPd3_CIFdata3_SDMMC0EXTd3_UART1ctsn   | GRF_GPIO3AH_iomux |
| tsp_d3     | I   | _USB3PHYdebug7_GPIO3A7vccio6              | [8:6] = 3'b001    |
| top d4     | I   | IO_TSPd4_CIFdata4_SPIcsn0m2_I2S2lrcktxm1_ | GRF_GPIO3BL_iomux |
| tsp_d4     | L   | USB3PHYdebug8_I2S2lrckrxm1_GPIO3B0vccio6  | [2:0] = 3'b001    |
| top dEm0   | I   | IO TEDEED CIEdataEmo CDIO2R1/veriad       | GRF_GPIO3BH_iomux |
| tsp_d5m0   |     | IO_TSPd5m0_CIFdata5m0_GPIO3B1vccio6       | [3:2] = 2'b01     |
| top d6m0   | Ι   | IO TERdémo CIEdataémo CRIO2R2veriaé       | GRF_GPIO3BH_iomux |
| tsp_d6m0   |     | IO_TSPd6m0_CIFdata6m0_GPIO3B2vccio6       | [5:4] = 2'b01     |
| top d7m0   | т   | IO TEDIZED CIEdataZm0 CDIO2R2vccia6       | GRF_GPIO3BH_iomux |
| tsp_d7m0   | Ι   | IO_TSPd7m0_CIFdata7m0_GPIO3B3vccio6       | [7:6] = 2'b01     |
|            |     | IOMUX1                                    |                   |
| top ovnom1 | Ι   | IO_I2S1mclk_NOuse0_TSPsyncm1_CIFclkoutm1  | GRF_GPIO2BH_iomux |
| tsp_syncm1 |     | _GPIO2B7vccio5                            | [2:0] = 3'b011    |
| tsp_d5m1   | I   | IO_I2S1lrckrx_NOuse1_TSPd5m1_CIFdata5m1_  | GRF_GPIO2CL_iomux |
| tsp_usini  |     | GPIO2C0vccio5                             | [2:0] = 3'b011    |
| tsp_d6m1   | Ι   | IO_I2S1lrcktx_SPDIFtxm1_TSPd6m1_CIFdata6  | GRF_GPIO2CL_iomux |
|            |     | m1_GPIO2C1vccio5                          | [5:3] = 3'b011    |
| ten d7m1   | I   | IO_I2S1sclk_PDMclkm0_TSPd7m1_CIFdata7m1   | GRF_GPIO2CL_iomux |
| tsp_d7m1   | 1   | _GPIO2C2vccio5                            | [8:6] = 3'b011    |

There are two groups of IO for tsp\_sync and tsp\_data[7:5]. Which group of IO to be used is controlled by GRF\_IOMUX\_CON[8], this bit has a default value 1'b0. If this bit is set to 1'b1, the second group of IO is selected.

# **15.6 Application Notes**

## **15.6.1** Overall Operation Sequence

- Enable desired modules to work by writing correspond bit with '1' in TSP\_GCFG. Note: it is important to do this step at first, otherwise writing the corresponding registers will not take effect.
- Set up TS configuration by writing corresponding registers.
- Wait for the interrupts to pick up the desired TS packets following the rules detailed in the following section.

## 15.6.2 TS Source

TS source can be chosen by writing the bit 9 of TSP\_PTIx\_CTRL(x=0,1), `1' for demodulator, `0' for local memory.

## 1.TS\_IN Interface

Writing bit 10 of TSP\_PTIx\_CTRL to choose bit ordering, and writing bit [12:11] to choose input TS mode.

TS\_IN interface supports 4 input TS stream mode: sync/valid serial mode, sync/valid parallel mode, sync/burst parallel mode, nosync/valid parallel mode.

#### 2.Local Memory

PTI also can process the TS data read from local memory by using LLP DMA mode.

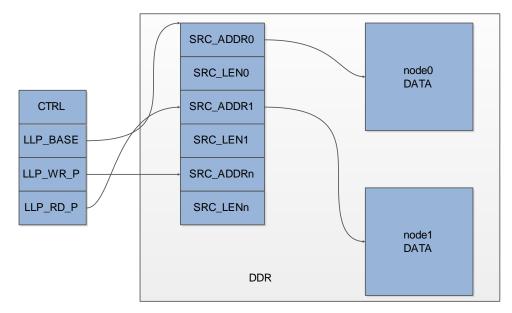



Fig. 1-6LLPaddress architecture

- (1) Write PTIx\_LLP\_BASE with the list base address;
- (2) Starting from the list base address, write the list nodes. One list node comprised of two words. The first word describes the TS data base address, the second one describes the length of TS data in unit of word.
- (3) Write the PTIx\_LLP\_WRITE with the number of words that you have written in list memory. Note it is not the number of LLP nodes, so that the number you are writing should be an even one.
- (4) Write PTIx\_LLP\_CFG with the configuration you want. Write the bit 0 with 1 to start LLP DMA. If all the list nodes are written, don't forget to write 1 to bit 3 to tell DMAC that the configuration is finished.

Note:

- The MSB(bit7) of the 8-bit pointer in the PTIx\_LLP\_Write and PTIx\_LLP\_Read is used as the flag bit, and remaining 7 bits are used for addressing. Therefore the the pointer is referred to 7-bit space, not 8-bit space, and remember write the pointer with the correct flag bit. For example, if you have configured 63 LLP nodes and then you have to write the 64<sup>th</sup> LLP node starting from the list base address,
- PTIx\_LLP\_READ informs that how many words has been processed by LLP DMA. An interrupt may be generated when number of the processed words has reach to the threshold set in the PTIx\_LLP\_CFG.
- If you write the PTIx\_LLP\_Write several times in a complete DMA transaction, it is important to notice the flag bit of PTIx\_LLP\_Write, and never make the writing pointer catch up with the reading pointer.

## 15.6.3 TS Synchronous Operation

Synchronous mode and Bypass mode can be switched by writing bit 15 of TSP\_PTIx\_CTRL. In the synchronous mode, 188/192/204 byte TS packets are supported and self-adjusted. Set up locked times in TSP\_PTIx\_CTRL to inform the successive times of TS packet header detection needs to lock the header of TS packets when in the unlocked mode, and set up unlocked times to informs the successive times of TS packet header error needs to re-lock

header of TS packets in the locked mode. It is recommended to use 2-3 as the locked times to quickly and correctly locked the header, and 2-3 as unlocked times to avoid unnecessarily entering into unlocked searching mode.

In the bypass mode, the input TS data will not be re-synchronized and directly fed into the PTI channel.

## **15.6.4 Descrambling Operation**

Descrambler can achieve PES or TS level descrambling which conforms to the CSA v2.0. Enable the channel you want by writing 1 to bit 0 of TSP\_PTIx\_PIDn\_CTRL ( $x=0\sim1$ ,  $n=0\sim64$ );

Set the desired PID number

Turn on descrambling function by setting 1 to bit 2. If the corresponding CW is available or TS is required to be left undescrambled, CSA\_ON bit is set to 0;

Choose corresponding Control Word by setting bit[19:16], and 16 set Control Word are available to be chosen. Don't forget Control Word should be preprared before the descrambling function is enabled.

Note: If the enabled channel is needed to be disabled, write the CLEAR bit to disabled the channel rather than write '0' to EN bit.

## 15.6.5 Demux Operation

Refer to TSP\_PTIx\_PIDn\_CFG for Demux operation. The software users should be familiar with the demux knowledge.

Users should create a separate memory buffer to receive the processed data for each desired PID channel, and write the base and top address information of the memory buffer into TSP\_PTIx\_PIDn\_BASE and TSP\_PTIx\_PIDn respectively. Also initial writing address and reading address, normally the same as base address, are also needed to be written into TSP\_PTIx\_PIDn\_WRITE and TSP\_PTIx\_PIDn\_READ respectively. For ES/PES filter, another separate memory needs to be created to store list data, which is used to assist obtaining PES/ES data. List base address, top address, initial writing address and reading address are also needed to write into corresponding registers. *Note:* 

For channel whose PID channel number larger than 15, the channels can only be used section filter. For others, there is no such limit. They can be configured as section filter, pes filter, es filter or ts filter.

Data memory address boundary should be aligned with word-size, and list memory address boundary should be aligned with word size. If the memory buffer is not larger to store processed data so that writing address reaches the top address, TSP will return to the base address to write data. So fetch the data in time, don't make the writing address catches up with reading address. The list memory buffer has the same issue.

#### Demux data obtain

#### A. TS filter

To obtain TS data and section data, when an desired PID done interrupt is generated, read TSP\_PTIx\_PIDn\_READ firstly to know the address that last reading stops, and then read TSP\_PTIx\_PIDn\_WRITE to know the address that hardware has reached. For ts data, start from the TSP\_PTIx\_PIDn\_READ address to get the TS packet data, and stop at the address you want. However, the ending address should not catch up with writing address. It is

recommended to obtain the TS data in the unit of TS packet which is 47-word size. At last, don't forget to write the ending address into TSP\_PTIx\_PIDn\_READ to leave a hint where current reading stops.

#### **B. Section filter**

Section filter can run three mode to meet different needs: stop-per-unit; full stop; recycle , update when version number change. The PID done interrupt will be generated after each part of a complete section is processed in the first mode, and the PID done will be generated only after the whole section is completed in the last two modes. In the frist two mode, the PID channel will be disabled after the whole section is completed. In the recycle mode, the channel will remain active and start a new section processing when the version number changes. Section filter also supports 16-byte filtering function, which can assign 1st , 4th to 18th byte to be filtered.

The process to obtain section data is similar to the process for TS data. After a PID done interrupt done is generated, refer to the corresponding PID error status register to check if the section data is correct. Read the frist word of the section start address to know the total length of the section according to the format of section data.

Section Length = {First Word[11:8], First Word[23:16]};

Total Length = Section Length;

Then start to fetch section data according to the total length. Again don't forget to write the stopped address.

#### C. PES/ES filter

PES filter supports 16-byte filtering function, which can assign 4th, 7th to 21st byte to be filtered.

ES filter supports start code detection, including MPEG2 start code 0x000001b3, 0x00000100, VC-1 start code 0x0000010d, 0x000010f, H264 start code 0x00001. To obtain the pes/es data, the assistant of list descriptor is needed.

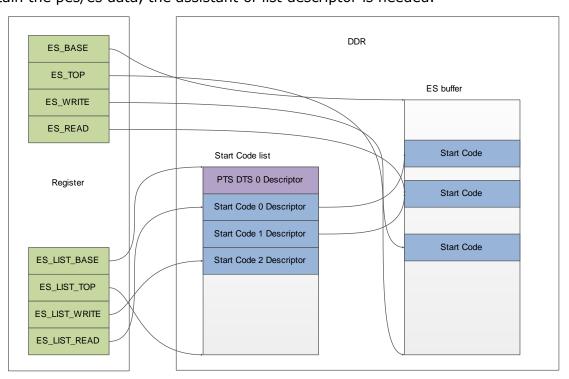



Fig. 1-7LLPmemory architecture

List memory buffer contains descriptors which contains information to obtain es/pes data which are stored in data memory buffer.

The descriptor stored in list memory buffer can be separated into two groups: PTS\_DTS Descriptor and Start Code Descriptor. The descriptor is composed by 4 word content, word\_0, word\_1, word\_2 and word\_3. The word\_x (x means the sequence number in a descriptor, and they are stored in the memory in sequence order). The format of the 4 words are listed as follows:

#### start code descriptor

Word\_0:

Word\_0[29:28] indicates the attributes of the bytes of the pointed word. 2'b00 means the whole word belongs to the new ES/PES packet; 2'b01 means that word[7:0] belongs to the previous packet, and the remaining bytes belong to the new packet; 2'b10 means means that word[15:0] belongs to the previous packet, and the remaining bytes belong to the new packet; 2'b11 means 'b10 means means that word[23:0] belongs to the previous packet, and the remaining bytes belong to the new packet; 2'b11 means 'b10 means means that word[23:0] belongs to the previous packet, and the remaining bytes belong to the new packet. This pointed word is the word where start code starts, word\_2 describes the location of start code.

Word\_0[27:24] is equal to 0x0 in the start code descriptor. Users can used to tell two kinds of descriptor.

If the video type is H.264, word\_0[23:8] means first\_mb\_in slice, and word\_0 means nal\_nuit\_type.

Word\_1: the start code of stream.

Word\_2: DDR offset address in the DDR of the word where the start code is located.

Word\_3: 0x0

#### **PTS\_DTS Descriptor**

Word\_0: Word\_0[29:28]: the same as start code descriptor Word\_0[27:24]: 0x1 in PTS\_DTS descriptor. Word\_0[3] : PTS[32]; Word\_0[2] : DTS[32]; Word\_0[1:0] : pts\_dts\_flag;

Word\_1: DDR offset address of the word that valid data starts.

Word\_2: PTS[31:0]

Word\_3 DTS[31:0]

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

To obtain PES data or ES data when start code detection is disabled, use PTS\_DTS descriptor. To obtain ES data when start code detection is enabled, use start code descriptor.

When a PID done interrupt is generated, make sure there is no corresponding PID error generated. Read the TSP\_PTIx\_LISTn\_READ to know the list reading address in the last time. Start from here, read the 4-word descriptor one by one to know the offset of the packets. Refer to the offset in the DDR where in the data memory buffer to obtain data. Finally write TSP\_PTIx\_LISTn\_READ and TSP\_PTIx\_PIDn\_READ with corresponding reading address.

## 15.6.6 PVR

PVR module provide you with the function to record the programs you want. The 4 sources can be assigned with PVR, and they are the same as TS out interface.

Assign the PVR length and PVR address, and then configure TSP\_PVR\_CTRL to start PVR module. If you want to stop PVR function during recording, write '1' to STOP bit (bit 0) to to TSP\_PVR\_CTRL to stop it. Remember to take care of the status of PVR\_ON bit of TSP\_GFCG when programming the PVR-related registers.

## 15.6.7 PCR extraction

PCR extraction can be enabled by configure PTIx\_PCRn\_CTRL. Then if the PID-matched TS data contain PCR field, the 33-bit PCR\_base field will be written corresponding PTIx\_PCRn\_H and PTIx\_PCRn\_L registers. An interrupt will be asserted if PCR interrupt is enabled.

# Chapter 16 Pulse Width Modulation (PWM)

## 16.1 Overview

The pulse-width modulator (PWM) feature is very common in embedded systems. It provides a way to generate a pulse periodic waveform for motor control or can act as a digital-to-analog converter with some external components.

The PWM Module supports the following features:

- 4-built-in PWM channels
- Configurable to operate in capture mode
  - Measures the high/low polarity effective cycles of this input waveform
  - Generates a single interrupt at the transition of input waveform polarity
  - 32-bit high polarity capture register
  - 32-bit low polarity capture register
  - 32-bit current value register
  - The capture result of channel 3 can be stored in a FIFO. The depths of FIFO is 8, and the data in FIFO can be read through DMA. It also supports timeout interrupt when the data in FIFO has not been read in a time-threshold.
  - Configurable to operate in continuous mode or one-shot mode
    - 32-bit period counter
    - 32-bit duty register
    - 32-bit current value register
    - Configurable PWM output polarity in inactive state and duty period pulse polarity
    - Period and duty cycle are shadow buffered. Change takes effect when the end of the effective period is reached or when the channel is disabled
    - Programmable center or left aligned outputs, and change takes effect when the end of the effective period is reached or when the channel is disabled
    - 8-bit repeat counter for one-shot operation. One-shot operation will produce N + 1 periods of the waveform, where N is the repeat counter value, and generates a single interrupt at the end of operation
    - Continuous mode generates the waveform continuously, and does not generates any interrupts
- pre-scaled operation to bus clock and then further scaled
- Available low-power mode to reduce power consumption when the channel is inactive.

# 16.2 Block Diagram

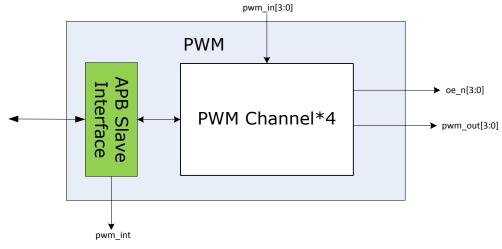



Fig. 16-1 PWM Block Diagram

The host processor gets access to PWM Register Block through the APB slave interface with 32-bit bus width, and asserts the active-high level interrupt. PWM only supports one

interrupt output, please refer to interrupt register to know the raw interrupt status when an interrupt is asserted.

PWM Channel is the control logic of PWM module, and controls the operation of PWM module according to the configured working mode.

# **16.3 Function Description**

The PWM supports three operation modes: capture mode, one-shot mode and continuous mode. For the one-shot mode and the continuous mode, the PWM output can be configured as the left-aligned mode or the center-aligned mode.

## 16.3.1 Capture mode

The capture mode is used to measure the PWM channel input waveform high/low effective cycles with the PWM channel clock, and asserts an interrupt when the polarity of the input waveform changes. The number of the high effective cycles is recorded in the PWMx\_PERIOD\_HPC register, while the number of the low effective cycles is recorded in the PWMx\_DUTY\_LPC register.

Notes: the PWM input waveform is doubled buffered when the PWM channel is working in order to filter unexpected shot-time polarity transition, and therefore the interrupt is asserted several cycles after the input waveform polarity changes, and so does the change of the values of PWMx\_PERIOD\_HPC and PWMx\_DUTY\_LPC.



Fig. 16-2 PWM Capture Mode

## 16.3.2 Continuous mode

The PWM channel generates a series of the pulses continuously as expected once the channel is enabled with continuous mode.

In the continuous mode, the PWM output waveforms can be in one form of the two output mode: left-aligned mode or center-aligned mode.

For the left-aligned output mode, the PWM channel firstly starts the duty cycle with the configured duty polarity (PWMx\_CTRL.duty\_pol). Once duty cycle number

(PWMx\_DUTY\_LPC) is reached, the output is switched to the opposite polarity. After the period number (PWMx\_PERIOD\_HPC) is reached, the output is again switched to the opposite polarity to start another period of desired pulse.

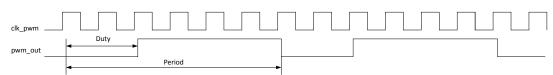



Fig. 16-3 PWM Continuous Left-aligned Output Mode

For the center-aligned output mode, the PWM channel firstly starts the duty cycle with the configured duty polarity (PWMx\_CTRL.duty\_pol). Once one half of duty cycle number (PWMx\_DUTY\_LPC) is reached, the output is switched to the opposite polarity. Then if there is one half of duty cycle left for the whole period, the output is again switched to the opposite polarity. Finally after the period number (PWMx\_PERIOD\_HPC) is reached, the output starts another period of desired pulse.

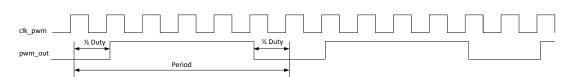



Fig. 16-4 PWM Continuous Center-aligned Output Mode

Once disable the PWM channel, the channel stops generating the output waveforms and output polarity is fixed as the configured inactive polarity (PWMx\_CTRL.inactive\_pol).

### 16.3.3 One-shot mode

Unlike the continuous mode, the PWM channel generates the output waveforms within the configured periods (PWM\_CTRL.rpt + 1), and then stops. At the same times, an interrupt is asserted to inform that the operation has been finished.

There are also two output modes for the one-shot mode: the left-aligned mode and the center-aligned mode.

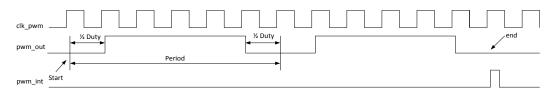



Fig. 16-5 PWM One-shot Center-aligned Output Mode

# **16.4 Register Description**

## 16.4.1 Registers Summary

| Name                | Offset | Size | Reset<br>Value | Description                    |
|---------------------|--------|------|----------------|--------------------------------|
| PWM_PWM0_CNT        | 0x0000 | W    | 0x00000000     | PWM Channel 0 Counter Register |
|                     |        |      |                | PWM Channel 0 Period           |
| PWM_PWM0_PERIOD_HPR | 0x0004 | W    | 0x00000000     | Register/High Polarity Capture |
|                     |        |      |                | Register                       |
|                     |        |      |                | PWM Channel 0 Duty             |
| PWM_PWM0_DUTY_LPR   | 0x0008 | W    | 0x00000000     | Register/Low Polarity Capture  |
|                     |        |      |                | Register                       |
| PWM_PWM0_CTRL       | 0x000c | W    | 0x00000000     | PWM Channel 0 Control Register |
| PWM_PWM1_CNT        | 0x0010 | W    | 0x00000000     | PWM Channel 1 Counter Register |
|                     |        |      |                | PWM Channel 1 Period           |
| PWM_PWM1_PERIOD_HPR | 0x0014 | W    | 0x00000000     | Register/High Polarity Capture |
|                     |        |      |                | Register                       |
|                     |        |      |                | PWM Channel 1 Duty             |
| PWM_PWM1_DUTY_LPR   | 0x0018 | W    | 0x00000000     | Register/Low Polarity Capture  |
|                     |        |      |                | Register                       |
| PWM_PWM1_CTRL       | 0x001c | W    | 0x00000000     | PWM Channel 1 Control Register |
| PWM_PWM2_CNT        | 0x0020 | W    | 0x00000000     | PWM Channel 2 Counter Register |
|                     |        |      |                | PWM Channel 2 Period           |
| PWM_PWM2_PERIOD_HPR | 0x0024 | W    | 0x00000000     | Register/High Polarity Capture |
|                     |        |      |                | Register                       |

| Name                | Offset | Size | Reset<br>Value | Description                     |
|---------------------|--------|------|----------------|---------------------------------|
|                     |        |      |                | PWM Channel 2 Duty              |
| PWM_PWM2_DUTY_LPR   | 0x0028 | W    | 0x0000000      | Register/Low Polarity Capture   |
|                     |        |      |                | Register                        |
| PWM_PWM2_CTRL       | 0x002c | W    | 0x00000000     | PWM Channel 2 Control Register  |
| PWM_PWM3_CNT        | 0x0030 | W    | 0x00000000     | PWM Channel 3 Counter Register  |
|                     |        |      |                | PWM Channel 3 Period            |
| PWM_PWM3_PERIOD_HPR | 0x0034 | W    | 0×00000000     | Register/High Polarity Capture  |
|                     |        |      |                | Register                        |
|                     |        |      |                | PWM Channel 3 Duty              |
| PWM_PWM3_DUTY_LPR   | 0x0038 | W    | 0x00000000     | Register/Low Polarity Capture   |
|                     |        |      |                | Register                        |
| PWM_PWM3_CTRL       | 0x003c | W    | 0x00000000     | PWM Channel 3 Control Register  |
| PWM_INTSTS          | 0x0040 | W    | 0x00000000     | Interrupt Status Register       |
| PWM_INT_EN          | 0x0044 | W    | 0x00000000     | Interrupt Enable Register       |
| DWM DWM ELEO CTDI   | 0x0050 | 14/  | 0x0000000      | PWM Channel 3 FIFO Mode         |
| PWM_PWM_FIFO_CTRL   | 0X0050 | W    |                | Control Register                |
| PWM_PWM_FIFO_INTSTS | 0x0054 | W    | 0x00000000     | FIFO Interrupts Status Register |
| PWM_PWM_FIFO_TOUTTH | 0x0058 | w    | 0,000,000,000  | FIFO Timeout Threshold Desister |
| R                   | 0X0058 | vv   | 0x00000000     | FIFO Timeout Threshold Register |
| PWM_PWM_FIFO        | 0x0060 | W    | 0x00000000     | FIFO Register                   |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

# 16.4.2 Detail Register Description

### PWM\_PWM0\_CNT

Address: Operational Base + offset (0x0000) PWM Channel 0 Counter Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                      |
|------|------|--------------------|------------------------------------------------------------------|
|      |      |                    | CNT                                                              |
|      |      |                    | Timer Counter                                                    |
| 31:0 | RO   | 0x00000000         | The 32-bit indicates current value of PWM Channel 0 counter. The |
|      |      |                    | counter runs at the rate of PWM clock.                           |
|      |      |                    | The value ranges from 0 to $(2^{32-1})$ .                        |

### PWM\_PWM0\_PERIOD\_HPR

Address: Operational Base + offset (0x0004) PWM Channel 0 Period Register/High Polarity Capture Register

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0×00000000  | PERIOD_HPR<br>Output Waveform Period/Input Waveform High Polarity Cycle<br>If PWM is operated at the continuous mode or one-shot mode,<br>this value defines the period of the output waveform. Note that, if<br>the PWM is operated at the center-aligned mode, the period<br>should be an even one, and therefore only the bit [31:1] is taken<br>into account and bit [0] always considered as 0.<br>If PWM is operated at the capture mode, this value indicates the<br>effective high polarity cycles of input waveform. This value is<br>based on the PWM clock.<br>The value ranges from 0 to (2^32-1). |

# PWM\_PWM0\_DUTY\_LPR

Address: Operational Base + offset (0x0008) PWM Channel 0 Duty Register/Low Polarity Capture Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0×00000000         | DUTY_LPR<br>Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle<br>If PWM is operated at the continuous mode or one-shot mode,<br>this value defines the duty cycle of the output waveform. The<br>PWM starts the output waveform with duty cycle. Note that, if the<br>PWM is operated at the center-aligned mode, the period should<br>be an even one, and therefore only the [31:1] is taken into<br>account.<br>If PWM is operated at the capture mode, this value indicates the<br>effective low polarity cycles of input waveform.<br>This value is based on the PWM clock. The value ranges from 0 to<br>(2^32-1). |

## PWM\_PWM0\_CTRL

Address: Operational Base + offset (0x000c) PWM Channel 0 Control Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                |
|-------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24 | RW   | 0×00               | rpt<br>Repeat Counter<br>This field defines the repeated effective periods of output<br>waveform in one-shot mode. The value N means N+1 repeated<br>effective periods.                                    |
| 23:16 | RW   | 0x00               | scale<br>Scale Factor<br>This field defines the scale factor applied to prescaled clock. The<br>value N means the clock is divided by 2*N. If N is 0, it means<br>that the clock is divided by 512(2*256). |

| Bit   | Attr | Reset Value | Description                                                        |
|-------|------|-------------|--------------------------------------------------------------------|
| 15    | RO   | 0x0         | reserved                                                           |
|       |      |             | prescale                                                           |
| 14.17 |      | 0.40        | Prescale Factor                                                    |
| 14:12 | RW   | 0x0         | This field defines the prescale factor applied to input clock. The |
|       |      |             | value N means that the input clock is divided by 2^N.              |
| 11:10 | RO   | 0x0         | reserved                                                           |
|       |      |             | clk_sel                                                            |
|       |      |             | Clock Source Select                                                |
| 9     | RW   | 0x0         | 0: non-scaled clock is selected as PWM clock source. It means      |
|       |      |             | that the prescale clock is directly used as the PWM clock source   |
|       |      |             | 1: scaled clock is selected as PWM clock source                    |
|       |      |             | lp_en                                                              |
|       |      |             | Low Power Mode Enable                                              |
|       |      |             | 0: disabled                                                        |
| 8     | RW   | 0x0         | 1: enabled                                                         |
|       |      |             | When PWM channel is inactive state and Low Power Mode is           |
|       |      |             | enabled, the path to PWM Clock prescale module is blocked to       |
|       |      |             | reduce power consumption.                                          |
| 7     | RO   | 0x0         | reserved                                                           |
|       |      |             | conlock                                                            |
|       |      |             | pwm configure lock                                                 |
| 6     | RW   | 0x0         | pwm period and duty lock to previous configuration                 |
|       |      |             | 0: disable lock                                                    |
|       |      |             | 1: enable lock                                                     |
|       |      |             | output_mode                                                        |
| 5     | RW   | 0x0         | PWM Output mode                                                    |
| 5     | 1    | 0x0         | 0: left aligned mode                                               |
|       |      |             | 1: center aligned mode                                             |
|       |      |             | inactive_pol                                                       |
|       |      |             | Inactive State Output Polarity                                     |
|       |      |             | This defines the output waveform polarity when PWM channel is      |
| 4     | RW   | 0x0         | in inactive state. The inactive state means that PWM finishes the  |
|       |      |             | complete waveform in one-shot mode or PWM channel is               |
|       |      |             | disabled.                                                          |
|       |      |             | 0: negative                                                        |
|       |      |             | 1: positive                                                        |
|       |      |             | duty_pol                                                           |
|       |      |             | Duty Cycle Output Polarity                                         |
| 3     | RW   | 0x0         | This defines the polarity for duty cycle. PWM starts the output    |
|       |      |             | waveform with duty cycle.                                          |
|       |      |             | 0: negative                                                        |
|       |      |             | 1: positive                                                        |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                         |
|-----|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:1 | RW   | 0×0                | <pre>pwm_mode PWM Operation Mode 00: One shot mode. PWM produces the waveform within the repeated times defined by PWMx_CTRL_rpt . 01: Continuous mode. PWM produces the waveform continuously 10: Capture mode. PWM measures the cycles of high/low polarity of input waveform. 11: reserved</pre> |
| 0   | RW   | 0×0                | pwm_en<br>PWM channel enable<br>0: disabled<br>1: enabled. If the PWM is worked in the one-shot mode, this bit<br>will be cleared at the end of operation                                                                                                                                           |

### PWM\_PWM1\_CNT

Address: Operational Base + offset (0x0010) PWM Channel 1 Counter Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                      |
|------|------|--------------------|------------------------------------------------------------------|
|      |      |                    | CNT                                                              |
|      |      |                    | Timer Counter                                                    |
| 31:0 | RO   | 0x00000000         | The 32-bit indicates current value of PWM Channel 1 counter. The |
|      |      |                    | counter runs at the rate of PWM clock.                           |
|      |      |                    | The value ranges from 0 to (2^32-1).                             |

### PWM\_PWM1\_PERIOD\_HPR

Address: Operational Base + offset (0x0014) PWM Channel 1 Period Register/High Polarity Capture Register

| Bit  | Attr Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW 0×00000000    | <ul> <li>PERIOD_HPR</li> <li>Output Waveform Period/Input Waveform High Polarity Cycle</li> <li>If PWM is operated at the continuous mode or one-shot mode,</li> <li>this value defines the period of the output waveform. Note that, if</li> <li>the PWM is operated at the center-aligned mode, the period</li> <li>should be an even one, and therefore only the bit [31:1] is taken</li> <li>into account and bit [0] always considered as 0.</li> <li>If PWM is operated at the capture mode, this value indicates the</li> <li>effective high polarity cycles of input waveform.</li> <li>This value is based on the PWM clock. The value ranges from 0 to</li> <li>(2^32-1).</li> </ul> |

## PWM\_PWM1\_DUTY\_LPR

Address: Operational Base + offset (0x0018) PWM Channel 1 Duty Register/Low Polarity Capture Register

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0×00000000         | DUTY_LPR<br>Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle<br>If PWM is operated at the continuous mode or one-shot mode,<br>this value defines the duty cycle of the output waveform. The<br>PWM starts the output waveform with duty cycle. Note that, if the<br>PWM is operated at the center-aligned mode, the period should<br>be an even one, and therefore only the [31:1] is taken into<br>account.<br>If PWM is operated at the capture mode, this value indicates the<br>effective low polarity cycles of input waveform.<br>This value is based on the PWM clock. The value ranges from 0 to<br>(2^32-1). |

### PWM\_PWM1\_CTRL

Address: Operational Base + offset (0x001c) PWM Channel 1 Control Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                         |
|-------|------|--------------------|---------------------------------------------------------------------|
|       |      |                    | rpt                                                                 |
|       |      |                    | Repeat Counter                                                      |
| 31:24 | RW   | 0x00               | This field defines the repeated effective periods of output         |
|       |      |                    | waveform in one-shot mode. The value N means N+1 repeated           |
|       |      |                    | effective periods.                                                  |
|       |      |                    | scale                                                               |
|       |      |                    | Scale Factor                                                        |
| 23:16 | RW   | 0x00               | This field defines the scale factor applied to prescaled clock. The |
|       |      |                    | value N means the clock is divided by 2*N. If N is 0, it means      |
|       |      |                    | that the clock is divided by 512(2*256).                            |
| 15    | RO   | 0x0                | reserved                                                            |
|       |      |                    | prescale                                                            |
| 14:12 | DW   | V 0x0              | Prescale Factor                                                     |
| 14.12 | ĸw   |                    | This field defines the prescale factor applied to input clock. The  |
|       |      |                    | value N means that the input clock is divided by 2^N.               |
| 11:10 | RO   | 0x0                | reserved                                                            |
|       |      |                    | clk_sel                                                             |
|       |      |                    | Clock Source Select                                                 |
| 9     | RW   | 0x0                | 0: non-scaled clock is selected as PWM clock source. It means       |
|       |      |                    | that the prescale clock is directly used as the PWM clock source    |
|       |      |                    | 1: scaled clock is selected as PWM clock source                     |

| Bit | Attr | Reset Value | Description                                                       |
|-----|------|-------------|-------------------------------------------------------------------|
|     |      |             | lp_en                                                             |
|     |      |             | Low Power Mode Enable                                             |
|     |      |             | 0: disabled                                                       |
| 8   | RW   | 0x0         | 1: enabled                                                        |
| Ũ   |      |             | When PWM channel is inactive state and Low Power Mode is          |
|     |      |             | enabled, the path to PWM Clock prescale module is blocked to      |
|     |      |             | reduce power consumption.                                         |
| 7   | RO   | 0x0         | reserved                                                          |
| /   |      | 0.00        | conlock                                                           |
|     |      |             | pwm configure lock                                                |
| 6   | RW   | 0x0         |                                                                   |
| 0   | RVV  | 0.00        | pwm period and duty lock to previous configuration                |
|     |      |             | 1: enable lock                                                    |
|     |      |             | output_mode                                                       |
|     |      |             | PWM Output mode                                                   |
| 5   | RW   | 0x0         | 0: left aligned mode                                              |
|     |      |             | 1: center aligned mode                                            |
|     |      |             | inactive_pol                                                      |
|     |      |             | Inactive State Output Polarity                                    |
|     |      |             | This defines the output waveform polarity when PWM channel is     |
|     |      |             | in inactive state. The inactive state means that PWM finishes the |
| 4   | RW   | 0x0         | complete waveform in one-shot mode or PWM channel is              |
|     |      |             | disabled.                                                         |
|     |      |             | 0: negative                                                       |
|     |      |             | 1: positive                                                       |
|     |      |             | duty_pol                                                          |
|     |      |             |                                                                   |
|     |      |             | Duty Cycle Output Polarity                                        |
| 3   | RW   | 0x0         | This defines the polarity for duty cycle. PWM starts the output   |
|     |      |             | waveform with duty cycle.                                         |
|     |      |             | 0: negative                                                       |
|     |      |             | 1: positive                                                       |
|     |      |             | pwm_mode                                                          |
|     |      |             | PWM Operation Mode                                                |
|     |      |             | 00: One shot mode. PWM produces the waveform within the           |
| 2:1 | RW   | 0x0         | repeated times defined by PWMx_CTRL_rpt                           |
|     |      |             | 01: Continuous mode. PWM produces the waveform continuously       |
|     |      |             | 10: Capture mode. PWM measures the cycles of high/low polarity    |
|     |      |             | of input waveform.                                                |
|     |      |             | 11: reserved                                                      |
|     |      |             | pwm_en                                                            |
|     |      |             | PWM channel enable                                                |
| 0   | RW   | 0x0         | 0: disabled                                                       |
|     |      |             | 1: enabled. If the PWM is worked in the one-shot mode, this bit   |
|     |      |             | will be cleared at the end of operation                           |

## PWM\_PWM2\_CNT

Address: Operational Base + offset (0x0020) PWM Channel 2 Counter Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                      |
|------|------|--------------------|------------------------------------------------------------------|
|      |      |                    | CNT                                                              |
|      |      |                    | Timer Counter                                                    |
| 31:0 | RO   | 0x00000000         | The 32-bit indicates current value of PWM Channel 2 counter. The |
|      |      |                    | counter runs at the rate of PWM clock.                           |
|      |      |                    | The value ranges from 0 to (2^32-1).                             |

#### PWM\_PWM2\_PERIOD\_HPR

Address: Operational Base + offset (0x0024) PWM Channel 2 Period Register/High Polarity Capture Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0×00000000         | PERIOD_HPR<br>Output Waveform Period/Input Waveform High Polarity Cycle<br>If PWM is operated at the continuous mode or one-shot mode,<br>this value defines the period of the output waveform. Note that, if<br>the PWM is operated at the center-aligned mode, the period<br>should be an even one, and therefore only the bit [31:1] is taken<br>into account and bit [0] always considered as 0.<br>If PWM is operated at the capture mode, this value indicates the<br>effective high polarity cycles of input waveform.<br>This value is based on the PWM clock. The value ranges from 0 to<br>(2^32-1). |

### PWM\_PWM2\_DUTY\_LPR

Address: Operational Base + offset (0x0028)

PWM Channel 2 Duty Register/Low Polarity Capture Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0×00000000         | DUTY_LPR<br>Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle<br>If PWM is operated at the continuous mode or one-shot mode,<br>this value defines the duty cycle of the output waveform. The<br>PWM starts the output waveform with duty cycle. Note that, if the<br>PWM is operated at the center-aligned mode, the period should<br>be an even one, and therefore only the [31:1] is taken into<br>account.<br>If PWM is operated at the capture mode, this value indicates the<br>effective low polarity cycles of input waveform.<br>This value is based on the PWM clock. The value ranges from 0 to<br>(2^32-1). |

### PWM\_PWM2\_CTRL

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

### Address: Operational Base + offset (0x002c) PWM Channel 2 Control Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                          |
|-------|------|--------------------|----------------------------------------------------------------------|
|       |      |                    | rpt                                                                  |
|       |      |                    | Repeat Counter                                                       |
| 31:24 | RW   | 0x00               | This field defines the repeated effective periods of output          |
|       |      |                    | waveform in one-shot mode. The value N means N+1 repeated            |
|       |      |                    | effective periods.                                                   |
|       |      |                    | scale                                                                |
|       |      |                    | Scale Factor                                                         |
| 23:16 | RW   | 0x00               | This fields defines the scale factor applied to prescaled clock. The |
|       |      |                    | value N means the clock is divided by 2*N. If N is 0, it means       |
|       |      |                    | that the clock is divided by 512(2*256).                             |
| 15    | RO   | 0x0                | reserved                                                             |
|       |      |                    | prescale                                                             |
| 14:12 | D\\/ | 0x0                | Prescale Factor                                                      |
| 14.12 |      | 0.00               | This field defines the prescale factor applied to input clock. The   |
|       |      |                    | value N means that the input clock is divided by 2^N.                |
| 11:10 | RO   | 0x0                | reserved                                                             |
|       |      |                    | clk_sel                                                              |
|       |      |                    | Clock Source Select                                                  |
| 9     | RW   | 0×0                | 0: non-scaled clock is selected as PWM clock source. It means        |
|       |      |                    | that the prescale clock is directly used as the PWM clock source     |
|       |      |                    | 1: scaled clock is selected as PWM clock source                      |
|       |      |                    | lp_en                                                                |
|       |      |                    | Low Power Mode Enable                                                |
|       |      |                    | 0: disabled                                                          |
| 8     | RW   | 0x0                | 1: enabled                                                           |
|       |      |                    | When PWM channel is inactive state and Low Power Mode is             |
|       |      |                    | enabled, the path to PWM Clock prescale module is blocked to         |
|       |      |                    | reduce power consumption.                                            |
| 7     | RO   | 0x0                | reserved                                                             |
|       |      |                    | conlock                                                              |
|       |      |                    | pwm configure lock                                                   |
| 6     | RW   | 0x0                | pwm period and duty lock to previous configuration                   |
|       |      |                    | 1: enable lock                                                       |
|       |      |                    | output_mode                                                          |
| 5     | D\\/ |                    | PWM Output mode                                                      |
| J     | RW   | W 0x0              | 0: left aligned mode                                                 |
|       |      |                    | 1: center aligned mode                                               |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                  |
|-----|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4   | RW   | 0×0                | inactive_pol<br>Inactive State Output Polarity<br>This defines the output waveform polarity when PWM channel is<br>in inactive state. The inactive state means that PWM finishes the<br>complete waveform in one-shot mode or PWM channel is<br>disabled.<br>0: negative<br>1: positive                      |
| 3   | RW   | 0×0                | duty_pol<br>Duty Cycle Output Polarity<br>This defines the polarity for duty cycle. PWM starts the output<br>waveform with duty cycle.<br>0: negative<br>1: positive                                                                                                                                         |
| 2:1 | RW   | 0×0                | pwm_mode<br>PWM Operation Mode<br>00: One shot mode. PWM produces the waveform within the<br>repeated times defined by PWMx_CTRL_rpt.<br>01: Continuous mode. PWM produces the waveform continuously<br>10: Capture mode. PWM measures the cycles of high/low polarity<br>of input waveform.<br>11: reserved |
| 0   | RW   | 0×0                | pwm_en<br>PWM channel enable<br>0: disabled<br>1: enabled. If the PWM is worked in the one-shot mode, this bit<br>will be cleared at the end of operation                                                                                                                                                    |

### PWM\_PWM3\_CNT

Address: Operational Base + offset (0x0030) PWM Channel 3 Counter Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                      |
|------|------|--------------------|------------------------------------------------------------------|
|      |      |                    | CNT                                                              |
|      |      |                    | Timer Counter                                                    |
| 31:0 | RO   | 0x00000000         | The 32-bit indicates current value of PWM Channel 3 counter. The |
|      |      |                    | counter runs at the rate of PWM clock.                           |
|      |      |                    | The value ranges from 0 to (2^32-1).                             |

# PWM\_PWM3\_PERIOD\_HPR

Address: Operational Base + offset (0x0034) PWM Channel 3 Period Register/High Polarity Capture Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0×00000000         | PERIOD_HPR<br>Output Waveform Period/Input Waveform High Polarity Cycle<br>If PWM is operated at the continuous mode or one-shot mode,<br>this value defines the period of the output waveform. Note that, if<br>the PWM is operated at the center-aligned mode, the period<br>should be an even one, and therefore only the bit [31:1] is taken<br>into account and bit [0] always considered as 0.<br>If PWM is operated at the capture mode, this value indicates the<br>effective high polarity cycles of input waveform.<br>This value is based on the PWM clock. The value ranges from 0 to<br>(2^32-1). |

# PWM\_PWM3\_DUTY\_LPR

Address: Operational Base + offset (0x0038) PWM Channel 3 Duty Register/Low Polarity Capture Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0×00000000         | DUTY_LPR<br>Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle<br>If PWM is operated at the continuous mode or one-shot mode,<br>this value defines the duty cycle of the output waveform. The<br>PWM starts the output waveform with duty cycle. Note that, if the<br>PWM is operated at the center-aligned mode, the period should<br>be an even one, and therefore only the [31:1] is taken into<br>account.<br>If PWM is operated at the capture mode, this value indicates the<br>effective low polarity cycles of input waveform.<br>This value is based on the PWM clock. The value ranges from 0 to<br>(2^32-1). |

## PWM\_PWM3\_CTRL

Address: Operational Base + offset (0x003c) PWM Channel 3 Control Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                |
|-------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24 | RW   | 0×00               | rpt<br>Repeat Counter<br>This field defines the repeated effective periods of output<br>waveform in one-shot mode. The value N means N+1 repeated<br>effective periods.                                    |
| 23:16 | RW   | 0x00               | scale<br>Scale Factor<br>This field defines the scale factor applied to prescaled clock. The<br>value N means the clock is divided by 2*N. If N is 0, it means<br>that the clock is divided by 512(2*256). |

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                           |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15    | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                              |
| 14:12 | RW   | 0×0                | prescale<br>Prescale Factor<br>This field defines the prescale factor applied to input clock. The<br>value N means that the input clock is divided by 2^N.                                                                                                                                                                                            |
| 11:10 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                              |
| 9     | RW   | 0×0                | clk_sel<br>Clock Source Select<br>0: non-scaled clock is selected as PWM clock source. It means<br>that the prescale clock is directly used as the PWM clock source<br>1: scaled clock is selected as PWM clock source                                                                                                                                |
| 8     | RW   | 0×0                | <ul> <li>lp_en</li> <li>Low Power Mode Enable</li> <li>0: disabled</li> <li>1: enabled</li> <li>When PWM channel is inactive state and Low Power Mode is enabled, the path to PWM Clock prescale module is blocked to reduce power consumption.</li> </ul>                                                                                            |
| 7     | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                              |
| 6     | RW   | 0×0                | conlock<br>pwm configure lock<br>pwm period and duty lock to previous configuration<br>1: enable lock                                                                                                                                                                                                                                                 |
| 5     | RW   | 0×0                | output_mode<br>PWM Output mode<br>0: left aligned mode<br>1: center aligned mode                                                                                                                                                                                                                                                                      |
| 4     | RW   | 0×0                | <ul> <li>inactive_pol</li> <li>Inactive State Output Polarity</li> <li>This defines the output waveform polarity when PWM channel is</li> <li>in inactive state. The inactive state means that PWM finishes the</li> <li>complete waveform in one-shot mode or PWM channel is</li> <li>disabled.</li> <li>0: negative</li> <li>1: positive</li> </ul> |
| 3     | RW   | 0x0                | duty_pol<br>Duty Cycle Output Polarity<br>This defines the polarity for duty cycle. PWM starts the output<br>waveform with duty cycle.<br>0: negative<br>1: positive                                                                                                                                                                                  |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                       |
|-----|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:1 | RW   | 0×0                | <pre>pwm_mode PWM Operation Mode 00: One shot mode. PWM produces the waveform within the repeated times defined by PWMx_CTRL_rpt 01: Continuous mode. PWM produces the waveform continuously 10: Capture mode. PWM measures the cycles of high/low polarity of input waveform. 11: reserved</pre> |
| 0   | RW   | 0×0                | pwm_en<br>PWM channel enable<br>0: disabled<br>1: enabled. If the PWM is worked in the one-shot mode, this bit<br>will be cleared at the end of operation                                                                                                                                         |

# **PWM\_INTSTS**

Address: Operational Base + offset (0x0040) Interrupt Status Register

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:12 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11    | RO   | 0×0         | CH3_Pol<br>Channel 3 Interrupt Polarity Flag<br>This bit is used in capture mode in order to identify the transition<br>of the input waveform when interrupt is generated. When bit is<br>1, please refer to PWM3_PERIOD_HPR to know the effective high<br>cycle of Channel 3 input waveform. Otherwise, please refer to<br>PWM3_PERIOD_LPR to know the effective low cycle of Channel 3<br>input waveform. Write 1 to CH3_IntSts will clear this bit.    |
| 10    | RO   | 0×0         | CH2_Pol<br>Channel 2 Interrupt Polarity Flag<br>This bit is used in capture mode in order to identify the<br>transition of the input waveform when interrupt is generated.<br>When bit is 1, please refer to PWM2_PERIOD_HPR to know the<br>effective high cycle of Channel 2 input waveform. Otherwise,<br>please refer to PWM2_PERIOD_LPR to know the effective low<br>cycle of Channel 2 input waveform. Write 1 to CH2_IntSts will<br>clear this bit. |

| Bit | Attr | Reset Value | Description                                                   |  |  |  |  |
|-----|------|-------------|---------------------------------------------------------------|--|--|--|--|
|     |      |             | CH1_Pol                                                       |  |  |  |  |
|     |      |             | Channel 1 Interrupt Polarity Flag                             |  |  |  |  |
|     |      |             | This bit is used in capture mode in order to identify the     |  |  |  |  |
|     |      |             | transition of the input waveform when interrupt is generated. |  |  |  |  |
| 9   | RO   | 0x0         | When bit is 1, please refer to PWM1_PERIOD_HPR to know the    |  |  |  |  |
|     |      |             | effective high cycle of Channel 1 input waveform. Otherwise,  |  |  |  |  |
|     |      |             | please refer to PWM1_PERIOD_LPR to know the effective low     |  |  |  |  |
|     |      |             | cycle of Channel 1 input waveform. Write 1 to CH1_IntSts will |  |  |  |  |
|     |      |             | clear this bit.                                               |  |  |  |  |
|     |      |             | CH0_Pol                                                       |  |  |  |  |
|     |      |             | Channel 0 Interrupt Polarity Flag                             |  |  |  |  |
|     |      |             | This bit is used in capture mode in order to identify the     |  |  |  |  |
|     |      |             | transition of the input waveform when interrupt is generated. |  |  |  |  |
| 8   | RO   | 0x0         | When bit is 1, please refer to PWM0_PERIOD_HPR to know the    |  |  |  |  |
|     |      |             | effective high cycle of Channel 0 input waveform. Otherwise,  |  |  |  |  |
|     |      |             | please refer to PWM0_PERIOD_LPR to know the effective low     |  |  |  |  |
|     |      |             | cycle of Channel 0 input waveform. Write 1 to CH0_IntSts will |  |  |  |  |
|     |      |             | clear this bit.                                               |  |  |  |  |
| 7:4 | RO   | 0x0         | reserved                                                      |  |  |  |  |
|     |      |             | CH3_IntSts                                                    |  |  |  |  |
| 3   | R/W  | 0x0         | Channel 3 Interrupt Status                                    |  |  |  |  |
|     | SC   | 0.00        | 0: Channel 3 Interrupt not generated                          |  |  |  |  |
|     |      |             | 1: Channel 3 Interrupt generated                              |  |  |  |  |
|     |      |             | CH2_IntSts                                                    |  |  |  |  |
| 2   | W1   | 0x0         | Channel 2 Interrupt Status                                    |  |  |  |  |
|     | С    | o x o       | 0: Channel 2 Interrupt not generated                          |  |  |  |  |
|     |      |             | 1: Channel 2 Interrupt generated                              |  |  |  |  |
|     |      |             | CH1_IntSts                                                    |  |  |  |  |
| 1   | W1   | 0x0         | Channel 1 Interrupt Status                                    |  |  |  |  |
| -   | С    | 0,10        | 0: Channel 1 Interrupt not generated                          |  |  |  |  |
|     |      |             | 1: Channel 1 Interrupt generated                              |  |  |  |  |
|     |      |             | CH0_IntSts                                                    |  |  |  |  |
| 0   | W1   | 0x0         | Channel 0 Raw Interrupt Status                                |  |  |  |  |
|     | С    |             | 0: Channel 0 Interrupt not generated                          |  |  |  |  |
|     |      |             | 1: Channel 0 Interrupt generated                              |  |  |  |  |

# PWM\_INT\_EN

Address: Operational Base + offset (0x0044) Interrupt Enable Register

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
| 31:4 | RO   | 0x0                | reserved    |

| Bit    | Attr | Reset Value | Description                     |
|--------|------|-------------|---------------------------------|
|        |      |             | CH3_Int_en                      |
| 3      | RW   | 0x0         | Channel 3 Interrupt Enable      |
| 5      | r vv | 0.00        | 0: Channel 3 Interrupt disabled |
|        |      |             | 1: Channel 3 Interrupt enabled  |
|        |      |             | CH2_Int_en                      |
| 2      | DW   | 0x0         | Channel 2 Interrupt Enable      |
| Z      | RW   |             | 0: Channel 2 Interrupt disabled |
|        |      |             | 1: Channel 2 Interrupt enabled  |
|        |      | W 0×0       | CH1_Int_en                      |
| 1      | DW   |             | Channel 1 Interrupt Enable      |
| 1<br>1 | K VV |             | 0: Channel 1 Interrupt disabled |
|        |      |             | 1: Channel 1 Interrupt enabled  |
|        |      |             | CH0_Int_en                      |
| 0      | RW   | 00          | Channel 0 Interrupt Enable      |
|        | KVV  | 0x0         | 0: Channel 0 Interrupt disabled |
|        |      |             |                                 |

# PWM\_PWM\_FIFO\_CTRL

Address: Operational Base + offset (0x0050) PWM Channel 3 FIFO Mode Control Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                      |
|-------|------|--------------------|------------------------------------------------------------------|
| 31:10 | RO   | 0x0                | reserved                                                         |
| 9     | RW   | 0x0                | timeout_en                                                       |
| 9     | RW   | 0.00               | fifo timeout enable                                              |
|       |      |                    | dma_mode_en                                                      |
| 8     | RW   | 0x0                | dma mode enable                                                  |
| 0     |      | 0.00               | 1'b1: enable                                                     |
|       |      |                    | 1'b0: disable                                                    |
| 7     | RO   | 0x0                | reserved                                                         |
| 6:4   | RW   | 0×0                | almost_full_watermark                                            |
| 0.4   |      |                    | Almost full Watermark level                                      |
| 3     | RW   | 0x0                | watermark_int_en                                                 |
| 5     | R VV | 0.00               | Watermark full interrupt                                         |
|       |      | RW 0x0             | overflow_int_en                                                  |
| 2     | RW   |                    | FIFO Overflow Interrupt Enable                                   |
|       |      |                    | When high, an interrupt asserts when the channel 3               |
|       |      |                    | full_int_en                                                      |
| 1     | RW   | W 0x0              | FIFO Full Interrupt Enable                                       |
|       |      |                    | When high, an interrupt asserts when the channel 3 FIFO is full. |
|       |      |                    | fifo_mode_sel                                                    |
| 0     | RW   | W 0x0              | FIFO MODE Sel                                                    |
|       |      |                    | When high, PWM FIFO mode is activated                            |

## PWM\_PWM\_FIFO\_INTSTS

Address: Operational Base + offset (0x0054) FIFO Interrupts Status Register

| Bit  | Attr | <b>Reset Value</b> | Description                                   |
|------|------|--------------------|-----------------------------------------------|
| 31:5 | RO   | 0x0                | reserved                                      |
|      |      |                    | fifo_empty_status                             |
| 4    | RO   | 0x0                | FIFO empty Status                             |
|      |      |                    | This bit indicates the FIFO is empty          |
|      | W1   |                    | timieout_intsts                               |
| 3    | C    | 0x0                | Timeout interrupt                             |
|      | C    |                    | Timeout interrupt                             |
|      | W1   | 0×0                | fifo_watermark_full_intsts                    |
| 2    | C    |                    | FIFO Watermark Full Interrupt Status          |
|      | C    |                    | This bit indicates the FIFO is Watermark Full |
|      | W1   |                    | fifo_overflow_intsts                          |
| 1    | C    | 0x0                | FIFO Overflow Interrupt Status                |
|      | C    |                    | This bit indicates the FIFO is overflow       |
|      | \\/1 | C 0×0              | fifo_full_intsts                              |
| 0    |      |                    | FIFO Full Interrupt Status                    |
|      | C    |                    | This bit indicates the FIFO is full           |

### **PWM\_PWM\_FIFO\_TOUTTHR**

Address: Operational Base + offset (0x0058)

FIFO Timeout Threshold Register

| Bit   | Attr             | <b>Reset Value</b> | Description                     |  |  |  |
|-------|------------------|--------------------|---------------------------------|--|--|--|
| 31:20 | RO               | 0x0                | reserved                        |  |  |  |
| 19:0  | RW               | 0x00000            | timeout_threshold               |  |  |  |
| 19:0  | 9:0 IRW 10x00000 |                    | FIFO Timeout value(unit pwmclk) |  |  |  |

### PWM\_PWM\_FIFO

Address: Operational Base + offset (0x0060)

**FIFO Register** 

| Bit  | Attr | <b>Reset Value</b> | Description                                                    |  |  |  |  |
|------|------|--------------------|----------------------------------------------------------------|--|--|--|--|
|      |      |                    | pol                                                            |  |  |  |  |
|      |      | 0x0                | Polarity                                                       |  |  |  |  |
| 31   | RO   |                    | This bit indicates the polarity of the lower 31-bit counter.   |  |  |  |  |
|      |      |                    | 0: Low                                                         |  |  |  |  |
|      |      |                    | 1: High                                                        |  |  |  |  |
|      |      | O 0x0000000        | cycle_cnt                                                      |  |  |  |  |
| 20.0 |      |                    | High/Low Cycle Counter                                         |  |  |  |  |
| 30:0 | RO   |                    | This 31-bit counter indicates the effective cycles of high/low |  |  |  |  |
|      |      |                    | waveform.                                                      |  |  |  |  |

# **16.5 Interface Description**

| Module Pin Direction |     | Pad Name          | IOMUX Setting                 |  |
|----------------------|-----|-------------------|-------------------------------|--|
| PWM0                 | 1/0 | IO_PWM0_I2C1sda   | GRF_GPIO2A_IOMUX[9:8]=2'b01   |  |
| PWMU                 | I/O | _GPIO2A4vccio5    |                               |  |
|                      |     | IO_PWM1_I2C1scl   | GRF_GPIO2A_IOMUX[11:10]=2'b01 |  |
| PWM1                 | I/O | _GPIO2A5vccio5    |                               |  |
|                      | 1/0 | IO_PWM2_GPIO2A6v  | GRF_GPIO2A_IOMUX[13:12]=2'b01 |  |
| PWM2                 | I/O | ccio5             |                               |  |
| PWM3                 | I/O | IO_PWMir_POWERsta | GRF_GPIO2A_IOMUX[5:4]=2'b01   |  |
|                      | I/O | te2_GPIO2A2vccio5 |                               |  |

Table 16-1 PWM Interface Description

Notes: I=input, O=output, I/O=input/output, bidirectional.

# **16.6 Application Notes**

# 16.6.1 PWM Capture Mode Standard Usage Flow

1. Set PWMx\_CTRL.pwm\_en to '0' to disable the PWM channel.

2. Choose the prescale factor and the scale factor for pclk by programming

PWMx\_CTRL.prescale and PWMx\_CTRL.scale, and select the clock needed by setting PWMx\_CTRL.clk\_sel.

3. Configure the channel to work in the capture mode.

4. Enable the INT\_EN.chx\_int\_en to enable the interrupt generation.

5. Enable the channel by writing '1' to PWMx\_CTRL.pwm\_en bit to start the channel.

6. When an interrupt is asserted, refer to INTSTS register to know the raw interrupt status. If the corresponding polarity flag is set, turn to PWMx\_PERIOD\_HPC register to know the effective high cycles of input waveforms, otherwise turn to PWMx\_DUTY\_LPC register to know the effective low cycles.

7. Write '0' to PWMx\_CTRL.pwm\_en to disable the channel.

# 16.6.2 PWM Capture DMA Mode Standard Usage Flow

1. Set PWMx\_CTRL.pwm\_en to '0' to disable the PWM channel.

2. Choose the prescale factor and the scale factor for pclk by programming

PWMx\_CTRL.prescale and PWMx\_CTRL.scale, and select the clock needed by setting PWMx\_CTRL.clk\_sel.

3. Configure the channel 3 to work in the capture mode.

4. Configure the PWM\_FIFO\_CTRL.dma\_mode\_en and PWM\_FIFO\_CTRL.fifo\_mode\_sel to enable the DMA mode. Configure PWM\_FIFO\_CTRL.almost\_full\_watermark at appropriate value.

5. Configure DMAC to tansfer data from PWM to DDR.

6. Enable the channel by writing '1' to PWMx\_CTRL.pwm\_en bit to start the channel.

7. When an dma\_req is asserted, DMAC transfer the data of effective high cycles and low cycles of input waveforms to DDR.

8. Write '0' to PWMx\_CTRL.pwm\_en to disable the channel.

# 16.6.3 PWM One-shot Mode/Continuous Standard Usage Flow

1. Set PWMx\_CTRL.pwm\_en to `0' to disable the PWM channel.

2. Choose the prescale factor and the scale factor for pclk by programming PWMx\_CTRL.prescale and PWMx\_CTRL.scale, and select the clock needed by setting PWMx\_CTRL.clk\_sel.

Choose the output mode by setting PWMx\_CTRL.output\_mode, and set the duty polarity and inactive polarity by programming PWMx\_CTRL.duty\_pol and PWMx\_CTRL.inactive\_pol.
 Set the PWMx\_CTRL.rpt if the channel is desired to work in the one-shot mode.

5. Configure the channel to work in the one-shot mode or the continuous mode.

6. Enable the INT\_EN.chx\_int\_en to enable the interrupt generation if if the channel is desired to work in the one-shot mode.

7. If the channel is working in the one-shot mode, an interrupt is asserted after the end of operation, and the PWMx\_CTRL.pwm\_en is automatically cleared. Whatever mode the channel is working in, write '0' to PWMx\_CTRL.pwm\_en bit to disable the PWM channel.

# 16.6.4 Low-power mode

Setting PWMx\_CTRL.lp\_en to `1' makes the channel enter the low-power mode. When the PWM channel is inactive, the APB bus clock to the clock prescale module is gated in order to reduce the power consumption. It is recommended to disable the channel before entering the low-power mode, and guit the low-power mode before enabling the channel.

# 16.6.5 Other notes

When the channel is active to produce waveforms, it is free to program the PWMx\_PERIOD\_HPC and PWMx\_DUTY\_LPC register. The change will not take effect immediately until the current period ends.

An active channel can be changed to another operation mode without disable the PWM channel. However, during the transition of the operation mode there may be some irregular output waveforms. So does changing the clock division factor when the channel is active.

# **Chapter 17 UART Interface**

# **17.1 Overview**

The Universal Asynchronous Receiver/Transmitter (UART) is used for serial communication with a peripheral, modem (data carrier equipment, DCE) or data set. Data is written from a master (CPU) over the APB bus to the UART and it is converted to serial form and transmitted to the destination device. Serial data is also received by the UART and stored for the master (CPU) to read back.

UART Controller supports the following features:

- Support 3 independent UART controller: UART0, UART1, UART2
- UART0/UART1/UART2 all contain two 64Bytes FIFOs for data receive and transmit
- UART0/UART1/UART2 all support auto flow-control
- Support bit rates 115.2Kbps,460.8Kbps,921.6Kbps,1.5Mbps,3Mbps, 4Mbps
- Support programmable baud rates, even with non-integer clock divider
- Standard asynchronous communication bits (start, stop and parity)
- Support interrupt-based or DMA-based mode
- Support 5-8 bits width transfer

# 17.2 Block Diagram

This section provides a description about the functions and behavior under various conditions. The UART Controller comprises with:

- AMBA APB interface
- FIFO controllers
- Register block
- Modem synchronization block and baud clock generation block
- Serial receiver and serial transmitter

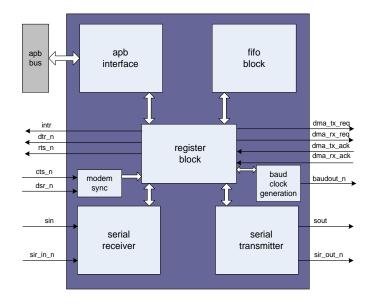



Fig. 17-1 UART Architecture

### **APB INTERFACE**

The host processor accesses data, control, and status information on the UART through the APB interface. The UART supports APB data bus widths of 8, 16, and 32 bits.

### **Register block**

Be responsible for the main UART functionality including control, status and interrupt generation.

### **Modem Synchronization block**

Synchronizes the modem input signal.

### **FIFO block**

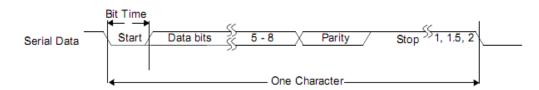
Be responsible for FIFO control and storage (when using internal RAM) or signaling to control external RAM (when used).

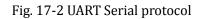
### **Baud Clock Generator**

Generates the transmitter and receiver baud clockalong with the output reference clock signal (baudout\_n).

### Serial Transmitter

Converts the parallel data, written to the UART, into serial form and adds all additional bits, as specified by the control register, for transmission. This makeup of serial data, referred to as a character can exit the block in two forms, either serial UART format or IrDA 1.0 SIR format.


### **Serial Receiver**


Converts the serial data character (as specified by the control register) received in either the UART or IrDA 1.0 SIR format to parallel form. Parity error detection, framing error detection and line break detection is carried out in this block.

# **17.3 Function Description**

## UART (RS232) Serial Protocol

Because the serial communication is asynchronous, additional bits (start and stop) are added to the serial data to indicate the beginning and end. An additional parity bit may be added to the serial character. This bit appears after the last data bit and before the stop bit(s) in the character structure to perform simple error checking on the received data, as shown in Figure.





### IrDA 1.0 SIR Protocol

The Infrared Data Association (IrDA) 1.0 Serial Infrared (SIR) mode supports bi-directional datacommunications with remote devices using infrared radiation as the transmission medium. IrDA 1.0 SIR mode specifies a maximum baud rate of 115.2 Kbaud.

Transmitting a single infrared pulse signals a logic zero, while a logic one is represented by not sending a pulse. The width of each pulse is 3/16ths of a normal serial bit time. Data transfers can only occur in half-duplex fashion when IrDA SIR mode is enabled.

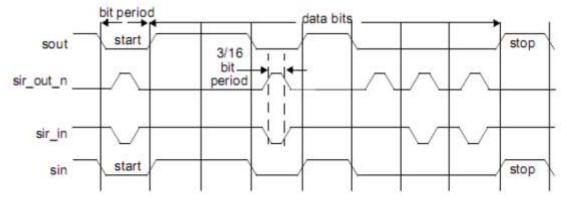
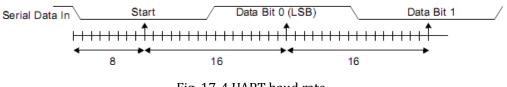




Fig. 17-3 IrDA 1.0

### **Baud Clock**

The baud rate is controlled by the serial clock (sclk or pclk in a single clock implementation) and the Divisor Latch Register (DLH and DLL). As the exact number of baud clocks that each bit was transmitted for is known, calculating the mid-point for sampling is not difficult, that is every 16 baud clocks after the mid-point sample of the start bit.





### **FIFO Support**

### **1. NONE FIFO MODE**

If FIFO support is not selected, then no FIFOs are implemented and only a single receive data byte and transmit data byte can be stored at a time in the RBR and THR.

### 2. FIFO MODE

The FIFO depth of UART0/UART1/UART2is 64bytes. The FIFO mode of all the UART is enabled by register FCR[0].

### Interrupts

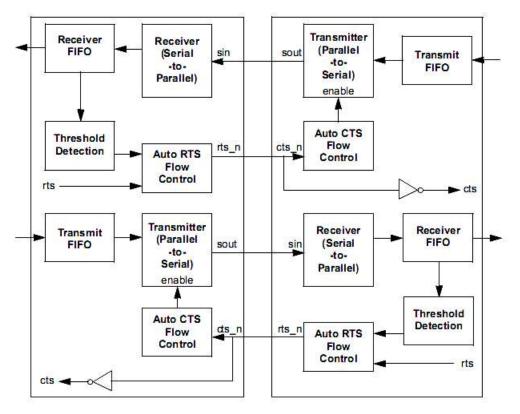
The following interrupt types can be enabled with the IER register.

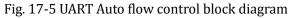
- Receiver Error
- Receiver Data Available
- Character Timeout (in FIFO mode only)
- Transmitter Holding Register Empty at/below threshold (in Programmable THRE Interrupt mode)
- Modem Status

### **DMA Support**

The UART supports DMA signaling with the use of two output signals (dma\_tx\_req\_n and dma\_rx\_req\_n) to indicate when data is ready to be read or when the transmit FIFO is empty.

The dma\_tx\_req\_n signal is asserted under the following conditions:

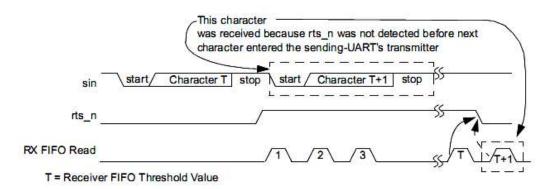

- When the Transmitter Holding Register is empty in non-FIFO mode.
- When the transmitter FIFO is empty in FIFO mode with Programmable THRE interrupt mode disabled.
- When the transmitter FIFO is at, or below the programmed threshold with Programmable THRE interrupt mode enabled.


The dma\_rx\_req\_n signal is asserted under the following conditions:

- When there is a single character available in the Receive Buffer Register in non-FIFO mode.
- When the Receiver FIFO is at or above the programmed trigger level in FIFO mode.

#### **Auto Flow Control**

The UART can be configured to have a 16750-compatible Auto RTS and Auto CTS serial data flow control mode available. If FIFOs are not implemented, then this mode cannot be selected. When Auto Flow Control mode has been selected, it can be enabled with the Modem Control Register (MCR[5]). Following figure shows a block diagram of the Auto Flow Control functionality.






Auto RTS - Becomes active when the following occurs:

- Auto Flow Control is selected during configuration
- FIFOs are implemented
- RTS (MCR[1] bit and MCR[5] bit are both set)
- FIFOs are enabled (FCR[0]) bit is set)

• SIR mode is disabled (MCR[6] bit is not set)



#### Fig. 17-6 UART AUTO RTS TIMING

Auto CTS – becomes active when the following occurs:

- Auto Flow Control is selected during configuration
- FIFOs are implemented
- AFCE (MCR[5] bit is set)
- FIFOs are enabled through FIFO Control Register FCR[0] bit
- SIR mode is disabled (MCR[6] bit is not set)



Fig. 17-7 UART AUTO CTS TIMING

# **17.4 Register Description**

This section describes the control/status registers of the design. There are 3 UARTs in RK3328, and each one has its own base address.

### 17.4.1 Registers Summary

| Name      | Offset | Size | Reset<br>Value | Description                       |
|-----------|--------|------|----------------|-----------------------------------|
| UART_RBR  | 0x0000 | W    | 0x00000000     | Receive Buffer Register           |
| UART_THR  | 0x0000 | W    | 0x00000000     | Transmit Holding Register         |
| UART_DLL  | 0x0000 | W    | 0x00000000     | Divisor Latch (Low)               |
| UART_DLH  | 0x0004 | W    | 0x00000000     | Divisor Latch (High)              |
| UART_IER  | 0x0004 | W    | 0x00000000     | Interrupt Enable Register         |
| UART_IIR  | 0x0008 | W    | 0x00000000     | Interrupt Identification Register |
| UART_FCR  | 0x0008 | W    | 0x00000000     | FIFO Control Register             |
| UART_LCR  | 0x000c | W    | 0x00000000     | Line Control Register             |
| UART_MCR  | 0x0010 | W    | 0x00000000     | Modem Control Register            |
| UART_LSR  | 0x0014 | W    | 0x00000000     | Line Status Register              |
| UART_MSR  | 0x0018 | W    | 0x00000000     | Modem Status Register             |
| UART_SCR  | 0x001c | W    | 0x00000000     | Scratchpad Register               |
| UART_SRBR | 0x0030 | W    | 0x00000000     | Shadow Receive Buffer Register    |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Name       | Offset | Size | Reset<br>Value | Description                      |
|------------|--------|------|----------------|----------------------------------|
| UART_STHR  | 0x006c | W    | 0x00000000     | Shadow Transmit Holding Register |
| UART_FAR   | 0x0070 | W    | 0x00000000     | FIFO Access Register             |
| UART_TFR   | 0x0074 | W    | 0x00000000     | Transmit FIFO Read               |
| UART_RFW   | 0x0078 | W    | 0x00000000     | Receive FIFO Write               |
| UART_USR   | 0x007c | W    | 0x00000000     | UART Status Register             |
| UART_TFL   | 0x0080 | W    | 0x00000000     | Transmit FIFO Level              |
| UART_RFL   | 0x0084 | W    | 0x00000000     | Receive FIFO Level               |
| UART_SRR   | 0x0088 | W    | 0x00000000     | Software Reset Register          |
| UART_SRTS  | 0x008c | W    | 0x00000000     | Shadow Request to Send           |
| UART_SBCR  | 0x0090 | W    | 0x00000000     | Shadow Break Control Register    |
| UART_SDMAM | 0x0094 | W    | 0x00000000     | Shadow DMA Mode                  |
| UART_SFE   | 0x0098 | W    | 0x00000000     | Shadow FIFO Enable               |
| UART_SRT   | 0x009c | W    | 0x00000000     | Shadow RCVR Trigger              |
| UART_STET  | 0x00a0 | W    | 0x00000000     | Shadow TX Empty Trigger          |
| UART_HTX   | 0x00a4 | W    | 0x00000000     | Halt TX                          |
| UART_DMASA | 0x00a8 | W    | 0x00000000     | DMA Software Acknowledge         |
| UART_CPR   | 0x00f4 | W    | 0x00000000     | Component Parameter Register     |
| UART_UCV   | 0x00f8 | W    | 0x0330372a     | UART Component Version           |
| UART_CTR   | 0x00fc | W    | 0x44570110     | Component Type Register          |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

# 17.4.2 Detail Register Description

## UART\_RBR

Address: Operational Base + offset (0x0000)

Receive Buffer Register

| Bit  | Attr | Reset Value | Description |
|------|------|-------------|-------------|
| 31:8 | RO   | 0x0         | reserved    |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | RW   | 0×00        | data_input<br>Data byte received on the serial input port (sin) in UART mode, or<br>the serial infrared input (sir_in) in infrared mode. The data in this<br>register is valid only if the Data Ready (DR) bit in the Line Status<br>Register (LCR) is set.<br>If in non-FIFO mode (FIFO_MODE == NONE) or FIFOs are<br>disabled (FCR[0] set to zero), the data in the RBR must be read<br>before the next data arrives, otherwise it is overwritten, resulting<br>in an over-run error.<br>If in FIFO mode (FIFO_MODE != NONE) and FIFOs are enabled<br>(FCR[0] set to one), this register accesses the head of the receive<br>FIFO.<br>If the receive FIFO is full and this register is not read before the<br>next data character arrives, then the data already in the FIFO is<br>preserved, but any incoming data are lost and an<br>over-run error occurs. |

# UART\_THR

Address: Operational Base + offset (0x0000)

Transmit Holding Register

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7:0  | RW   | 0×00        | data_output<br>Data to be transmitted on the serial output port (sout) in UART<br>mode or the serial infrared output (sir_out_n) in infrared mode.<br>Data should only be written to the THR when the THR Empty<br>(THRE) bit (LSR[5]) is set.<br>If in non-FIFO mode or FIFOs are disabled (FCR[0] = 0) and<br>THRE is set, writing a single character to the THR clears the<br>THRE. Any additional writes to the THR before the THRE is set<br>again causes the THR data to be overwritten.<br>If in FIFO mode and FIFOs are enabled (FCR[0] = 1) and THRE is<br>set, x number of characters of data may be written to the THR<br>before the FIFO is full. The number x (default=16) is determined<br>by the value of FIFO Depth that you set during configuration. Any<br>attempt to write data when the FIFO is full results in the write<br>data being lost. |

### UART\_DLL

Address: Operational Base + offset (0x0000)

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7:0  | RW   | 0×00        | baud_rate_divisor_L<br>Lower 8-bits of a 16-bit, read/write, Divisor Latch register that<br>contains the baud rate divisor for the UART. This register may<br>only be accessed when the DLAB bit (LCR[7]) is set and the UART<br>is not busy (USR[0] is zero). The output baud rate is equal to the<br>serial clock (sclk) frequency divided by sixteen times the value of<br>the baud rate divisor, as follows: baud rate = (serial clock freq) /<br>(16 * divisor).<br>Note that with the Divisor Latch Registers (DLL and DLH) set to<br>zero, the baud clock is disabled and no serial communications<br>occur. Also, once the DLH is set, at least 8 clock cycles of the<br>slowest UART clock should be allowed to pass before transmitting<br>or receiving data. |

## UART\_DLH

Address: Operational Base + offset (0x0004)

Divisor Latch (High)

| Bit  | Attr | Reset Value | Description                                                       |
|------|------|-------------|-------------------------------------------------------------------|
| 31:8 | RO   | 0x0         | reserved                                                          |
|      |      |             | baud_rate_divisor_H                                               |
| 7:0  | RW   | 0x00        | Upper 8 bits of a 16-bit, read/write, Divisor Latch register that |
|      |      |             | contains the baud rate divisor for the UART.                      |

## UART\_IER

Address: Operational Base + offset (0x0004)

Interrupt Enable Register

| Bit  | Attr | Reset Value | Description                                                                                                                                                    |
|------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO   | 0x0         | reserved                                                                                                                                                       |
| 7    | RW   |             | prog_thre_int_en<br>Programmable THRE Interrupt Mode Enable<br>This is used to enable/disable the generation of THRE Interrupt.<br>0 = disabled<br>1 = enabled |
| 6:4  | RO   | 0x0         | reserved                                                                                                                                                       |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                         |
|-----|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | RW   | 0×0         | modem_status_int_en<br>Enable Modem Status Interrupt.<br>This is used to enable/disable the generation of Modem Status<br>Interrupt. This is the fourth highest priority interrupt.<br>0 = disabled<br>1 = enabled                                                                                                                  |
| 2   | RW   | 0x0         | receive_line_status_int_en<br>Enable Receiver Line Status Interrupt.<br>This is used to enable/disable the generation of Receiver Line<br>Status Interrupt. This is the highest priority interrupt.<br>0 = disabled<br>1 = enabled                                                                                                  |
| 1   | RW   | 0x0         | trans_hold_empty_int_en<br>Enable Transmit Holding Register Empty Interrupt.                                                                                                                                                                                                                                                        |
| 0   | RW   | 0x0         | receive_data_available_int_en<br>Enable Received Data Available Interrupt.<br>This is used to enable/disable the generation of Received Data<br>Available Interrupt and the Character Timeout Interrupt (if in<br>FIFO mode and FIFOs enabled). These are the second highest<br>priority interrupts.<br>0 = disabled<br>1 = enabled |

# UART\_IIR

Address: Operational Base + offset (0x0008)

Interrupt Identification Register

| Bit  | Attr | Reset Value | Description                                                                                                                           |
|------|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO   | 0x0         | reserved                                                                                                                              |
| 7:6  | RO   | 0x0         | fifos_en<br>FIFOs Enabled.<br>This is used to indicate whether the FIFOs are enabled or<br>disabled.<br>00 = disabled<br>11 = enabled |
| 5:4  | RO   | 0x0         | reserved                                                                                                                              |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                   |
|-----|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:0 | RO   | 0×0         | <pre>int_id<br/>Interrupt ID<br/>This indicates the highest priority pending interrupt which can be<br/>one of the following types:<br/>0000 = modem status<br/>0001 = no interrupt pending<br/>0010 = THR empty<br/>0100 = received data available<br/>0110 = receiver line status<br/>0111 = busy detect<br/>1100 = character timeout</pre> |

## UART\_FCR

Address: Operational Base + offset (0x0008)

FIFO Control Register

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7:6  | wo   | 0×0         | rcvr_trigger<br>RCVR Trigger.<br>This is used to select the trigger level in the receiver FIFO at<br>which the Received Data Available Interrupt is generated. In auto<br>flow control mode it is used to determine when the rts_n signal is<br>de-asserted. It also determines when the dma_rx_req_n signal is<br>asserted in certain modes of operation. The following trigger<br>levels are supported:<br>00 = 1 character in the FIFO<br>01 = FIFO 1/4 full<br>10 = FIFO 1/2 full<br>11 = FIFO 2 less than ful |
| 5:4  | wo   | 0×0         | tx_empty_trigger<br>TX Empty Trigger.<br>This is used to select the empty threshold level at which the THRE<br>Interrupts are generated when the mode is active. It also<br>determines when the dma_tx_req_n signal is asserted when in<br>certain modes of operation. The following trigger levels are<br>supported:<br>00 = FIFO empty<br>01 = 2 characters in the FIFO<br>10 = FIFO 1/4 full<br>11 = FIFO 1/2 full                                                                                              |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                           |
|-----|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | wo   | 0×0         | <pre>dma_mode DMA Mode This determines the DMA signalling mode used for the dma_tx_req_n and dma_rx_req_n output signals when additional DMA handshaking signals are not selected . 0 = mode 0 1 = mode 11100 = character timeout.</pre>                                                                                              |
| 2   | wo   | 0x0         | xmit_fifo_reset<br>XMIT FIFO Reset.<br>This resets the control portion of the transmit FIFO and treats the<br>FIFO as empty. This also de-asserts the DMA TX request and<br>single signals when additional DMA handshaking signals are<br>selected . Note that this bit is 'self-clearing'. It is not necessary to<br>clear this bit. |
| 1   | wo   | 0×0         | rcvr_fifo_reset<br>RCVR FIFO Reset.<br>This resets the control portion of the receive FIFO and treats the<br>FIFO as empty. This also de-asserts the DMA RX request and<br>single signals when additional DMA handshaking signals are<br>selected. Note that this bit is 'self-clearing'. It is not necessary to<br>clear this bit.   |
| 0   | wo   | 0×0         | fifo_en<br>FIFO Enable.<br>FIFO Enable. This enables/disables the transmit (XMIT) and<br>receive (RCVR) FIFOs. Whenever the value of this bit is changed<br>both the XMIT and RCVR controller portion of FIFOs is reset.                                                                                                              |

# UART\_LCR

Address: Operational Base + offset (0x000c)

Line Control Register

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                |
|------|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                   |
| 7    | RW   | 0x0         | div_lat_access<br>Divisor Latch Access Bit.<br>Writeable only when UART is not busy (USR[0] is zero), always<br>readable. This bit is used to enable reading and writing of the<br>Divisor Latch register (DLL and DLH) to set the baud rate of the<br>UART. This bit must be cleared after initial baud rate setup in<br>order to access other registers. |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6   | RW   | 0×0         | break_ctrl<br>Break Control Bit.<br>This is used to cause a break condition to be transmitted to the<br>receiving device. If set to one the serial output is forced to the<br>spacing (logic 0) state. When not in Loopback Mode, as<br>determined by MCR[4], the sout line is forced low until the Break<br>bit is cleared. If MCR[6] set to one, the sir_out_n line is<br>continuously pulsed. When in Loopback Mode, the break condition<br>is internally looped back to the<br>receiver and the sir_out_n line is forced low.                                                                                                                                |
| 5   | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4   | RW   | 0×0         | even_parity_sel<br>Even Parity Select.<br>Writeable only when UART is not busy (USR[0] is zero), always<br>readable. This is used to select between even and odd parity,<br>when parity is enabled (PEN set to one). If set to one, an even<br>number of logic 1s is transmitted or checked. If set to zero, an<br>odd number of logic 1s is transmitted or checked.                                                                                                                                                                                                                                                                                             |
| 3   | RW   | 0×0         | <pre>parity_en Parity Enable. Writeable only when UART is not busy (USR[0] is zero), always readable. This bit is used to enable and disable parity generation and detection in transmitted and received serial character respectively. 0 = parity disabled 1 = parity enabled</pre>                                                                                                                                                                                                                                                                                                                                                                             |
| 2   | RW   | 0×0         | stop_bits_num<br>Number of stop bits.<br>Writeable only when UART is not busy (USR[0] is zero), always<br>readable. This is used to select the number of stop bits per<br>character that the peripheral transmits and receives. If set to<br>zero, one stop bit is transmitted in the serial data. If set to one<br>and the data bits are set to 5 (LCR[1:0] set to zero) one and a<br>half stop bits is transmitted. Otherwise, twostop bits are<br>transmitted. Note that regardless of the number of stop bits<br>selected, the receiver checks only the first stop bit.<br>0 = 1 stop bit<br>1 = 1.5 stop bits when DLS (LCR[1:0]) is zero, else 2 stop bit. |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                               |
|-----|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:0 | RW   | 0x0         | <pre>data_length_sel<br/>Data Length Select.<br/>Writeable only when UART is not busy (USR[0] is zero), always<br/>readable. This is used to select the number of data bits per<br/>character that the peripheral transmits and receives. The number<br/>of bit that may be selected areas follows:<br/>00 = 5 bits<br/>01 = 6 bits<br/>10 = 7 bits<br/>11 = 8 bits</pre> |

### UART\_MCR

Address: Operational Base + offset (0x0010)

Modem Control Register

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                  |
|------|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:7 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                     |
| 6    | RW   | 0×0         | sir_mode_en<br>SIR Mode Enable.<br>SIR Mode Enable.<br>This is used to enable/disable the IrDA SIR Mode .<br>0 = IrDA SIR Mode disabled<br>1 = IrDA SIR Mode enabled                                                                                                         |
| 5    | RW   | 0×0         | auto_flow_ctrl_en<br>Auto Flow Control Enable.<br>0 = Auto Flow Control Mode disabled<br>1 = Auto Flow Control Mode enabled                                                                                                                                                  |
| 4    | RW   | 0×0         | loopback<br>LoopBack Bit.<br>This is used to put the UART into a diagnostic mode for test<br>purposes.                                                                                                                                                                       |
| 3    | RW   | 0x0         | <pre>out2<br/>OUT2.<br/>This is used to directly control the user-designated Output2<br/>(out2_n) output. The value written to this location is inverted and<br/>driven out on out2_n, that is:<br/>0 = out2_n de-asserted (logic 1)<br/>1 = out2_n asserted (logic 0)</pre> |

| Bit | Attr | Reset Value | Description                                                                                                                                                                              |
|-----|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      |             | out1<br>OUT1                                                                                                                                                                             |
| 2   | RW   | 0x0         | This is used to directly control the user-designated Output2<br>(out2_n) output. The value written to this location is inverted and<br>driven out on out2_n, that is:                    |
|     |      |             | 1'b0: out2_n de-asserted (logic 1)<br>1'b1: out2_n asserted (logic 0)                                                                                                                    |
|     |      |             | req_to_send<br>Request to Send.                                                                                                                                                          |
|     | RW   | 0×0         | This is used to directly control the Request to Send (rts_n) output. The Request To Send (rts_n) output is used to inform the modem or data set that the UART is ready to exchange data. |
|     |      |             | data_terminal_ready<br>Data Terminal Ready.                                                                                                                                              |
| 0   | RW   | 0x0         | This is used to directly control the Data Terminal Ready (dtr_n) output. The value written to this location is inverted and driven out on dtr_n, that is:                                |
|     |      |             | 0 = dtr_n de-asserted (logic 1)<br>1 = dtr_n asserted (logic 0)                                                                                                                          |

# UART\_LSR

Address: Operational Base + offset (0x0014)

Line Status Register

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                |
|------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                   |
| 7    | RO   | 0×0         | receiver_fifo_error<br>Receiver FIFO Error bit.<br>This bit is relevant FIFOs are enabled (FCR[0] set to one). This is<br>used to indicate if there is at least one parity error, framing error,<br>or break indication in the FIFO.<br>0 = no error in RX FIFO<br>1 = error in RX FIFO                                                    |
| 6    | RO   | 0x0         | trans_empty<br>Transmitter Empty bit.<br>Transmitter Empty bit. If FIFOs enabled (FCR[0] set to one), this<br>bit is set whenever the Transmitter Shift Register and the FIFO<br>are both empty. If FIFOs are disabled, this bit is set whenever the<br>Transmitter Holding Register and the Transmitter Shift Register<br>are both empty. |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5   | RO   | 0×0         | trans_hold_reg_empty<br>Transmit Holding Register Empty bit.<br>If THRE mode is disabled (IER[7] set to zero) and regardless of<br>FIFO's being implemented/enabled or not, this bit indicates that<br>the THR or TX FIFO is empty.<br>This bit is set whenever data is transferred from the THR or TX<br>FIFO to the transmitter shift register and no new data has been<br>written to the THR or TX FIFO. This also causes a THRE Interrupt<br>to occur, if the THRE Interrupt is enabled. If IER[7] set to one<br>and FCR[0] set to one respectively, the functionality is switched<br>to indicate the transmitter FIFO is full, and no longer controls<br>THRE interrupts, which are then controlled by the FCR[5:4]<br>threshold setting. |
| 4   | RO   | 0×0         | break_int<br>Break Interrupt bit.<br>This is used to indicate the detection of a break sequence on the<br>serial input data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3   | RO   | 0×0         | framing_error<br>Framing Error bit.<br>This is used to indicate the occurrence of a framing error in the<br>receiver. A framing error occurs when the receiver does not<br>detect a valid STOP bit in the received data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2   | RO   | 0x0         | parity_eror<br>Parity Error bit.<br>This is used to indicate the occurrence of a parity error in the<br>receiver if the Parity Enable (PEN) bit (LCR[3]) is set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1   | RO   | 0×0         | overrun_error<br>Overrun error bit.<br>This is used to indicate the occurrence of an overrun error. This<br>occurs if a new data character was received before the previous<br>data was read.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0   | RO   | 0x0         | data_ready<br>Data Ready bit.<br>This is used to indicate that the receiver contains at least one<br>character in the RBR or the receiver FIFO.<br>0 = no data ready<br>1 = data ready                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## UART\_MSR

Address: Operational Base + offset (0x0018)

Modem Status Register

| Bit      | Attr | Reset Value | Description                                                      |
|----------|------|-------------|------------------------------------------------------------------|
| 31:8     | RO   | 0x0         | reserved                                                         |
|          |      |             | data_carrior_detect                                              |
| 7        | RO   | 0x0         | Data Carrier Detect.                                             |
| 1        | NO.  | 0.00        | This is used to indicate the current state of the modem control  |
|          |      |             | line dcd_n.                                                      |
|          |      |             | ring_indicator                                                   |
| 6        | RO   | 0x0         | Ring Indicator.                                                  |
| 0        | NO.  | 0.00        | This is used to indicate the current state of the modem control  |
|          |      |             | line ri_n.                                                       |
|          |      |             | data_set_ready                                                   |
| 5        | RO   | 0x0         | Data Set Ready.                                                  |
| 5        |      | 0,0         | This is used to indicate the current state of the modem control  |
|          |      |             | line dsr_n.                                                      |
|          |      | 0×0         | clear_to_send                                                    |
| 4        | RO   |             | Clear to Send.                                                   |
|          |      |             | This is used to indicate the current state of the modem control  |
|          |      |             | line cts_n.                                                      |
|          |      |             | delta_data_carrier_detect                                        |
| 3        | RO   | 0×0         | Delta Data Carrier Detect.                                       |
| 0        |      |             | This is used to indicate that the modem control line dcd_n has   |
|          |      |             | changed since the last time the MSR was read.                    |
|          |      |             | trailing_edge_ring_indicator                                     |
|          |      |             | Trailing Edge of Ring Indicator.                                 |
| 2        | RO   | .O 0x0      | Trailing Edge of Ring Indicator. This is used to indicate that a |
|          |      |             | change on the input ri_n (from an active-low to an inactive-high |
|          |      |             | state) has occurred since the last time the MSR was read.        |
|          |      |             | delta_data_set_ready                                             |
| 1        | RO   | 0x0         | Delta Data Set Ready.                                            |
| <u> </u> |      |             | This is used to indicate that the modem control line dsr_n has   |
|          |      |             | changed since the last time the MSR was read.                    |
|          |      |             | delta_clear_to_send                                              |
| 0        | RO   | 0x0         | Delta Clear to Send.                                             |
|          |      |             | This is used to indicate that the modem control line cts_n has   |
|          |      |             | changed since the last time the MSR was read.                    |

# UART\_SCR

Address: Operational Base + offset (0x001c)

Scratchpad Register

| Bit  | Attr | Reset Value | Description |
|------|------|-------------|-------------|
| 31:8 | RO   | 0x0         | reserved    |

| Bit | Attr | Reset Value | Description                                                                        |
|-----|------|-------------|------------------------------------------------------------------------------------|
| 7:0 | RW   | 0x00        | temp_store_space<br>This register is for programmers to use as a temporary storage |
|     |      |             | space.                                                                             |

### UART\_SRBR

Address: Operational Base + offset (0x0030)

Shadow Receive Buffer Register

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7:0  | RO   | 0×00        | shadow_rbr<br>This is a shadow register for the RBR and has been allocated<br>sixteen 32-bit locations so as to accommodate burst accesses<br>from the master. This register contains the data byte received on<br>the serial input port (sin) in UART mode or the serial infrared<br>input (sir_in) in infrared mode. The data in this register is valid<br>only if the Data Ready (DR) bit in the Line status Register (LSR)<br>is set.<br>If FIFOs are disabled (FCR[0] set to zero), the data in the RBR<br>must be read before the next data arrives, otherwise it is<br>overwritten, resulting in an overrun error.<br>If FIFOs are enabled (FCR[0] set to one), this register accesses<br>the head of the receive FIFO. If the receive FIFO is full and this<br>register is not read before the next data character arrives, then<br>the data already in the FIFO are preserved, but any incoming<br>data is lost. An overrun error also occurs. |

### UART\_STHR

Address: Operational Base + offset (0x006c)

Shadow Transmit Holding Register

| Bit  | Attr | Reset Value | Description                                          |
|------|------|-------------|------------------------------------------------------|
| 31:8 | RO   | 0x0         | reserved                                             |
| 7:0  | RO   | 0x00        | shadow_thr<br>This is a shadow register for the THR. |

### UART\_FAR

Address: Operational Base + offset (0x0070)

FIFO Access Register

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:1 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0    | RW   | 0×0         | fifo_access_test_en<br>This register is use to enable a FIFO access mode for testing, so<br>that the receive FIFO can be written by the master and the<br>transmit FIFO can be read by the master when FIFOs are<br>implemented and enabled. When FIFOs are not enabled it allows<br>the RBR to be written by the master and the THR to be read by<br>the master.<br>0 = FIFO access mode disabled<br>1 = FIFO access mode enabled |

### UART\_TFR

Address: Operational Base + offset (0x0074)

Transmit FIFO Read

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                |
|------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                   |
| 7:0  | RO   | 0x00        | trans_fifo_read<br>Transmit FIFO Read.<br>These bits are only valid when FIFO access mode is enabled<br>(FAR[0] is set to one).When FIFOs are implemented and enabled,<br>reading this register gives the data at the top of the transmit<br>FIFO. Each consecutive read pops the transmit FIFO and gives<br>the next data value that is currently at the top of the FIFO. |

## UART\_RFW

Address: Operational Base + offset (0x0078)

Receive FIFO Write

| Bit   | Attr | Reset Value | Description                                                                                                                                        |
|-------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:10 | RO   | 0x0         | reserved                                                                                                                                           |
| 9     | wo   | 0×0         | receive_fifo_framing_error<br>Receive FIFO Framing Error.<br>These bits are only valid when FIFO access mode is enabled<br>(FAR[0] is set to one). |
| 8     | wo   | 0x0         | receive_fifo_parity_error<br>Receive FIFO Parity Error.<br>These bits are only valid when FIFO access mode is enabled<br>(FAR[0] is set to one).   |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | wo   | 0×00        | receive_fifo_write<br>Receive FIFO Write Data.<br>These bits are only valid when FIFO access mode is enabled<br>(FAR[0] is set to one).<br>When FIFOs are enabled, the data that is written to the RFWD is<br>pushed into the receive FIFO. Each consecutive write pushes the<br>new data to the next write location in the receive FIFO.<br>When FIFOs not enabled, the data that is written to the RFWD is<br>pushed into the RBR. |

# UART\_USR

Address: Operational Base + offset (0x007c)

UART Status Register

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                         |
|------|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:5 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                            |
| 4    | RO   | 0x0         | receive_fifo_full<br>Receive FIFO Full.<br>This is used to indicate that the receive FIFO is completely full.<br>0 = Receive FIFO not full<br>1 = Receive FIFO Full<br>This bit is cleared when the RX FIFO is no longer full.                                                                      |
| 3    | RO   | 0×0         | <ul> <li>receive_fifo_not_empty</li> <li>Receive FIFO Not Empty.</li> <li>This is used to indicate that the receive FIFO contains one or more entries.</li> <li>0 = Receive FIFO is empty</li> <li>1 = Receive FIFO is not empty</li> <li>This bit is cleared when the RX FIFO is empty.</li> </ul> |
| 2    | RO   | 0×0         | trasn_fifo_empty<br>Transmit FIFO Empty.<br>This is used to indicate that the transmit FIFO is completely<br>empty.<br>0 = Transmit FIFO is not empty<br>1 = Transmit FIFO is empty<br>This bit is cleared when the TX FIFO is no longer empty                                                      |
| 1    | RO   | 0×0         | trans_fifo_not_full<br>Transmit FIFO Not Full.<br>This is used to indicate that the transmit FIFO in not full.<br>0 = Transmit FIFO is full<br>1 = Transmit FIFO is not full<br>This bit is cleared when the TX FIFO is full.                                                                       |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                               |
|-----|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      |             | uart_busy<br>UART Busy.                                                                                                                                                                                                   |
| 0   | RO   | 0×0         | UART Busy. This is indicates that a serial transfer is in progress,<br>when cleared indicates that the UART is idle or inactive.<br>0 = UART is idle or inactivenot busy<br>1 = UART is busy (actively transferring data) |

## UART\_TFL

Address: Operational Base + offset (0x0080)

Transmit FIFO Level

| Bit  | Attr | Reset Value | Description                           |
|------|------|-------------|---------------------------------------|
| 31:5 | RO   | 0x0         | reserved                              |
|      | RW   | 0x00        | trans_fifo_level                      |
| 4:0  |      |             | Transmit FIFO Level.                  |
| 4:0  |      |             | This is indicates the number          |
|      |      |             | of data entries in the transmit FIFO. |

### UART\_RFL

Address: Operational Base + offset (0x0084)

Receive FIFO Level

| Bit  | Attr | Reset Value | Description                                                       |
|------|------|-------------|-------------------------------------------------------------------|
| 31:5 | RO   | 0x0         | reserved                                                          |
|      |      |             | receive_fifo_level                                                |
| 4:0  | RO   | 0x00        | Receive FIFO Level.                                               |
|      |      |             | This is indicates the number of data entries in the receive FIFO. |

#### UART\_SRR

Address: Operational Base + offset (0x0088)

Software Reset Register

| Bit  | Attr | Reset Value | Description                                                     |
|------|------|-------------|-----------------------------------------------------------------|
| 31:3 | RO   | 0x0         | reserved                                                        |
|      |      |             | xmit_fifo_reset                                                 |
| 2    | WO   | 0x0         | XMIT FIFO Reset.                                                |
|      |      |             | This is a shadow register for the XMIT FIFO Reset bit (FCR[2]). |
|      |      |             | rcvr_fifo_reset                                                 |
| 1    | WO   | 0x0         | RCVR FIFO Reset.                                                |
|      |      |             | This is a shadow register for the RCVR FIFO Reset bit (FCR[1]). |

| Bit | Attr | Reset Value | Description                                                                                                                                                   |
|-----|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      |             | uart_reset<br>UART Reset.                                                                                                                                     |
| 0   | wo   | 0×0         | This asynchronously resets the UART and synchronously removes<br>the reset assertion. For a two clock implementation both pclk and<br>sclk domains are reset. |

### UART\_SRTS

Address: Operational Base + offset (0x008c)

Shadow Request to Send

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                               |
|------|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:1 | RO   | 0x0         | reserved                                                                                                                                                                                                  |
| 0    | RW   | 0×0         | shadow_req_to_send<br>Shadow Request to Send.<br>This is a shadow register for the RTS bit (MCR[1]), this can be<br>used to remove the burden of having to performing a read-<br>modify-write on the MCR. |

### UART\_SBCR

Address: Operational Base + offset (0x0090)

Shadow Break Control Register

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                 |
|------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:1 | RO   | 0x0         | reserved                                                                                                                                                                                                    |
| 0    | RW   | 0×0         | shadow_break_ctrl<br>Shadow Break Control Bit.<br>This is a shadow register for the Break bit (LCR[6]), this can be<br>used to remove the burden of having to performing a read modify<br>write on the LCR. |

#### UART\_SDMAM

Address: Operational Base + offset (0x0094)

Shadow DMA Mode

| Bit  | Attr | Reset Value | Description                                              |
|------|------|-------------|----------------------------------------------------------|
| 31:1 | RO   | 0x0         | reserved                                                 |
|      |      |             | shadow_dma_mode                                          |
| 0    | RW   | 0x0         | Shadow DMA Mode.                                         |
|      |      |             | This is a shadow register for the DMA mode bit (FCR[3]). |

#### UART\_SFE

#### Address: Operational Base + offset (0x0098)

Shadow FIFO Enable

| Bit  | Attr | Reset Value | Description                                                |
|------|------|-------------|------------------------------------------------------------|
| 31:1 | RO   | 0x0         | reserved                                                   |
|      | RW   | 0×0         | shadow_fifo_en                                             |
| 0    |      |             | Shadow FIFO Enable.                                        |
| 0    |      |             | Shadow FIFO Enable. This is a shadow register for the FIFO |
|      |      |             | enable bit (FCR[0]).                                       |

#### UART\_SRT

Address: Operational Base + offset (0x009c)

Shadow RCVR Trigger

| Bit  | Attr | Reset Value | Description                                                                                                    |
|------|------|-------------|----------------------------------------------------------------------------------------------------------------|
| 31:1 | RO   | 0x0         | reserved                                                                                                       |
| 0    | RW   | 0x0         | shadow_rcvr_trigger<br>Shadow RCVR Trigger.<br>This is a shadow register for the RCVR trigger bits (FCR[7:6]). |

#### UART\_STET

Address: Operational Base + offset (0x00a0)

Shadow TX Empty Trigger

| Bit  | Attr | Reset Value | Description                                                                                                                   |
|------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------|
| 31:1 | RO   | 0x0         | reserved                                                                                                                      |
| 0    | RW   | 0x0         | shadow_tx_empty_trigger<br>Shadow TX Empty Trigger.<br>This is a shadow register for the TX empty trigger bits<br>(FCR[5:4]). |

#### UART\_HTX

Address: Operational Base + offset (0x00a4)

Halt TX

| Bit  | Attr | Reset Value | Description |
|------|------|-------------|-------------|
| 31:1 | RO   | 0x0         | reserved    |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                              |  |  |  |
|-----|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0   | RW   | 0x0         | <ul> <li>halt_tx_en</li> <li>This register is use to halt transmissions for testing, so that the transmit FIFO can be filled by the master when FIFOs are implemented and enabled.</li> <li>0 = Halt TX disabled</li> <li>1 = Halt TX enabled</li> </ul> |  |  |  |

# UART\_DMASA

Address: Operational Base + offset (0x00a8)

DMA Software Acknowledge

| Bit  | Attr | Reset Value | Description                                                     |  |
|------|------|-------------|-----------------------------------------------------------------|--|
| 31:1 | RO   | 0x0         | reserved                                                        |  |
|      |      |             | dma_software_ack                                                |  |
| 0    | WO   | 0x0         | This register is use to perform a DMA software acknowledge if a |  |
|      |      |             | transfer needs to be terminated due to an error condition.      |  |

# UART\_CPR

Address: Operational Base + offset (0x00f4)

Component Parameter Register

UART\_CPR is UART0's own unique register

| Bit   | Attr | Reset Value | Description             |  |  |
|-------|------|-------------|-------------------------|--|--|
| 31:24 | RO   | 0x0         | reserved                |  |  |
|       |      |             | FIFO_MODE               |  |  |
|       |      |             | $0 \times 00 = 0$       |  |  |
|       |      |             | $0 \times 01 = 16$      |  |  |
| 23:16 | RO   | 0x00        | 0x02 = 32               |  |  |
|       |      |             | to                      |  |  |
|       |      |             | 0x80 = 2048             |  |  |
|       |      |             | 0x81- 0xff = reserved   |  |  |
| 15:14 | RO   | 0x0         | reserved                |  |  |
|       |      |             | DMA_EXTRA               |  |  |
| 13    | RO   | 0x0         | 0 = FALSE               |  |  |
|       |      |             | 1 = TRUE                |  |  |
|       |      |             | UART_ADD_ENCODED_PARAMS |  |  |
| 12    | RO   | 0x0         | 0 = FALSE               |  |  |
|       |      |             | 1 = TRUE                |  |  |
|       |      |             | SHADOW                  |  |  |
| 11    | RO   | 0x0         | 0 = FALSE               |  |  |
|       |      |             | 1 = TRUE                |  |  |

| Bit | Attr | Reset Value | Description    |
|-----|------|-------------|----------------|
|     |      |             | FIFO_STAT      |
| 10  | RO   | 0x0         | 0 = FALSE      |
|     |      |             | 1 = TRUE       |
|     |      |             | FIFO_ACCESS    |
| 9   | RO   | 0x0         | 0 = FALSE      |
|     |      |             | 1 = TRUE       |
|     |      |             | NEW_FEAT       |
| 8   | RO   | 0x0         | 0 = FALSE      |
|     |      |             | 1 = TRUE       |
|     |      |             | SIR_LP_MODE    |
| 7   | RO   | 0x0         | 0 = FALSE      |
|     |      |             | 1 = TRUE       |
|     |      |             | SIR_MODE       |
| 6   | RO   | 0x0         | 0 = FALSE      |
|     |      |             | 1 = TRUE       |
|     |      |             | THRE_MODE      |
| 5   | RO   | 0x0         | 0 = FALSE      |
|     |      |             | 1 = TRUE       |
|     |      |             | AFCE_MODE      |
| 4   | RO   | 0x0         | 0 = FALSE      |
|     |      |             | 1 = TRUE       |
| 3:2 | RO   | 0x0         | reserved       |
|     |      |             | APB_DATA_WIDTH |
|     |      |             | 00 = 8 bits    |
| 1:0 | RO   | 0x0         | 01 = 16 bits   |
|     |      |             | 10 = 32 bits   |
|     |      |             | 11 = reserved  |

## UART\_UCV

Address: Operational Base + offset (0x00f8)

UART Component Version

| Bit  | Attr | Reset Value | Description                                       |  |
|------|------|-------------|---------------------------------------------------|--|
| 31:0 | RO   | 0x0330372a  | ver<br>ASCII value for each number in the version |  |

# UART\_CTR

Address: Operational Base + offset (0x00fc)

Component Type Register

| Bit  | Attr | Reset Value         | Description                                                                  |  |
|------|------|---------------------|------------------------------------------------------------------------------|--|
| 31:0 | RO   | 0 2 4 4 5 7 0 1 1 0 | peripheral_id<br>This register contains the peripherals identification code. |  |

# **17.5 Interface Description**

| Modulepin    | Dir | Pad name                      | ΙΟΜUΧ                          |
|--------------|-----|-------------------------------|--------------------------------|
|              |     | UARTO Interface               | I                              |
| uart0_sin    | Ι   | IO_UART0rx_GMACtxd1m1_GPIO1B  | GRF_GPIO1B_IOMUX[1:0]=2'b01    |
|              |     | 0vccio4                       |                                |
| uart0_sout   | 0   | IO_UART0tx_GMACtxd0m1_GPIO1B  | GRF_GPIO1B_IOMUX[3:2]=2'b01    |
|              |     | 1vccio4                       |                                |
| uart0_cts_n  | Ι   | IO_UART0ctsn_GMACrxd0m1_GPIO1 | GRF_GPIO1B_IOMUX[7:6]=2'b01    |
|              |     | B3vccio4                      |                                |
| uart0_rts_n  | 0   | IO_UART0rtsn_GMACrxd1m1_GPIO1 | GRF_GPIO1B_IOMUX[5:4]=2'b01    |
|              |     | B2vccio4                      |                                |
|              |     | UART1 Interface               |                                |
| uart1_sin    | Ι   | IO_TSPd2_CIFdata2_SDMMC0EXTd2 | GRF_GPIO3A_IOMUX[5:3]= 3'b100  |
|              |     | _UART1rx_USB3PHYdebug6_GPIO3A |                                |
|              |     | буссіоб                       |                                |
| uart1_sout   | 0   | IO_TSPd0_CIFda0_SDMMC0EXTd0_  | GRF_GPIO3A_IOMUX[14:12]=3'b100 |
|              |     | UART1tx_USB3PHYdebug4_GPIO3A4 |                                |
|              |     | vccio6                        |                                |
| uart1_cts_n  | Ι   | IO_TSPd3_CIFdata3_SDMMC0EXTd3 | GRF_GPIO3A_IOMUX[7:6]= 3'b100  |
|              |     | _UART1ctsn_USB3PHYdebug7_GPIO |                                |
|              |     | 3A7vccio6                     |                                |
| uart1_rts_n  | 0   | IO_TSPd1_CIFdata1_SDMMC0EXTd1 | GRF_GPIO3A_IOMUX[2:0]=3'b100   |
|              |     | _UART1rtsn_USB3PHYdebug5_GPIO |                                |
|              |     | 3A5vccio6                     |                                |
|              |     | UART2m0 Interfac              | e                              |
| uart2m0_sin  | Ι   | IO_SDMMC0d1_UART2DBGrxm0_GP   | GRF_GPIO1A_IOMUX[3:2]=2'b10    |
|              |     | IO1A1vccio3                   |                                |
| uart2m0_sout | 0   | IO_SDMMC0d0_UART2DBGtxm0_GP   | GRF_GPIO1A_IOMUX[1:0]=2'b10    |
|              |     | IO1A0vccio3                   |                                |
|              |     | UART2m1 Interfac              | e                              |
| uart2m1_sin  | Ι   | IO_UART2DBGrxm1_POWERstate1_  | GRF_GPIO2A_IOMUX[3:2]=2'b01    |
|              |     | GPIO2A1vccio5                 |                                |
| uart2m1_sout | 0   | IO_UART2DBGtxm1_POWERstate0_  | GRF_GPIO2A_IOMUX[1:0]=2'b01    |
|              |     | GPIO2A0vccio5                 |                                |

Table 17-1 UART Interface Description

The I/O interface of UART2 can be chosen by setting GRF\_CON\_IOMUX[0]bit, if this bit is set to 1, UART2 uses the UART2m1 I/O interface.

# **17.6 Application Notes**

# 17.6.1 None FIFO Mode Transfer Flow

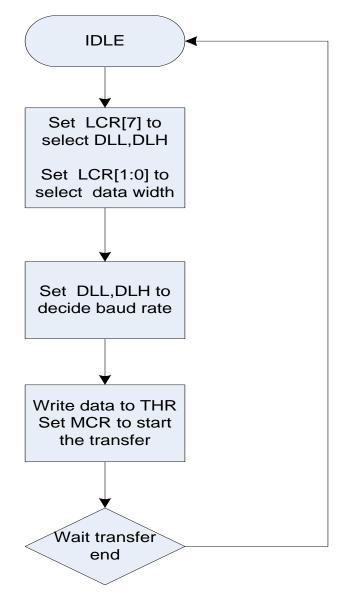



Fig. 17-8 UART none fifo mode

# 17.6.2 FIFO Mode Transfer Flow

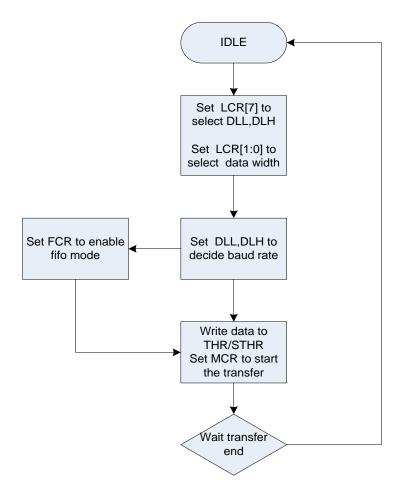



Fig. 17-9 UART fifo mode

The UART is an APB slave performing:

Serial-to-parallel conversion on data received from a peripheral device.

Parallel-to-serial conversion on data transmitted to the peripheral device.

The CPU reads and writes data and control/status information through the APB interface. The transmitting and receiving paths are buffered with internal FIFO memories enabling up to 64-bytes to be stored independently in both transmit and receive modes. A baud rate generator can generate a common transmit and receive internal clock input. The baud rates will depend on the internal clock frequency. The UART will also provide transmit, receive and exception interrupts to system. A DMA interface is implemented for improving the system performance.

# 17.6.3 Baud Rate Calculation

#### UART clock generation

The following figures shows the UART clock generation.

UART0,UART1 and UART2 source clocks can be selected from three PLL outputs (CODEC PLL/GENERAL PLL/USBPHY\_480M). UART clocks can be generated by 1 to 64 division of its source clock, or can be fractionally divided again, or be provided by XIN24M.

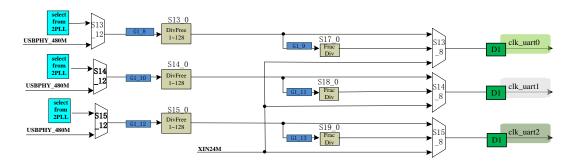



Fig. 17-10 UART clock generation

## UART baud rate configuration

The following table provides some reference configuration for different UART baud rates.

| Table 17-2 UART baud rate configuration | on |
|-----------------------------------------|----|
|-----------------------------------------|----|

| Baud Rate  | Reference Configuration                                                                                                                      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 115.2 Kbps | Configure GENERAL PLL to get 1200MHz clock output;<br>Divide 1200MHz clock by 46875/72 to get 1.8432MHz clock;<br>Configure UART_DLL to 1.   |
| 460.8 Kbps | Configure GENERAL PLL to get 1200MHz clock output;<br>Divide 1200MHz clock by 46875/288 to get 7.3728MHz clock;<br>Configure UART_DLL to 1.  |
| 921.6 Kbps | Configure GENERAL PLL to get 1200MHz clock output;<br>Divide 1200MHz clock by 46875/576 to get 14.7456MHz clock;<br>Configure UART_DLL to 1. |
| 1.5 Mbps   | Choose GENERAL PLL to get 1200MHz clock output;<br>Divide 1200MHz clock by 50 to get 24MHz clock;<br>Configure UART_DLL to 1.                |
| 3 Mbps     | Choose GENERAL PLL to get 1200MHz clock output;<br>Divide 1200MHz clock by 1200/48 to get 48MHz clock;<br>Configure UART_DLL to 1.           |
| 4 Mbps     | Configure GENERAL PLL to get 1200MHz clock output;<br>Divide 1200MHz clock by 1200/64 to get 64MHz clock;<br>Configure UART_DLL to 1.        |

# 17.6.4 CTS\_n and RTS\_n Polarity Configurable

The polarity of cts\_n and rts\_n ports can be configured by GRF registers.

• GRF\_SOC\_CON3[2:0] (grf\_uart\_cts\_sel[2:0]) used to configure the polarity of cts\_n.Every bit for one UART, bit2 is for UART2,bit1 is for UART1, bit0 is for UART0

• GRF\_SOC\_CON3[5:3] (grf\_uart\_rts\_sel[2:0]) used to configure the polarity of rts\_n.Every bit for one UART, bit2 is for UART2,bit1 is for UART1, bit0 is for UART0.

• When grf\_uart\_cts\_sel[\*] is configured as 1'b1, cts\_n is high active. Otherwise, lowactive.

• When grf\_uart\_rts\_sel[\*] is configured as 1'b1, rts\_n is high active. Otherwise, lowactive.

# Chapter 18 GPIO

# **18.1 Overview**

GPIO is a programmable General Purpose Programming I/O peripheral. This component is an APB slave device. GPIO controls the output data and direction of external I/O pads. It also can read back the data on external pads using memory-mapped registers.

GPIO supports the following features:

- 32 bits APB bus width
- 32 independently configurable signals
- Separate data registers and data direction registers for each signal
- Software control for each signal, or for each bit of each signal
- Configurable interrupt mode

# **18.2 Block Diagram**

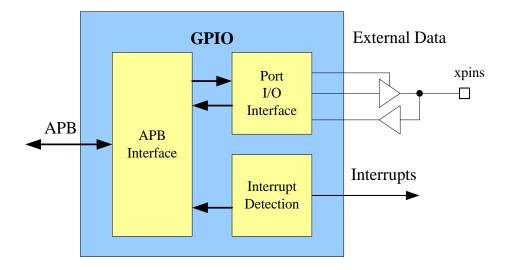



Fig. 18-1 GPIO block diagram

#### Block descriptions: APB Interface

The APB Interface implements the APB slave operation. Its data bus width is 32 bits.

#### Port I/O Interface

External data Interface to or from I/O pads.

#### **Interrupt Detection**

Interrupt interface to or from interrupt controller.

# **18.3 Function Description**

## **18.3.1 Operation** Control Mode (software)

Under software control, the data and direction control for the signal are sourced from the data register (GPIO\_SWPORTA\_DR) and direction control register (GPIO\_SWPORTA\_DDR).

The direction of the external I/O pad is controlled by a write to the Porta data direction register (GPIO\_SWPORTA\_DDR). The data written to this memory-mapped register gets mapped onto an output signal, GPIO\_PORTA\_DDR, of the GPIO peripheral. This output signal controls the direction of an external I/O pad.

The data written to the Porta data register (GPIO\_SWPORTA\_DR) drives the output buffer of the I/O pad. External data are input on the external data signal, GPIO\_EXT\_PORTA. Reading the external signal register(GPIO\_EXT\_PORTA) shows the value on the signal, regardless of the direction. This register is read-only, meaning that it cannot be written from the APB software interface.

## **Reading External Signals**

The data on the GPIO\_EXT\_PORTA external signal can always be read. The data on the external GPIO signal is read by an APB read of the memory-mapped register, GPIO\_EXT\_PORTA.

An APB read to the GPIO\_EXT\_PORTA register yields a value equal to that which is on the GPIO\_EXT\_PORTA signal.

## Interrupts

Port A can be programmed to accept external signals as interrupt sources on any of the bits of the signal. The type of interrupt is programmable with one of the following settings:

- Active-high and level
- Active-low and level
- Rising edge
- Falling edge

The interrupts can be masked by programming the GPIO\_INTMASK register. The interrupt status can be read before masking (called raw status) and after masking.

The interrupts are combined into a single interrupt output signal, which has the same polarity as the individual interrupts. In order to mask the combined interrupt, all individual interrupts have to be masked. The single combined interrupt does not have its own mask bit.

Whenever Port A is configured for interrupts, the data direction must be set to Input. If the data direction register is reprogrammed to Output, then any pending interrupts are not lost. However, no new interrupts are generated.

For edge-detected interrupts, the ISR can clear the interrupt by writing a 1 to the GPIO\_PORTA\_EOI register for the corresponding bit to disable the interrupt. This write also clears the interrupt status and raw status registers. Writing to the GPIO\_PORTA\_EOI register has no effect on level-sensitive interrupts. If level-sensitive interrupts cause the processor to interrupt, then the ISR can poll the GPIO\_INT\_RAWSTATUS register until the interrupt source disappears, or it can write to the GPIO\_INTMASK register to mask the interrupt before exiting the ISR. If the ISR exits without masking or disabling the interrupt until the interrupt is cleared at the source.

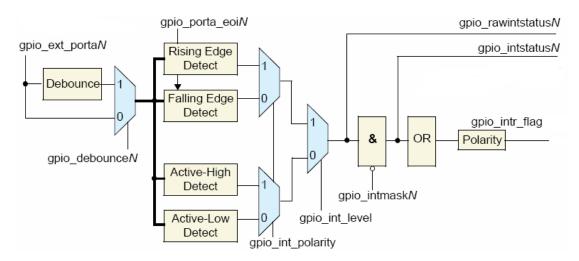



Fig. 18-2 GPIO Interrupt RTL Block Diagram

### Debounce operation

Port A has been configured to include the debounce capability interrupt feature. The external signal can be debounced to remove any spurious glitches that are less than one period of the external debouncing clock.

When input interrupt signals are debounced using a debounce clock (pclk), the signals must be active for a minimum of two cycles of the debounce clock to guarantee that they are registered. Any input pulse widths less than a debounce clock period are bounced. A pulse width between one and two debounce clock widths may or may not propagate, depending on its phase relationship to the debounce clock. If the input pulse spans two rising edges of the debounce clock, it is registered. If it spans only one rising edge, it is not registered.

## Synchronization of Interrupt Signals to the System Clock

Interrupt signals are internally synchronized to pclk. Synchronization to pclk must occur for edge-detect signals. With level-sensitive interrupts, synchronization is optional and under software control (GPIO\_LS\_SYNC).

# 18.3.2 Programming

## **Programming Considerations**

- Reading from an unused location or unused bits in a particular register always returns zeros. There is no error mechanism in the APB.
- Programming the GPIO registers for interrupt capability, edge-sensitive or levelsensitive interrupts, and interrupt polarity should be completed prior to enabling the interrupts on Port A in order to prevent spurious glitches on the interrupt lines to the interrupt controller.
- Writing to the interrupt clear register clears an edge-detected interrupt and has no effect on a level-sensitive interrupt.

## GPIOs' hierarchy in the chip

GPIO0, GPIO1, GPIO2, GPIO3 are in PD\_BUS subsystem.

# **18.4 Register Description**

This section describes the control/status registers of the design. Software should read and write these registers using 32-bits accesses. There are 4 GPIOs (GPIO0  $\sim$  GPIO3), and each of them has same register group. Therefore, 4 GPIOs' register groups have 4 different base addresses.

| Name               | Offset | Size | Reset<br>Value | Description                                        |  |
|--------------------|--------|------|----------------|----------------------------------------------------|--|
| GPIO_SWPORTA_DR    | 0x0000 | W    | 0x00000000     | Port A data register                               |  |
| GPIO_SWPORTA_DDR   | 0x0004 | W    | 0x00000000     | Port A data direction register                     |  |
| GPIO_INTEN         | 0x0030 | W    | 0x00000000     | Interrupt enable register                          |  |
| GPIO_INTMASK       | 0x0034 | W    | 0x00000000     | Interrupt mask register                            |  |
| GPIO_INTTYPE_LEVEL | 0x0038 | W    | 0x00000000     | Interrupt level register                           |  |
| GPIO_INT_POLARITY  | 0x003c | W    | 0x00000000     | Interrupt polarity register                        |  |
| GPIO_INT_STATUS    | 0x0040 | W    | 0x00000000     | Interrupt status of port A                         |  |
| GPIO_INT_RAWSTATUS | 0x0044 | W    | 0x00000000     | Raw Interrupt status of port A                     |  |
| GPIO_DEBOUNCE      | 0x0048 | W    | 0x00000000     | Debounce enable register                           |  |
| GPIO_PORTA_EOI     | 0x004c | W    | 0x00000000     | Port A clear interrupt register                    |  |
| GPIO_EXT_PORTA     | 0x0050 | W    | 0x00000000     | Port A external port register                      |  |
| GPIO_LS_SYNC       | 0x0060 | w    | 0x00000000     | Level_sensitive synchronization<br>enable register |  |

# 18.4.1 Registers Summary

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

# **18.4.2 Detail Register Description** GPIO\_SWPORTA\_DR

Address: Operational Base + offset (0x0000)

Port A data register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                              |  |  |  |
|------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 31:0 | RW   | 0x00000000         | gpio_swporta_dr<br>Values written to this register are output on the I/O signals for<br>Port A if the corresponding data direction bits for Port A are set to<br>Output mode.The value read back is equal to the last value<br>written to this register. |  |  |  |

## **GPIO\_SWPORTA\_DDR**

Address: Operational Base + offset (0x0004) Port A data direction register

| Bit  | Attr | Reset Value | Description                                                                                                                                               |  |  |  |
|------|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 31:0 | RW   | 0x00000000  | gpio_swporta_ddr<br>Values written to this register independently control the direction<br>of the corresponding data bit in Port A.<br>0: Input (default) |  |  |  |
|      |      |             | 1: Output                                                                                                                                                 |  |  |  |

## **GPIO\_INTEN**

Address: Operational Base + offset (0x0030) Interrupt enable register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31:0 | RW   | 0x00000000         | <ul> <li>gpio_int_en</li> <li>Allows each bit of Port A to be configured for interrupts.</li> <li>Whenever a 1 is written to a bit of this register, it configures the corresponding bit on Port A to become an interrupt; otherwise, Port A operates as a normal GPIO signal.</li> <li>Interrupts are disabled on the corresponding bits of Port A if the corresponding data direction register is set to Output.</li> <li>0: Configure Port A bit as normal GPIO signal (default)</li> <li>1: Configure Port A bit as interrupt</li> </ul> |  |

### GPIO\_INTMASK

Address: Operational Base + offset (0x0034)

Interrupt mask register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 31:0 | RW   | 0x00000000         | <ul> <li>gpio_int_mask</li> <li>Controls whether an interrupt on Port A can create an</li> <li>interrupt for the interrupt controller by not masking it. Whenever</li> <li>a 1 is written to a bit in this register, it masks the interrupt</li> <li>generation capability for this signal; otherwise interrupts are</li> <li>allowed through.</li> <li>0: Interrupt bits are unmasked (default)</li> <li>1: Mask interrupt</li> </ul> |  |  |

## **GPIO\_INTTYPE\_LEVEL**

Address: Operational Base + offset (0x0038)

Interrupt level register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                         |
|------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0×00000000         | gpio_inttype_level<br>Controls the type of interrupt that can occur on Port A.<br>0: Level-sensitive (default)<br>1: Edge-sensitive |

# **GPIO\_INT\_POLARITY**

Address: Operational Base + offset (0x003c) Interrupt polarity register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                               |
|------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | <pre>gpio_int_polarity Controls the polarity of edge or level sensitivity that can occur on input of Port A. 0: Active-low (default) 1: Active-high</pre> |

#### **GPIO\_INT\_STATUS**

Address: Operational Base + offset (0x0040)

Interrupt status of port A

| Bit  | Attr | <b>Reset Value</b> | Description                                   |
|------|------|--------------------|-----------------------------------------------|
| 31:0 | RO   |                    | gpio_int_status<br>Interrupt status of Port A |

#### **GPIO\_INT\_RAWSTATUS**

Address: Operational Base + offset (0x0044)

Raw Interrupt status of port A

| Bit  | Attr                 | <b>Reset Value</b> | Description                                        |
|------|----------------------|--------------------|----------------------------------------------------|
| 31.0 | 31'0 IRO I0X00000000 | gpio_int_rawstatus |                                                    |
| 31:0 |                      | 0x00000000         | Raw interrupt of status of Port A (premasking bits |

#### **GPIO\_DEBOUNCE**

Address: Operational Base + offset (0x0048) Debounce enable register

 
 Bit
 Attr
 Reset Value
 Description

 31:0
 RW
 0x0000000
 gpio\_debounce Controls whether an external signal that is the source of an interrupt needs to be debounced to remove any spurious glitches. Writing a 1 to a bit in this register enables the debouncing circuitry. A signal must be valid for two periods of an external clock before it is internally processed.

 0: No debounce (default)

1: Enable debounce

#### GPIO\_PORTA\_EOI

Address: Operational Base + offset (0x004c)

Port A clear interrupt register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                   |  |
|------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31:0 | wo   | 0×00000000         | <ul> <li>gpio_porta_eoi</li> <li>Controls the clearing of edge type interrupts from Port A. When a 1 is written into a corresponding bit of this register, the interrupt is cleared. All interrupts are cleared when Port A is not configured for interrupts.</li> <li>0: No interrupt clear (default)</li> <li>1: Clear interrupt</li> </ul> |  |

#### GPIO\_EXT\_PORTA

Address: Operational Base + offset (0x0050)

Port A external port register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                             |
|------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RO   | 0×00000000         | gpio_ext_porta<br>When Port A is configured as Input, then reading this location<br>reads the values on the signal. When the data direction of Port A<br>is set as Output, reading this location reads the data register for<br>Port A. |

# GPIO\_LS\_SYNC

Address: Operational Base + offset (0x0060) Level\_sensitive synchronization enable register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                           |  |
|------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31:1 | RO   | 0x0                | reserved                                                                                                                                                                                                                                              |  |
| 0    | RW   | 0x0                | <ul> <li>gpio_ls_sync</li> <li>Writing a 1 to this register results in all level-sensitive interrupts</li> <li>being synchronized to pclk_intr.</li> <li>0: No synchronization to pclk_intr (default)</li> <li>1: Synchronize to pclk_intr</li> </ul> |  |

# **18.5 Interface Description**

|  | Table 18-1 | GPIO | interface | description |
|--|------------|------|-----------|-------------|
|--|------------|------|-----------|-------------|

| Module Pin         | Dir             | Pad Name     | IOMUX Setting                 |  |  |  |  |
|--------------------|-----------------|--------------|-------------------------------|--|--|--|--|
|                    | GPIO0 Interface |              |                               |  |  |  |  |
| gpio0_porta[7:0]   | I/O             | GPIO0_A[7:0] | GRF_GPIO0A_IOMUX[15:0]=16'h0  |  |  |  |  |
| gpio0_porta[15:8]  | I/O             | GPIO0_B[7:0] | GRF_GPIO0B_IOMUX[15:0]=16'h0  |  |  |  |  |
| gpio0_porta[23:16] | I/O             | GPIO0_C[7:0] | GRF_GPIO0C_IOMUX[15:0]=16'h0  |  |  |  |  |
| gpio0_porta[31:24] | I/O             | GPIO0_D[7:0] | GRF_GPIO0D_IOMUX[15:0]=16'h0  |  |  |  |  |
|                    | GPIO1 Interface |              |                               |  |  |  |  |
| gpio1_porta[7:0]   | I/O             | GPIO1_A[7:0] | GRF_GPIO1A_IOMUX[15:0]=16'h0  |  |  |  |  |
| gpio1_porta[15:8]  | I/O             | GPIO1_B[7:0] | GRF_GPIO1B_IOMUX[15:0]=16'h0  |  |  |  |  |
| gpio1_porta[23:16] | I/O             | GPIO1_C[7:0] | GRF_GPIO1C_IOMUX[15:0]=16'h0  |  |  |  |  |
| gpio1_porta[31:24] | I/O             | GPIO1_D[7:0] | GRF_GPIO1D_IOMUX[15:0]=16'h0  |  |  |  |  |
|                    |                 | GPIO2 I      | nterface                      |  |  |  |  |
| gpio2_porta[7:0]   | I/O             | GPIO2_A[7:0] | GRF_GPIO2A_IOMUX[15:0]=16'h0  |  |  |  |  |
| anio2 porta[15:8]  | 1/0             | GPIO2_B[7:0] | GRF_GPIO2BL_IOMUX[15:0]=16'h0 |  |  |  |  |
| gpio2_porta[15:8]  | I/O             |              | GRF_GPIO2BH_IOMUX[15:0]=16'h0 |  |  |  |  |
| anio2 norta[23:16] |                 |              | GRF_GPIO2CL_IOMUX[15:0]=16'h0 |  |  |  |  |
| gpio2_porta[23:16] | I/O             | GPIO2_C[7:0] | GRF_GPIO2CH_IOMUX[15:0]=16'h0 |  |  |  |  |
| gpio2_porta[31:24] | I/O             | GPIO2_D[7:0] | GRF_GPIO2D_IOMUX[15:0]=16'h0  |  |  |  |  |
|                    |                 | GPIO3 I      | nterface                      |  |  |  |  |
| gpio3_porta[7:0]   | I/O             | GPIO3_A[7:0] | GRF_GPIO3AL_IOMUX[15:0]=16'h0 |  |  |  |  |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Module Pin         | Dir | Pad Name     | IOMUX Setting                 |
|--------------------|-----|--------------|-------------------------------|
|                    |     |              | GRF_GPIO3AH_IOMUX[15:0]=16'h0 |
| ania) norta[1[.0]  | 1/0 | GPIO3_B[7:0] | GRF_GPIO3BL_IOMUX[15:0]=16'h0 |
| gpio3_porta[15:8]  | I/O |              | GRF_GPIO3BH_IOMUX[15:0]=16'h0 |
| gpio3_porta[23:16] | I/O | GPIO3_C[7:0] | GRF_GPIO3C_IOMUX[15:0]=16'h0  |
| gpio3_porta[31:24] | I/O | GPIO3_D[7:0] | GRF_GPIO3D_IOMUX[15:0]=16'h0  |

# **18.6 Application Notes**

#### Steps to set GPIO's direction

- Write GPIO\_SWPORT\_DDR[x] as 1 to set this gpio as output direction and Write GPIO\_SWPORT\_DDR[x] as 0 to set this gpio as input direction.
- Default GPIO's direction is input direction.

#### Steps to set GPIO's level

- Write GPIO\_SWPORT\_DDR[x] as 1 to set this gpio as output direction.
- Write GPIO\_SWPORT\_DR[x] as v to set this GPIO's value.

#### Steps to get GPIO's level

- Write GPIO\_SWPORT\_DDR[x] as 0 to set this gpio as input direction.
- Read from GPIO\_EXT\_PORT[x] to get GPIO's value

#### Steps to set GPIO as interrupt source

- Write GPIO\_SWPORT\_DDR[x] as 0 to set this gpio as input direction.
- Write GPIO\_INTTYPE\_LEVEL[x] as v1 and write GPIO\_INT\_POLARITY[x] as v2 to set interrupt type
- Write GPIO\_INTEN[x] as 1 to enable GPIO's interrupt

Note: Please switch iomux to GPIO mode first!

# **Chapter 19 I2C Interface**

# **19.1 Overview**

The Inter-Integrated Circuit (I2C) is a two wired (SCL and SDA), bi-directional serial bus that provides an efficient and simple method of information exchange between devices. This I2C bus controller supports master mode acting as a bridge between AMBA protocol and generic I2C bus system.

I2C Controller supports the following features:

- Item Compatible with I2C-bus
- AMBA APB slave interface
- Supports master mode of I2C bus
- Software programmable clock frequency and transfer rate up to 400Kbit/sec
- Supports 7 bits and 10 bits addressing modes
- Interrupt or polling driven multiple bytes data transfer
- Clock stretching and wait state generation

# 19.2 Block Diagram

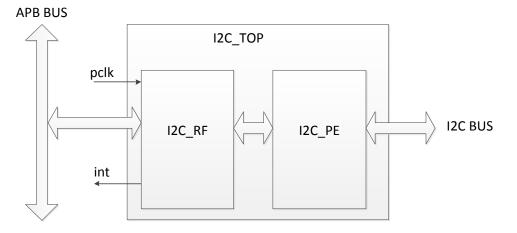



Fig. 19-1 I2C architecture

# 19.2.1 I2C\_RF

I2C\_RF module is used to control the I2C controller operation by the host with APB interface. It implements the register set and the interrupt functionality. The CSR component operates synchronously with the pclk clock.

## 19.2.2 I2C\_PE

I2C\_PE module implements the I2C master operation for transmit data to and receive data from other I2C devices. The I2C master controller operates synchronously with the pclk.

# 19.2.3 I2C\_TOP

I2C\_TOP module is the top module of the I2C controller.

# **19.3 Function Description**

This chapter provides a description about the functions and behavior under various conditions.

The I2C controller supports only Masterfunction. Itsupports the 7-bits/10-bits addressing mode and support general call address. The maximum clock frequency and transfer rate can be up to 400Kbit/sec.

The operations of I2C controller is divided to 2 parts and described separately: initialization and master mode programming.

# 19.3.1 Initialization

The I2C controller is based on AMBA APB bus architecture and usually is part of a SOC. So before I2C operates, some system setting and configuration must be conformed, which includes:

- I2C interrupt connection type: CPU interrupt scheme should be considered. If the I2C interrupt is connected to extra Interrupt Controller module, we need decide the INTC vector.
- I2C Clock Rate: The I2C controller uses the APB clock as the working clock so the APB clock will determine the I2C bus clock. The correct register setting is subject to the system requirement.

## **19.3.2 Master Mode Programming**

SCL Clock

When the I2C controller is programmed in Master mode, the SCL frequency is determined by I2C\_CLKDIV register. The SCL frequency is calculated by the following formula:

SCL Divisor = 8\*(CLKDIVL + 1 + CLKDIVH + 1)

SCL = PCLK/ SCLK Divisor

• Data Receiver Register Access

When the I2C controller received MRXCNT bytes data, CPU can get the data through register RXDATA0  $\sim$  RXDATA7. The controller can receive up to 32 bytes' data in one transaction.

When MRXCNT register is written, the I2C controller will start to drive SCL to receive data.

• Transmit Transmitter Register

Data to transmit are written to TXDATA0~7 by CPU. The controller can transmit up to 32 bytes' data in one transaction. The lower byte will be transmitted first.

When MTXCNT register is written, the I2C controller will start to transmit data.

• Start Command

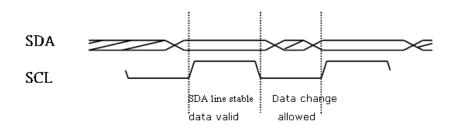
Write 1 to I2C\_CON[3], the controller will send I2C start command.

• Stop Command

Write 1 to I2C\_CON[4], the controller will send I2C stop command

#### • I2C Operation mode

There are four i2c operation modes.


- When I2C\_CON[2:1] is 2'b00, the controller transmit all valid data in TXDATA0~TXDATA7 byte by byte. The controller will transmit lower byte first.
- When I2C\_CON[2:1] is 2'b01, the controller will transmit device address in MRXADDR first (Write/Read bit = 0) and then transmit device register address in MRXRADDR. After that, the controller will assert restart signal and resend MRXADDR (Write/Read bit = 1). At last, the controller enter receive mode.
- When I2C\_CON[2:1] is 2'b10, the controller is in receive mode, it will trigger clock to read MRXCNT byte data.
- When I2C\_CON[2:1] is 2'b11, the controller will transmit device address in MRXADDR first (Write/Read bit = 1) and then transmit device register address in MRXRADDR . After that, the controller will assert restart signal and resend MRXADDR (Write/Read bit = 1). At last, the controller enter receive mode.
- Read/Write Command
  - When I2C\_OPMODE(I2C\_CON[2:1]) is 2'b01 or 2'b11, the Read/Write command bit is decided by controller itself.
  - In RX only mode (I2C\_CON[2:1] is 2'b10), the Read/Write command bit is decided by MRXADDR[0].
  - In TX only mode (I2C\_CON[[2:1] is 2'b00), the Read/Write command bit is decided by TXDATA[0].
- Master Interrupt Condition

There are 7 interrupt bits in I2C\_ISR register related to master mode.

- Byte transmitted finish interrupt (Bit 0): The bit is asserted when Master completed transmitting a byte.
- Byte received finish interrupt (Bit 1): The bit is asserted when Master completed receiving a byte.
- MTXCNT bytes data transmitted finish interrupt (Bit 2): The bit is asserted when Master completed transmitting MTXCNT bytes.
- MRXCNT bytes data received finish interrupt (Bit 3): The bit is asserted when Master completed receiving MRXCNT bytes.
- Start interrupt (Bit 4): The bit is asserted when Master finished asserting start command to I2C bus.
- Stop interrupt (Bit 5): The bit is asserted when Master finished asserting stop command to I2C bus.
- NAK received interrupt (Bit 6): The bit is asserted when Master received a NAK handshake.

- Last byte acknowledge control
  - If I2C\_CON[5] is 1, the I2C controller will transmit NAK handshake to slave when the last byte received in RX only mode.
  - If I2C\_CON[5] is 0, the I2C controller will transmit ACK handshake to slave when the last byte received in RX only mode.
- How to handle NAK handshake received
  - If I2C\_CON[6] is 1, the I2C controller will stop all transactions when NAK handshake received. And the software should take responsibility to handle the problem.
  - If I2C\_CON[6] is 0, the I2C controller will ignore all NAK handshake received.
- I2C controller data transfer waveform
  - Bit transferring
    - Data Validity

The SDA line must be stable during the high period of SCL, and the data on SDA line can only be changed when SCL is in low state.





♦ START and STOP conditions

START condition occurs when SDA goes low while SCL is in high period. STOP condition is generated when SDA line goes high while SCL is in high state.

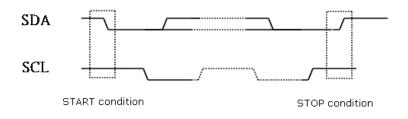



Fig. 19-3 I2C Start and stop conditions

- Data transfer
  - Acknowledge

After a byte of data transferring (clocks labeled as  $1 \sim 8$ ), in 9th clock the receiver must assert an ACK signal on SDA line, if the receiver pulls SDA line to low, it means "ACK", on the contrary, it's "NOT ACK".

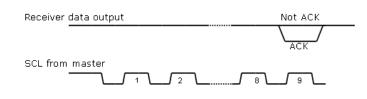



Fig. 19-4 I2C Acknowledge

> Byte transfer

The master own I2C bus might initiate multi byte to transfer to a slave. The transfer starts from a "START" command and ends in a "STOP" command. After every byte transfer, the receiver must reply an ACK to transmitter.

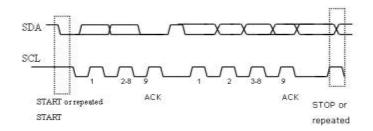



Fig. 19-5 I2C byte transfer

# **19.4 Register Description**

# 19.4.1 Registers Summary

| Name           | Offset | Size | Reset<br>Value | Description                                               |
|----------------|--------|------|----------------|-----------------------------------------------------------|
| RKI2C_CON      | 0x0000 | W    | 0x0000000      | control register                                          |
| RKI2C_CLKDIV   | 0x0004 | W    | 0x0000001      | clock divider register                                    |
| RKI2C_MRXADDR  | 0x0008 | W    | 0x0000000      | the slave address accessed for master rx mode             |
| RKI2C_MRXRADDR | 0x000c | W    | 0x0000000      | the slave register address<br>accessed for master rx mode |
| RKI2C_MTXCNT   | 0x0010 | W    | 0x00000000     | master transmit count                                     |
| RKI2C_MRXCNT   | 0x0014 | W    | 0x00000000     | master rx count                                           |
| RKI2C_IEN      | 0x0018 | W    | 0x00000000     | interrupt enable register                                 |
| RKI2C_IPD      | 0x001c | W    | 0x00000000     | interrupt pending register                                |
| RKI2C_FCNT     | 0x0020 | W    | 0x00000000     | finished count                                            |
| RKI2C_TXDATA0  | 0x0100 | W    | 0x00000000     | I2C tx data register 0                                    |
| RKI2C_TXDATA1  | 0x0104 | W    | 0x00000000     | I2C tx data register 1                                    |
| RKI2C_TXDATA2  | 0x0108 | W    | 0x0000000      | I2C tx data register 2                                    |
| RKI2C_TXDATA3  | 0x010c | W    | 0x0000000      | I2C tx data register 3                                    |
| RKI2C_TXDATA4  | 0x0110 | W    | 0x0000000      | I2C tx data register 4                                    |
| RKI2C_TXDATA5  | 0x0114 | W    | 0x0000000      | I2C tx data register 5                                    |
| RKI2C_TXDATA6  | 0x0118 | W    | 0x0000000      | I2C tx data register 6                                    |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Name          | Offset | Size | Reset<br>Value | Description            |
|---------------|--------|------|----------------|------------------------|
| RKI2C_TXDATA7 | 0x011c | W    | 0x00000000     | I2C tx data register 7 |
| RKI2C_RXDATA0 | 0x0200 | W    | 0x00000000     | I2C rx data register 0 |
| RKI2C_RXDATA1 | 0x0204 | W    | 0x00000000     | I2C rx data register 1 |
| RKI2C_RXDATA2 | 0x0208 | W    | 0x00000000     | I2C rx data register 2 |
| RKI2C_RXDATA3 | 0x020c | W    | 0x00000000     | I2C rx data register 3 |
| RKI2C_RXDATA4 | 0x0210 | W    | 0x00000000     | I2C rx data register 4 |
| RKI2C_RXDATA5 | 0x0214 | W    | 0x00000000     | I2C rx data register 5 |
| RKI2C_RXDATA6 | 0x0218 | W    | 0x00000000     | I2C rx data register 6 |
| RKI2C_RXDATA7 | 0x021c | W    | 0x00000000     | I2C rx data register 7 |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

# **19.4.2 Detail Register Description**

## RKI2C\_CON

Address: Operational Base + offset (0x0000)

control register

| Bit  | Attr | Reset Value | Description                                                                                              |
|------|------|-------------|----------------------------------------------------------------------------------------------------------|
| 31:7 | RO   | 0x0         | reserved                                                                                                 |
| 6    | RW   | 0x0         | act2nak<br>operation when NAK handshake is received<br>1'b0: ignored                                     |
|      |      |             | 1'b1: stop transaction                                                                                   |
| 5    | RW   | 0×0         | ack<br>last byte acknowledge control in master receive mode<br>1'b0: ACK<br>1'b1: NAK                    |
| 4    | RW   | 0x0         | stop<br>stop enable<br>stop enable, when this bit is written to 1, I2C will generate stop<br>signal.     |
| 3    | RW   | 0x0         | start<br>start enable<br>start enable, when this bit is written to 1, I2C will generate start<br>signal. |

| Bit | Attr | Reset Value | Description                                                        |
|-----|------|-------------|--------------------------------------------------------------------|
|     |      |             | i2c_mode<br>i2c mode select                                        |
|     |      |             | 2'b00: transmit only                                               |
|     |      |             | 2'b01: transmit address (device + register address)> restart -     |
| 2:1 | RW   | / 0×0       | -> transmit address -> receive only                                |
|     |      |             | 2'b10: receive only                                                |
|     |      |             | 2'b11: transmit address (device + register address, write/read bit |
|     |      |             | is 1)> restart> transmit address (device address)>                 |
|     |      |             | receive data                                                       |
|     |      |             | i2c_en                                                             |
| 0   | RW   | 0x0         | i2c module enable                                                  |
| U   |      |             | 1'b0:not enable                                                    |
|     |      |             | 1'b1:enable                                                        |

## RKI2C\_CLKDIV

Address: Operational Base + offset (0x0004)

clock divider register

| Bit    | Attr | Reset Value | Description                                 |
|--------|------|-------------|---------------------------------------------|
|        |      |             | CLKDIVH                                     |
| 31:16  | RW   | 0x0000      | scl high level clock count                  |
|        |      |             | $T(SCL_HIGH) = T(PCLK) * (CLKDIVH + 1) * 8$ |
|        |      | 0x0001      | CLKDIVL                                     |
| 15:0 R | RW   |             | scl low level clock count                   |
|        |      |             | $T(SCL_LOW) = T(PCLK) * (CLKDIVL + 1) * 8$  |

## RKI2C\_MRXADDR

Address: Operational Base + offset (0x0008)

the slave address accessed for master rx mode

| Bit   | Attr | Reset Value | Description             |
|-------|------|-------------|-------------------------|
| 31:27 | RO   | 0x0         | reserved                |
|       |      |             | addhvld                 |
| 26    | RW   |             | address high byte valid |
| 20    |      |             | 1'b0:invalid            |
|       |      |             | 1'b1:valid              |

| Bit  | Attr | Reset Value | Description                                                                                           |
|------|------|-------------|-------------------------------------------------------------------------------------------------------|
| 25   | RW   | 0x0         | addmvld<br>address middle byte valid<br>1'b0:invalid<br>1'b1:valid                                    |
| 24   | RW   | 0x0         | addlvld<br>address low byte valid<br>1'b0:invalid<br>1'b1:valid                                       |
| 23:0 | RW   | 0×000000    | saddr<br>master address register<br>the lowest bit indicate write or read<br>24 bits address register |

### RKI2C\_MRXRADDR

Address: Operational Base + offset (0x000c)

| the slave register address accessed | for master rx mode |
|-------------------------------------|--------------------|
|-------------------------------------|--------------------|

| Bit   | Attr | Reset Value | Description                     |
|-------|------|-------------|---------------------------------|
| 31:27 | RO   | 0x0         | reserved                        |
|       |      |             | sraddhvld                       |
| 26    | RW   | 0x0         | address high byte valid         |
| 20    | KVV  | UXU         | 1'b0:invalid                    |
|       |      |             | 1'b1:valid                      |
|       |      |             | sraddmvld                       |
| 25    | RW   | 0x0         | address middle byte valid       |
| 25    | L AN |             | 1'b0:invalid                    |
|       |      |             | 1'b1:valid                      |
|       |      | W 0x0       | sraddlvld                       |
| 24    | DW   |             | address low byte valid          |
| 24    | L AN |             | 1'b0:invalid                    |
|       |      |             | 1'b1:valid                      |
|       |      |             | sraddr                          |
| 23:0  | RW   | W 0x000000  | slave register address accessed |
|       |      |             | 24 bits register address        |

## RKI2C\_MTXCNT

Address: Operational Base + offset (0x0010)

master transmit count

| Bit  | Attr | Reset Value | Description                                       |
|------|------|-------------|---------------------------------------------------|
| 31:6 | RO   | 0x0         | reserved                                          |
| 5:0  | RW   |             | mtxcnt<br>master transmit count<br>6 bits counter |

### RKI2C\_MRXCNT

Address: Operational Base + offset (0x0014)

masterrx count

| Bit  | Attr | Reset Value | Description     |
|------|------|-------------|-----------------|
| 31:6 | RO   | 0x0         | reserved        |
|      |      |             | mrxcnt          |
| 5:0  | RW   | 0x00        | master rx count |
|      |      |             | 6 bits counter  |

### RKI2C\_IEN

Address: Operational Base + offset (0x0018)

interrupt enable register

| Bit  | Attr | Reset Value | Description                                                                              |
|------|------|-------------|------------------------------------------------------------------------------------------|
| 31:7 | RO   | 0x0         | reserved                                                                                 |
| 6    | RW   | 0×0         | nakrcvien<br>NAK handshake received interrupt enable<br>1'b0:disable<br>1'b1:enable      |
| 5    | RW   | 0x0         | stopien<br>stop operation finished interrupt enable<br>1'b0:disable<br>1'b1:enable       |
| 4    | RW   | 0x0         | startien<br>start operation finished interrupt enable<br>1'b0:disable<br>1'b1:enable     |
| 3    | RW   | 0×0         | mbrfien<br>MRXCNT data received finished interrupt enable<br>1'b0:disable<br>1'b1:enable |

| Bit | Attr | Reset Value | Description                                                                              |
|-----|------|-------------|------------------------------------------------------------------------------------------|
| 2   | RW   | 0x0         | mbtfien<br>MTXCNT data transfer finished interrupt enable<br>1'b0:disable<br>1'b1:enable |
| 1   | RW   | 0x0         | brfien<br>byte rx finished interrupt enable<br>1'b0:disable<br>1'b1:enable               |
| 0   | RW   | 0x0         | btfien<br>byte tx finished interrupt enable<br>1'b0:disable<br>1'b1:enable               |

# RKI2C\_IPD

Address: Operational Base + offset (0x001c)

interrupt pending register

| Bit  | Attr | Reset Value | Description                                                      |
|------|------|-------------|------------------------------------------------------------------|
| 31:7 | RO   | 0x0         | reserved                                                         |
|      |      |             | nakrcvipd                                                        |
| 6    | W1   | 0x0         | NAK handshake received interrupt pending bit                     |
| 0    | С    | 0.00        | 1'b0:no interrupt available                                      |
|      |      |             | 1'b1:NAK handshake received interrupt appear, write 1 to clear   |
|      |      |             | stopipd                                                          |
| 5    | W1   | 0x0         | stop operation finished interrupt pending bit                    |
| 5    | С    | UXU         | 1'b0:no interrupt available                                      |
|      |      |             | 1'b1:stop operation finished interrupt appear, write 1 to clear  |
|      |      | 0×0         | startipd                                                         |
| 4    | W1   |             | start operation finished interrupt pending bit                   |
| 4    | С    |             | 1'b0:no interrupt available                                      |
|      |      |             | 1'b1:start operation finished interrupt appear, write 1 to clear |
|      |      | 0x0         | mbrfipd                                                          |
|      | W1   |             | MRXCNT data received finished interrupt pending bit              |
| 3    | C    |             | 1'b0:no interrupt available                                      |
|      | C    |             | 1'b1:MRXCNT data received finished interrupt appear, write 1 to  |
|      |      |             | clear                                                            |
|      |      |             | mbtfipd                                                          |
|      | W1   |             | MTXCNT data transfer finished interrupt pending bit              |
| 2    | C    | 0x0         | 1'b0:no interrupt available                                      |
|      | C    |             | 1'b1:MTXCNT data transfer finished interrupt appear, write 1 to  |
|      |      |             | clear                                                            |

| Bit | Attr    | Reset Value | Description                                                                                                                                 |
|-----|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | W1<br>C | 0×0         | brfipd<br>byte rx finished interrupt pending bit<br>1'b0:no interrupt available<br>1'b1:byte rx finished interrupt appear, write 1 to clear |
| 0   | W1<br>C | 0x0         | btfipd<br>byte tx finished interrupt pending bit<br>1'b0:no interrupt available<br>1'b1:byte tx finished interrupt appear, write 1 to clear |

## RKI2C\_FCNT

Address: Operational Base + offset (0x0020)

finished count

| Bit  | Attr | Reset Value | Description                                                                                             |
|------|------|-------------|---------------------------------------------------------------------------------------------------------|
| 31:6 | RO   | 0x0         | reserved                                                                                                |
| 5:0  | RO   | 0×00        | fcnt<br>finished count<br>the count of data which has been transmitted or received<br>for debug purpose |

#### RKI2C\_TXDATA0

Address: Operational Base + offset (0x0100)

I2C tx data register 0

| Bit  | Attr | Reset Value | Description                                        |
|------|------|-------------|----------------------------------------------------|
| 31:0 | RW   | 0x00000000  | txdata0<br>data0 to be transmitted<br>32 bits data |

## RKI2C\_TXDATA1

Address: Operational Base + offset (0x0104)

I2C tx data register 1

| Bit  | Attr | Reset Value | Description             |
|------|------|-------------|-------------------------|
|      |      |             | txdata1                 |
| 31:0 | RW   | 0x00000000  | data1 to be transmitted |
|      |      |             | 32 bits data            |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

#### RKI2C\_TXDATA2

Address: Operational Base + offset (0x0108)

I2C tx data register 2

| Bit  | Attr | Reset Value | Description             |
|------|------|-------------|-------------------------|
|      |      |             | txdata2                 |
| 31:0 | RW   | 0x00000000  | data2 to be transmitted |
|      |      |             | 32 bits data            |

#### RKI2C\_TXDATA3

Address: Operational Base + offset (0x010c)

I2C tx data register 3

| Bit  | Attr | Reset Value | Description                                        |
|------|------|-------------|----------------------------------------------------|
| 31:0 | RW   | 0x00000000  | txdata3<br>data3 to be transmitted<br>32 bits data |

## RKI2C\_TXDATA4

Address: Operational Base + offset (0x0110)

I2C tx data register 4

| Bit  | Attr | Reset Value | Description                                        |
|------|------|-------------|----------------------------------------------------|
| 31:0 | RW   |             | txdata4<br>data4 to be transmitted<br>32 bits data |

#### RKI2C\_TXDATA5

Address: Operational Base + offset (0x0114)

I2C tx data register 5

| Bit  | Attr | Reset Value | Description             |
|------|------|-------------|-------------------------|
|      |      |             | txdata5                 |
| 31:0 | RW   | 0x00000000  | data5 to be transmitted |
|      |      |             | 32 bits data            |

#### RKI2C\_TXDATA6

Address: Operational Base + offset (0x0118)

I2C tx data register 6

| Bit  | Attr | Reset Value | Description                        |
|------|------|-------------|------------------------------------|
| 31:0 | RW   |             | txdata6<br>data6 to be transmitted |
|      |      |             | 32 bits data                       |

### RKI2C\_TXDATA7

Address: Operational Base + offset (0x011c)

I2C tx data register 7

| Bit  | Attr | Reset Value | Description                                        |
|------|------|-------------|----------------------------------------------------|
| 31:0 | RW   |             | txdata7<br>data7 to be transmitted<br>32 bits data |

#### RKI2C\_RXDATA0

Address: Operational Base + offset (0x0200)

I2C rx data register 0

| Bit  | Attr | Reset Value | Description                               |
|------|------|-------------|-------------------------------------------|
| 31:0 | RO   |             | rxdata0<br>data0 received<br>32 bits data |

#### RKI2C\_RXDATA1

Address: Operational Base + offset (0x0204)

I2C rx data register 1

| Bit  | Attr | Reset Value | Description               |
|------|------|-------------|---------------------------|
| 31:0 | RO   | 0x00000000  | rxdata1<br>data1 received |
|      |      |             | 32 bits data              |

#### RKI2C\_RXDATA2

Address: Operational Base + offset (0x0208)

I2C rx data register 2

| Bit  | Attr | Reset Value | Description    |
|------|------|-------------|----------------|
|      |      |             | rxdata2        |
| 31:0 | RO   | 0x00000000  | data2 received |
|      |      |             | 32 bits data   |

#### **RKI2C\_RXDATA3**

Address: Operational Base + offset (0x020c)

I2C rx data register 3

| Bit  | Attr | Reset Value | Description                               |
|------|------|-------------|-------------------------------------------|
| 31:0 | RO   | 0x00000000  | rxdata3<br>data3 received<br>32 bits data |

#### **RKI2C\_RXDATA4**

Address: Operational Base + offset (0x0210)

I2C rx data register 4

| Bit  | Attr | Reset Value | Description                               |
|------|------|-------------|-------------------------------------------|
| 31:0 | RO   | 0x00000000  | rxdata4<br>data4 received<br>32 bits data |

#### **RKI2C\_RXDATA5**

Address: Operational Base + offset (0x0214)

I2C rx data register 5

| Bit  | Attr | Reset Value | Description                               |
|------|------|-------------|-------------------------------------------|
| 31:0 | RO   |             | rxdata5<br>data5 received<br>32 bits data |

### RKI2C\_RXDATA6

Address: Operational Base + offset (0x0218)

I2C rx data register 6

| Bit  | Attr | Reset Value | Description                               |
|------|------|-------------|-------------------------------------------|
| 31:0 | RO   |             | rxdata6<br>data6 received<br>32 bits data |

### RKI2C\_RXDATA7

Address: Operational Base + offset (0x021c)

I2C rx data register 7

| Bit  | Attr | Reset Value | Description               |
|------|------|-------------|---------------------------|
| 31:0 | RO   |             | rxdata7<br>data7 received |
|      |      |             | 32 bits data              |

# **19.5 Interface Description**

#### Table 19-1 I2C Interface Description

| Module<br>pin | Dire<br>ctio<br>n | Pad name                                 | ΙΟΜUΧ                        |  |  |  |  |
|---------------|-------------------|------------------------------------------|------------------------------|--|--|--|--|
|               |                   | I2C0 Interface                           |                              |  |  |  |  |
| i2c0_sda      | I/O               | IO_I2C0scl_FEPHYled_linkm1_GPIO2D0vccio5 | GRF_GPIO2D_IOMUX[3:2]=2'b01  |  |  |  |  |
| i2c0_scl      | I/O               | IO_I2C0sda_FEPHYLEDrxm1_FEPHYLEDtxm1_    | GRF_GPIO2D_IOMUX[1:0]=2'b01  |  |  |  |  |
|               |                   | GPIO2D1vccio5                            |                              |  |  |  |  |
|               |                   | I2C1 Interface                           |                              |  |  |  |  |
| i2c1_sda      | I/O               | IO_PWM0_I2C1sda_GPIO2A4vccio5            | GRF_GPIO2A_IOMUX[9:8]=2'b10  |  |  |  |  |
| i2c1_scl      | I/O               | IO_PWM1_I2C1scl_GPIO2A5vccio5            | GRF_GPIO2A_IOMUX[5:4]=2'b10  |  |  |  |  |
|               | I2C2 Interface    |                                          |                              |  |  |  |  |
| i2c2_sda      | I/O               | IO_I2C2sda_TSADCshut_GPIO2B5vccio5       | GRF_GPIO2B_IOMUX[11:10]=2'b0 |  |  |  |  |
|               |                   |                                          | 1                            |  |  |  |  |
| i2c2_scl      | I/O               | IO_ I2C2scl_GPIO2B6vccio5                | GRF_GPIO2B_IOMUX[13:12]=2'b0 |  |  |  |  |
|               |                   |                                          | 1                            |  |  |  |  |
|               | I2C3 Interface    |                                          |                              |  |  |  |  |
| i2c3_sda      | I/O               | IO_HDMIscl_I2C3scl_GPIO0A5pmuio          | GRF_GPIO0A_IOMUX[13:12]=2'b1 |  |  |  |  |
|               |                   |                                          | 0                            |  |  |  |  |
|               |                   | IO_I2C3scl5v_HDMISCLpmuio5v              | GRF_CON_I2C3_SCL5V=1         |  |  |  |  |
| i2c3_scl      | I/O               | IO_HDMIsda_I2C3sda_GPIO0A6pmuio          | GRF_GPIO0A_IOMUX[11:10]=2'b1 |  |  |  |  |
|               |                   |                                          | 0                            |  |  |  |  |
|               |                   | IO_I2Csda5v_HDMISDApmuio5v               | GRF_CON_I2C3_SDA5V=1         |  |  |  |  |

# **19.6 Application Notes**

The I2C controller core operation flow chart below is to describe how the software configures and performs an I2C transaction through this I2C controller core. Descriptions are divided into 3 sections, transmit only mode, receive only mode, and mix mode. Users are strongly advised to follow

• Transmit only mode (I2C\_CON[1:0]=2'b00)

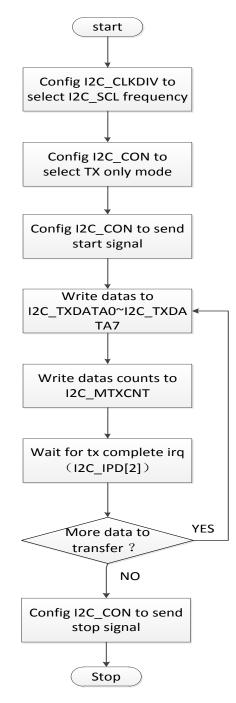



Fig. 19-6 I2C Flow chat for transmit only mode

Receive only mode (I2C\_CON[1:0]=2'b10)

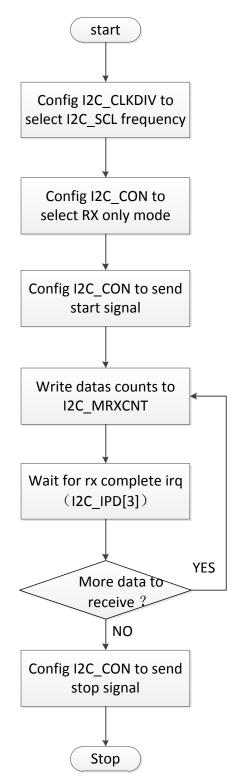
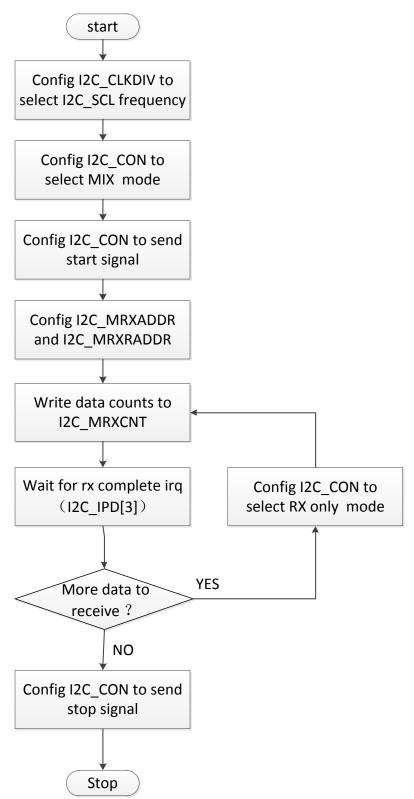
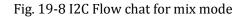





Fig. 19-7 I2C Flow chat for receive only mode

• Mix mode (I2C\_CON[1:0]=2'b01 or I2C\_CON[1:0]=2'b11)





# Chapter 20 Serial Peripheral Interface (SPI)

## 20.1 Overview

The serial peripheral interface is an APB slave device. A four wire full duplex serial protocol from Motorola. There are four possible combinations for the serial clock phase and polarity. The clock phase (SCPH) determines whether the serial transfer begins with the falling edge of slave select signals or the first edge of the serial clock. The slave select line is held high when the SPI is idle or disabled. This SPI controller can work as either master or slave mode.

SPI Controller supports the following features:

- Support Motorola SPI,TI Synchronous Serial Protocol and National Semiconductor Micro wire interface
- Support 32-bit APB bus
- Support two internal 16-bit wide and 32-location deep FIFOs, one for transmitting and the other for receiving serial data
- Support two chip select signals in master mode
- Support 4,8,16 bit serial data transfer
- Support configurable interrupt polarity
- Support asynchronous APB bus and SPI clock
- Support master and slave mode
- Support DMA handshake interface and configurable DMA water level
- Support transmit FIFO empty, underflow, receive FIFO full, overflow, interrupt and all interrupts can be masked
- Support configurable water level of transmit FIFO empty and receive FIFO full interrupt
- Support combine interrupt output
- Support up to half of SPI clock frequency transfer in master mode and one sixth of SPI clock frequency transfer in slave mode
- Support full and half duplex mode transfer
- Stop transmitting SCLK if transmit FIFO is empty or receive FIFO is full in master mode
- Support configurable delay from chip select active to SCLK active in master mode
- Support configurable period of chip select inactive between two parallel data in master mode
- Support big and little endian, MSB and LSB first transfer
- Support two 8-bit audio data store together in one 16-bit wide location
- Support sample RXD 0~3 SPI clock cycles later
- Support configurable SCLK polarity and phase
- Support fix and incremental address access to transmit and receive FIFO

# 20.2 Block Diagram

The SPI Controller comprises with:

- AMBA APB interface and DMA Controller Interface
- Transmit and receive FIFO controllers and an FSM controller
- Register block
- Shift control and interrupt

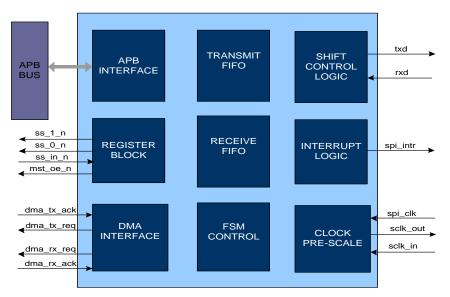



Fig. 20-1 SPI Controller Block diagram

### **APB INTERFACE**

The host processor accesses data, control, and status information on the SPI through the APB interface. The SPI supports APB data bus widths of 32 bits and 8 or 16 bits when reading or writing internal FIFO if data frame size(SPI\_CTRL0[1:0]) is set to 8 bits.

### DMA INTERFACE

This block has a handshaking interface to a DMA Controller to request and control transfers. The APB bus is used to perform the data transfer to or from the DMA Controller.

### FIFO LOGIC

For transmit and receive transfers, data transmitted from the SPI to the external serial device is written into the transmit FIFO. Data received from the external serial device into the SPI is pushed into the receive FIFO. Both fifos are 32x16bits.

### **FSM CONTROL**

Control the state's transformation of the design.

### **REGISTER BLOCK**

All registers in the SPI are addressed at 32-bit boundaries to remain consistent with the APB bus. Where the physical size of any register is less than 32-bits wide, the upper unused bits of the 32-bit boundary are reserved. Writing to these bits has no effect; reading from these bits returns 0.

### SHIFT CONTROL

Shift control logic shift the data from the transmit fifo or to the receive fifo. This logic automatically right-justifies receive data in the receive FIFO buffer.

### **INTERRUPT CONTROL**

The SPI supports combined and individual interrupt requests, each of which can be masked. The combined interrupt request is the ORed result of all other SPI interrupts after masking.

# **20.3 Function Description**

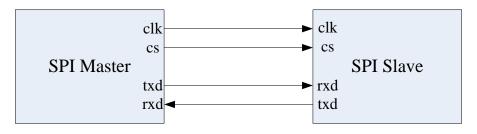



Fig. 20-2 SPI Master and Slave Interconnection

The SPI controller support dynamic switching between master and slave in a system. The diagram show how the SPI controller connects with other SPI devices.

#### **Operation Modes**

The SPI can be configured in the following two fundamental modes of operation: Master Mode when SPI\_CTRLR0 [20] is 1'b0, Slave Mode when SPI\_CTRLR0 [20] is 1'b1.

#### **Transfer Modes**

The SPI operates in the following three modes when transferring data on the serial bus.

1). Transmit and Receive

When SPI\_CTRLR0 [19:18]== 2'b00, both transmit and receive logic are valid.

2).Transmit Only

When SPI\_CTRLR0 [19:18] == 2b01, the receive data are invalid and should not be stored in the receive FIFO.

3).Receive Only

When SPI\_CTRLR0 [19:18]== 2'b10, the transmit data are invalid.

### **Clock Ratios**

A summary of the frequency ratio restrictions between the bit-rate clock (sclk\_out/sclk\_in) and the SPI peripheral clock (spi\_clk) are described as,

When SPI Controller works as master, the  $F_{spi\_clk} >= 2 \times (maximum F_{sclk\_out})$ When SPI Controller works as slave, the  $F_{spi\_clk} >= 6 \times (maximum F_{sclk\_in})$ 

With the SPI, the clock polarity (SCPOL) configuration parameter determines whether the inactive state of the serial clock is high or low. To transmit data, both SPI peripherals must have identical serial clock phase (SCPH) and clock polarity (SCPOL) values. The data frame can be 4/8/16 bits in length.

When the configuration parameter SCPH = 0, data transmission begins on the falling edge of the slave select signal. The first data bit is captured by the master and slave peripherals on the first edge of the serial clock; therefore, valid data must be present on the txd and rxd lines prior to the first serial clock edge. The following two figures show a timing diagram for a single SPI data transfer with SCPH = 0. The serial clock is shown for configuration parameters SCPOL = 0 and SCPOL = 1.

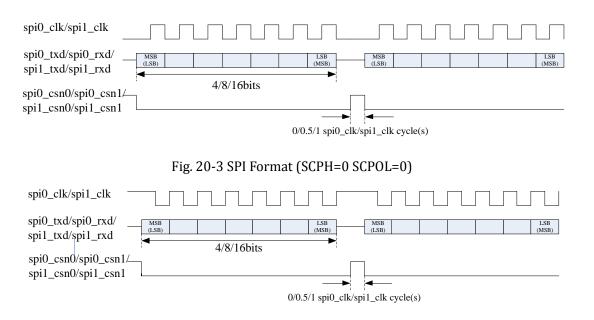



Fig. 20-4 SPI Format (SCPH=0 SCPOL=1)

When the configuration parameter SCPH = 1, both master and slave peripherals begin transmitting data on the first serial clock edge after the slave select line is activated. The first data bit is captured on the second (trailing) serial clock edge. Data are propagated by the master and slave peripherals on the leading edge of the serial clock. During continuous data frame transfers, the slave select line may be held active-low until the last bit of the last frame has been captured. The following two figures show the timing diagram for the SPI format when the configuration parameter SCPH = 1.

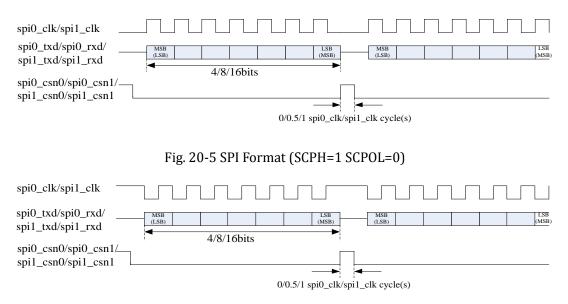



Fig. 20-6 SPI Format (SCPH=1 SCPOL=1)

## **20.4 Register Description**

## 20.4.1 Registers Summary

| Name Offset Size |        | Size | Reset<br>Value | Description        |
|------------------|--------|------|----------------|--------------------|
| SPI_CTRLR0       | 0x0000 | W    | 0x0000002      | Control Register 0 |

#### RK3328 TRM-Part1

| Name        | Offset | Size | Reset<br>Value | Description                   |
|-------------|--------|------|----------------|-------------------------------|
| SPI_CTRLR1  | 0x0004 | W    | 0x00000000     | Control Register 1            |
| SPI_ENR     | 0x0008 | W    | 0x00000000     | SPI Enable                    |
| SPI_SER     | 0x000c | W    | 0x00000000     | Slave Enable Register         |
| SPI_BAUDR   | 0x0010 | W    | 0x00000000     | Baud Rate Select              |
| SPI_TXFTLR  | 0x0014 | W    | 0x00000000     | Transmit FIFO Threshold Level |
| SPI_RXFTLR  | 0x0018 | W    | 0x00000000     | Receive FIFO Threshold Level  |
| SPI_TXFLR   | 0x001c | W    | 0x00000000     | Transmit FIFO Level           |
| SPI_RXFLR   | 0x0020 | W    | 0x00000000     | Receive FIFO Level            |
| SPI_SR      | 0x0024 | W    | 0x000000c      | SPI Status                    |
| SPI_IPR     | 0x0028 | W    | 0x00000000     | Interrupt Polarity            |
| SPI_IMR     | 0x002c | W    | 0x00000000     | Interrupt Mask                |
| SPI_ISR     | 0x0030 | W    | 0x00000000     | Interrupt Status              |
| SPI_RISR    | 0x0034 | W    | 0x0000001      | Raw Interrupt Status          |
| SPI_ICR     | 0x0038 | W    | 0x00000000     | Interrupt Clear               |
| SPI_DMACR   | 0x003c | W    | 0x00000000     | DMA Control                   |
| SPI_DMATDLR | 0x0040 | W    | 0x0000000      | DMA Transmit Data Level       |
| SPI_DMARDLR | 0x0044 | W    | 0x0000000      | DMA Receive Data Level        |
| SPI_TXDR    | 0x0048 | W    | 0x0000000      | Transmit FIFO Data            |
| SPI_RXDR    | 0x004c | W    | 0x0000000      | Receive FIFO Data             |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 20.4.2 Detail Register Description

#### SPI\_CTRLR0

Address: Operational Base + offset (0x0000)

Control Register 0

| Bit   | Attr | <b>Reset Value</b> | Description                                               |
|-------|------|--------------------|-----------------------------------------------------------|
| 31:22 | RO   | 0x0                | reserved                                                  |
|       |      |                    | МТМ                                                       |
|       |      |                    | Microwire Transfer Mode                                   |
| 21    | RW   | 0x0                | Valid when frame format is set to National Semiconductors |
| 21    | RVV  | 0.00               | Microwire.                                                |
|       |      |                    | 1'b0: non-sequential transfer                             |
|       |      |                    | 1'b1: sequential transfer                                 |
|       |      | 0x0                | ОРМ                                                       |
| 20    | RW   |                    | Operation Mode                                            |
| 20    | RVV  |                    | 1'b0: Master Mode                                         |
|       |      |                    | 1'b1: Slave Mode                                          |
|       |      |                    | XFM                                                       |
|       |      | ′ 0×0              | Transfer Mode                                             |
| 19:18 |      |                    | 2'b00 :Transmit & Receive                                 |
| 19.10 | RVV  |                    | 2'b01 : Transmit Only                                     |
|       |      |                    | 2'b10 : Receive Only                                      |
|       |      |                    | 2'b11 :reserved                                           |

| Bit   | Attr | Reset Value | Description                                                      |
|-------|------|-------------|------------------------------------------------------------------|
|       |      |             | FRF                                                              |
|       |      |             | Frame Format                                                     |
| 17:16 |      | 0.40        | 2'b00: Motorola SPI                                              |
| 17:10 | RW   | 0x0         | 2'b01: Texas Instruments SSP                                     |
|       |      |             | 2'b10: National Semiconductors Microwire                         |
|       |      |             | 2'b11 : Reserved                                                 |
|       |      |             | RSD                                                              |
|       |      |             | Rxd Sample Delay                                                 |
|       |      |             | When SPI is configured as a master, if the rxd data cannot be    |
|       |      |             | sampled by the sclk_out edge at the right time, this register    |
|       |      |             | should be configured to define the number of the spi_clk cycles  |
| 15:14 | RW   | 0x0         | after the active sclk_out edge to sample rxd data later when SPI |
|       |      |             | works at high frequency.                                         |
|       |      |             | 2'b00:do not delay                                               |
|       |      |             | 2'b01:1 cycle delay                                              |
|       |      |             | 2'b10:2 cycles delay                                             |
|       |      |             | 2'b11:3 cycles delay                                             |
|       |      |             | ВНТ                                                              |
|       |      |             | Byte and Halfword Transform                                      |
| 13    | RW   | 0x0         | Valid when data frame size is 8bit.                              |
|       |      |             | 1'b0:apb 16bit write/read, spi 8bit write/read                   |
|       |      |             | 1'b1: apb 8bit write/read, spi 8bit write/read                   |
|       |      |             | FBM                                                              |
| 10    |      | 00          | First Bit Mode                                                   |
| 12    | RW   | 0x0         | 1'b0:first bit is MSB                                            |
|       |      |             | 1'b1:first bit is LSB                                            |
|       |      |             | EM                                                               |
|       |      |             | Endian Mode                                                      |
|       |      | 00          | Serial endian mode can be configured by this bit. Apb endian     |
| 11    | RW   | 0x0         | mode is always little endian.                                    |
|       |      |             | 1'b0:little endian                                               |
|       |      |             | 1'b1:big endian                                                  |
|       |      |             | SSD                                                              |
|       |      |             | ss_n to sclk_out delay                                           |
|       |      |             | Valid when the frame format is set to Motorola SPI and SPI used  |
| 10    |      |             | as a master.                                                     |
| 10    | RW   | 0x0         | 1'b0: the period between ss_n active and sclk_out active is half |
|       |      |             | sclk_out cycles.                                                 |
|       |      |             | 1'b1: the period between ss_n active and sclk_out active is one  |
|       |      |             | sclk_out cycle.                                                  |

| Bit | Attr | Reset Value | Description                                                              |
|-----|------|-------------|--------------------------------------------------------------------------|
|     |      |             | CSM                                                                      |
|     |      |             | Chip Select Mode                                                         |
|     |      |             | Valid when the frame format is set to Motorola SPI and SPI used          |
|     |      |             | as a master.                                                             |
| 9:8 | RW   | 0x0         | 2'b00: ss_n keep low after every frame data is transferred.              |
| 9:0 | RVV  | UXU         | 2'b01:ss_n be high for half sclk_out cycles after every frame data       |
|     |      |             | is transferred.                                                          |
|     |      |             | 2'b10: ss_n be high for one sclk_out cycle after every frame data        |
|     |      |             | is transferred.                                                          |
|     |      |             | 2'b11:reserved                                                           |
|     |      |             | SCPOL                                                                    |
|     |      |             | Serial Clock Polarity                                                    |
| 7   | RW   | 0x0         | Valid when the frame format is set to Motorola SPI.                      |
|     |      |             | 1'b0: Inactive state of serial clock is low                              |
|     |      |             | 1'b1: Inactive state of serial clock is high                             |
|     |      |             | SCPH                                                                     |
|     |      |             | Serial Clock Phase                                                       |
| 6   | RW   | 0x0         | Valid when the frame format is set to Motorola SPI.                      |
|     |      |             | 1'b0: Serial clock toggles in middle of first data bit                   |
|     |      |             | 1'b1: Serial clock toggles at start of first data bit                    |
|     |      |             | CFS                                                                      |
|     |      |             | Control Frame Size                                                       |
|     |      |             | Selects the length of the control word for the Microwire frame           |
|     |      |             | format.                                                                  |
|     |      |             | 4'b0000~0010:reserved                                                    |
|     |      |             | 4'b0011:4-bit serial data transfer                                       |
|     |      |             | 4'b0100:5-bit serial data transfer                                       |
|     |      |             | 4'b0101:6-bit serial data transfer<br>4'b0110:7-bit serial data transfer |
| 5:2 | RW   | 0x0         | 4'b0110:7-bit serial data transfer                                       |
|     |      |             | 4'b1111:8-bit serial data transfer                                       |
|     |      |             | 4'b1000:9-bit serial data transfer                                       |
|     |      |             | 4'b1010:11-bit serial data transfer                                      |
|     |      |             | 4'b1010:11-bit serial data transfer                                      |
|     |      |             | 4'b1100:13-bit serial data transfer                                      |
|     |      |             | 4'b1101:14-bit serial data transfer                                      |
|     |      |             | 4'b1110:15-bit serial data transfer                                      |
|     |      |             | 4'b1111:16-bit serial data transfer                                      |
|     |      |             | DFS                                                                      |
|     |      |             | Data Frame Size                                                          |
|     |      |             | Selects the data frame length.                                           |
| 1:0 | RW   | 0x2         | 2'b00:4bit data                                                          |
|     |      |             | 2'b01:8bit data                                                          |
|     |      |             | 2'b10:16bit data                                                         |
|     |      |             | 2'b11:reserved                                                           |
|     |      |             |                                                                          |

## SPI\_CTRLR1

Address: Operational Base + offset (0x0004) Control Register 1

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                        |
|-------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                                           |
| 15:0  | RW   | 0x0000             | NDM<br>Number of Data Frames<br>When Transfer Mode is receive only, this register field sets the<br>number of data frames to be continuously received by the SPI.<br>The SPI continues to receive serial data until the number of data<br>frames received is equal to this register value plus 1, which<br>enables you to receive up to 64 KB of data in a continuous<br>transfer. |

#### SPI\_ENR

Address: Operational Base + offset (0x0008)

SPI Enable

| Bit  | Attr | Reset Value | Description                                                      |
|------|------|-------------|------------------------------------------------------------------|
| 31:1 | RO   | 0x0         | reserved                                                         |
|      |      |             | ENR                                                              |
|      |      | 0x0         | SPI Enable                                                       |
| 0    |      |             | 1'b1: Enable all SPI operations.                                 |
| 0    | RW   |             | 1'b0: Disable all SPI operations                                 |
|      |      |             | Transmit and receive FIFO buffers are cleared when the device is |
|      |      |             | disabled.                                                        |

#### SPI\_SER

Address: Operational Base + offset (0x000c)

Slave Enable Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                    |
|------|------|--------------------|----------------------------------------------------------------|
| 31:2 | RO   | 0x0                | reserved                                                       |
|      |      |                    | SER1                                                           |
|      |      |                    | Slave 1 Select Enable                                          |
| 1    | RW   | 0×0                | 1'b1: Enable chip select 1                                     |
| 1    | ĸvv  | 0.00               | 1'b0: Disable chip select 1                                    |
|      |      |                    | This register is valid only when SPI is configured as a master |
|      |      |                    | device.                                                        |
|      |      | 0x0                | SER0                                                           |
|      |      |                    | Slave Select Enable                                            |
| 0    | RW   |                    | 1'b1: Enable chip select 0                                     |
| 0    | U KW |                    | 1'b0: Disable chip select 0                                    |
|      |      |                    | This register is valid only when SPI is configured as a master |
|      |      |                    | device.                                                        |

#### SPI\_BAUDR

Address: Operational Base + offset (0x0010) Baud Rate Select

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |      | 0x0000             | BAUDR<br>Baud Rate Select<br>SPI Clock Divider.<br>This register is valid only when the SPI is configured as a master<br>device.<br>The LSB for this field is always set to 0 and is unaffected by a<br>write operation, which ensures an even value is held in this<br>register.<br>If the value is 0, the serial output clock (sclk_out) is disabled.<br>The frequency of the sclk_out is derived from the following<br>equation:<br>Fsclk_out = Fspi_clk/ SCKDV<br>Where SCKDV is any even value between 2 and 65534.<br>For example:<br>for Fspi_clk = 3.6864MHz and SCKDV =2 |
|       |      |                    | $Fsclk_out = 3.6864/2 = 1.8432MHz$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### SPI\_TXFTLR

Address: Operational Base + offset (0x0014) Transmit FIFO Threshold Level

| Bit  | Attr   | <b>Reset Value</b> | Description                                                       |
|------|--------|--------------------|-------------------------------------------------------------------|
| 31:5 | RO     | 0x0                | reserved                                                          |
|      |        |                    | TXFTLR                                                            |
| 4:0  |        |                    | Transmit FIFO Threshold Level                                     |
| 4:0  | 4:0 RW |                    | When the number of transmit FIFO entries is less than or equal to |
|      |        |                    | this value, the transmit FIFO empty interrupt is triggered.       |

#### SPI\_RXFTLR

Address: Operational Base + offset (0x0018) Receive FIFO Threshold Level

| Bit  | Attr | <b>Reset Value</b> | Description                                                      |
|------|------|--------------------|------------------------------------------------------------------|
| 31:5 | RO   | 0x0                | reserved                                                         |
|      |      | 0×00               | RXFTLR                                                           |
| 4:0  | RW   |                    | Receive FIFO Threshold Level                                     |
| 4.0  | ĸw   |                    | When the number of receive FIFO entries is greater than or equal |
|      |      |                    | to this value + 1, the receive FIFO full interrupt is triggered. |

## SPI\_TXFLR

Address: Operational Base + offset (0x001c) Transmit FIFO Level

| Bit  | Attr | <b>Reset Value</b> | Description                                                     |
|------|------|--------------------|-----------------------------------------------------------------|
| 31:6 | RO   | 0x0                | reserved                                                        |
|      |      |                    | TXFLR                                                           |
| 5:0  | RO   | 0x00               | Transmit FIFO Level                                             |
|      |      |                    | Contains the number of valid data entries in the transmit FIFO. |

#### SPI\_RXFLR

Address: Operational Base + offset (0x0020) Receive FIFO Level

| Bit  | Attr | <b>Reset Value</b> | Description                                                    |
|------|------|--------------------|----------------------------------------------------------------|
| 31:6 | RO   | 0x0                | reserved                                                       |
|      |      |                    | RXFLR                                                          |
| 5:0  | RO   | 0x00               | Receive FIFO Level                                             |
|      |      |                    | Contains the number of valid data entries in the receive FIFO. |

### SPI\_SR

Address: Operational Base + offset (0x0024)

SPI Status

| Bit  | Attr | <b>Reset Value</b> | Description                      |
|------|------|--------------------|----------------------------------|
| 31:5 | RO   | 0x0                | reserved                         |
|      |      |                    | RFF                              |
| 1    | RO   | 0.40               | Receive FIFO Full                |
| 4    | RU   | 0x0                | 1'b0: Receive FIFO is not full   |
|      |      |                    | 1'b1: Receive FIFO is full       |
|      |      |                    | RFE                              |
| 3    | RO   | 0x1                | Receive FIFO Empty               |
| 2    | ĸŪ   |                    | 1'b0: Receive FIFO is not empty  |
|      |      |                    | 1'b1: Receive FIFO is empty      |
|      |      | 0 0x1              | TFE                              |
| 2    | RO   |                    | Transmit FIFO Empty              |
| Z    | κυ   |                    | 1'b0: Transmit FIFO is not empty |
|      |      |                    | 1'b1: Transmit FIFO is empty     |
|      |      |                    | TFF                              |
| 1    | RO   | 0×0                | Transmit FIFO Full               |
| 1    |      |                    | 1'b0: Transmit FIFO is not full  |
|      |      |                    | 1'b1: Transmit FIFO is full      |

| Bit | Attr | <b>Reset Value</b> | Description                                                     |
|-----|------|--------------------|-----------------------------------------------------------------|
|     | RO   | 0x0                | BSF                                                             |
|     |      |                    | SPI Busy Flag                                                   |
| 0   |      |                    | When set, indicates that a serial transfer is in progress; when |
| 0   |      |                    | cleared indicates that the SPI is idle or disabled.             |
|     |      |                    | 1'b0: SPI is idle or disabled                                   |
|     |      |                    | 1'b1: SPI is actively transferring data                         |

### SPI\_IPR

Address: Operational Base + offset (0x0028) Interrupt Polarity

| Bit  | Attr | <b>Reset Value</b> | Description                                  |
|------|------|--------------------|----------------------------------------------|
| 31:1 | RO   | 0x0                | reserved                                     |
|      |      |                    | IPR                                          |
|      |      |                    | Interrupt Polarity                           |
| 0    | RW   | 0x0                | Interrupt Polarity Register                  |
|      |      |                    | 1'b0:Active Interrupt Polarity Level is HIGH |
|      |      |                    | 1'b1: Active Interrupt Polarity Level is LOW |

### SPI\_IMR

Address: Operational Base + offset (0x002c)

Interrupt Mask

| Bit  | Attr | <b>Reset Value</b> | Description                                |
|------|------|--------------------|--------------------------------------------|
| 31:5 | RO   | 0x0                | reserved                                   |
|      |      |                    | RFFIM                                      |
| 4    | RW   | 0x0                | Receive FIFO Full Interrupt Mask           |
| 4    | r vv | 0.00               | 1'b0: spi_rxf_intr interrupt is masked     |
|      |      |                    | 1'b1: spi_rxf_intr interrupt is not masked |
|      |      |                    | RFOIM                                      |
| 3    | RW   | 0x0                | Receive FIFO Overflow Interrupt Mask       |
| 5    |      | 0.00               | 1'b0: spi_rxo_intr interrupt is masked     |
|      |      |                    | 1'b1: spi_rxo_intr interrupt is not masked |
|      |      | 0×0                | RFUIM                                      |
| 2    | RW   |                    | Receive FIFO Underflow Interrupt Mask      |
| 2    |      |                    | 1'b0: spi_rxu_intr interrupt is masked     |
|      |      |                    | 1'b1: spi_rxu_intr interrupt is not masked |
|      |      |                    | TFOIM                                      |
| 1    | RW   | 0x0                | Transmit FIFO Overflow Interrupt Mask      |
| 1    |      |                    | 1'b0: spi_txo_intr interrupt is masked     |
|      |      |                    | 1'b1: spi_txo_intr interrupt is not masked |
|      |      |                    | TFEIM                                      |
| 0    | RW   | 0.20               | Transmit FIFO Empty Interrupt Mask         |
|      | ĸw   | V 0×0              | 1'b0: spi_txe_intr interrupt is masked     |
|      |      |                    | 1'b1: spi_txe_intr interrupt is not masked |

#### SPI\_ISR

Address: Operational Base + offset (0x0030) Interrupt Status

| Bit  | Attr | <b>Reset Value</b> | Description                                              |
|------|------|--------------------|----------------------------------------------------------|
| 31:5 | RO   | 0x0                | reserved                                                 |
|      |      |                    | RFFIS                                                    |
| 4    | RO   | 0x0                | Receive FIFO Full Interrupt Status                       |
| 4    | κυ   | 0.00               | 1'b0: spi_rxf_intr interrupt is not active after masking |
|      |      |                    | 1'b1: spi_rxf_intr interrupt is full after masking       |
|      |      |                    | RFOIS                                                    |
| 3    | RO   | 0x0                | Receive FIFO Overflow Interrupt Status                   |
| 5    | κυ   | UXU                | 1'b0: spi_rxo_intr interrupt is not active after masking |
|      |      |                    | 1'b1: spi_rxo_intr interrupt is active after masking     |
|      |      | 0x0                | RFUIS                                                    |
| 2    | RO   |                    | Receive FIFO Underflow Interrupt Status                  |
| 2    |      |                    | 1'b0: spi_rxu_intr interrupt is not active after masking |
|      |      |                    | 1'b1: spi_rxu_intr interrupt is active after masking     |
|      |      |                    | TFOIS                                                    |
| 1    | RO   | 0x0                | Transmit FIFO Overflow Interrupt Status                  |
| 1    | κυ   |                    | 1'b0: spi_txo_intr interrupt is not active after masking |
|      |      |                    | 1'b1: spi_txo_intr interrupt is active after masking     |
|      |      |                    | TFEIS                                                    |
| 0    | RO   | 0.20               | Transmit FIFO Empty Interrupt Status                     |
| 0    | KU   | O 0x0              | 1'b0: spi_txe_intr interrupt is not active after masking |
|      |      |                    | 1'b1: spi_txe_intr interrupt is active after masking     |

### SPI\_RISR

Address: Operational Base + offset (0x0034)

Raw Interrupt Status

| Bit  | Attr | <b>Reset Value</b> | Description                                                  |
|------|------|--------------------|--------------------------------------------------------------|
| 31:5 | RO   | 0x0                | reserved                                                     |
|      |      |                    | RFFRIS                                                       |
| 4    | RO   | 0x0                | Receive FIFO Full Raw Interrupt Status                       |
| 4    | RU   | UXU                | 1'b0: spi_rxf_intr interrupt is not active prior to masking  |
|      |      |                    | 1'b1: spi_rxf_intr interrupt is full prior to masking        |
|      | RO   | 0×0                | RFORIS                                                       |
| 3    |      |                    | Receive FIFO Overflow Raw Interrupt Status                   |
| 3    |      |                    | 1'b0 = spi_rxo_intr interrupt is not active prior to masking |
|      |      |                    | 1'b1 = spi_rxo_intr interrupt is active prior to masking     |
|      |      | RO 0x0             | RFURIS                                                       |
| 2    |      |                    | Receive FIFO Underflow Raw Interrupt Status                  |
| 2    | RU   |                    | 1'b0: spi_rxu_intr interrupt is not active prior to masking  |
|      |      |                    | 1'b1: spi_rxu_intr interrupt is active prior to masking      |

| Bit | Attr | <b>Reset Value</b> | Description                                                 |
|-----|------|--------------------|-------------------------------------------------------------|
|     |      |                    | TFORIS                                                      |
| 1   |      | 0x0                | Transmit FIFO Overflow Raw Interrupt Status                 |
| T   | RO   | 0.00               | 1'b0: spi_txo_intr interrupt is not active prior to masking |
|     |      |                    | 1'b1: spi_txo_intr interrupt is active prior to masking     |
|     |      | .0 0x1             | TFERIS                                                      |
|     |      |                    | Transmit FIFO Empty Raw Interrupt Status                    |
| 0   | RO   |                    | 1'b0: spi_txe_intr interrupt is not active prior to masking |
|     |      |                    | 1'b1: spi_txe_intr interrupt is active prior to masking     |

#### SPI\_ICR

Address: Operational Base + offset (0x0038)

Interrupt Clear

| Bit  | Attr | <b>Reset Value</b> | Description                                       |
|------|------|--------------------|---------------------------------------------------|
| 31:4 | RO   | 0x0                | reserved                                          |
|      |      |                    | CTFOI                                             |
| 3    | WO   | 0x0                | Clear Transmit FIFO Overflow Interrupt            |
|      |      |                    | Write 1 to Clear Transmit FIFO Overflow Interrupt |
|      |      |                    | CRFOI                                             |
| 2    | WO   | 0x0                | Clear Receive FIFO Overflow Interrupt             |
|      |      |                    | Write 1 to Clear Receive FIFO Overflow Interrupt  |
|      |      |                    | CRFUI                                             |
| 1    | WO   | 0x0                | Clear Receive FIFO Underflow Interrupt            |
|      |      |                    | Write 1 to Clear Receive FIFO Underflow Interrupt |
|      |      |                    | CCI                                               |
| 0    | WO   | 0x0                | Clear Combined Interrupt                          |
|      |      |                    | Write 1 to Clear Combined Interrupt               |

#### SPI\_DMACR

Address: Operational Base + offset (0x003c) DMA Control

| Bit  | Attr | <b>Reset Value</b> | Description                 |
|------|------|--------------------|-----------------------------|
| 31:2 | RO   | 0x0                | reserved                    |
|      |      |                    | TDE                         |
| 1    |      | 0.40               | Transmit DMA Enable         |
| 1    | RW   | 0x0                | 1'b0: Transmit DMA disabled |
|      |      |                    | 1'b1: Transmit DMA enabled  |
|      | RW   | V 0×0              | RDE                         |
| 0    |      |                    | Receive DMA Enable          |
| 0    |      |                    | 1'b0: Receive DMA disabled  |
|      |      |                    | 1'b1: Receive DMA enabled   |

#### SPI\_DMATDLR

#### Address: Operational Base + offset (0x0040)

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                 |
|------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:5 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                    |
| 4:0  | RW   | 0×00               | TDL<br>Transmit Data Level<br>This bit field controls the level at which a DMA request is made by<br>the transmit logic. It is equal to the watermark level; that is, the<br>dma_tx_req signal is generated when the number of valid data<br>entries in the transmit FIFO is equal to or below this field value,<br>and Transmit DMA Enable (DMACR[1]) = 1. |

### DMA Transmit Data Level

#### SPI\_DMARDLR

Address: Operational Base + offset (0x0044) DMA Receive Data Level

| Bit  | Attr | <b>Reset Value</b> | Description                                                         |
|------|------|--------------------|---------------------------------------------------------------------|
| 31:5 | RO   | 0x0                | reserved                                                            |
|      |      |                    | RDL                                                                 |
|      |      |                    | Receive Data Level                                                  |
|      |      |                    | This bit field controls the level at which a DMA request is made by |
| 4:0  | RW   | 0x00               | the receive logic. The watermark level = DMARDL+1; that is,         |
|      |      |                    | dma_rx_req is generated when the number of valid data entries       |
|      |      |                    | in the receive FIFO is equal to or above this field value + 1, and  |
|      |      |                    | Receive DMA Enable(DMACR[0])=1.                                     |

#### SPI\_TXDR

Address: Operational Base + offset (0x0048) Transmit FIFO Data

| Bit   | Attr | <b>Reset Value</b> | Description                                                   |
|-------|------|--------------------|---------------------------------------------------------------|
| 31:16 | RO   | 0x0                | reserved                                                      |
|       |      |                    | TXDR                                                          |
| 15:0  | WO   | 0x0000             | Transimt FIFO Data Register.                                  |
|       |      |                    | When it is written to, data are moved into the transmit FIFO. |

#### SPI\_RXDR

Address: Operational Base + offset (0x004c) Receive FIFO Data

| Bit   | Attr | <b>Reset Value</b> | Description                                                      |
|-------|------|--------------------|------------------------------------------------------------------|
| 31:16 | RO   | 0x0                | reserved                                                         |
|       |      |                    | RXDR                                                             |
| 15:0  | RW   | 0x0000             | Receive FIFO Data Register.                                      |
|       |      |                    | When the register is read, data in the receive FIFO is accessed. |

## **20.5 Interface Description**

| Module Pin | Direction | Pad Name                                                                                  | IOMUX Setting                     |
|------------|-----------|-------------------------------------------------------------------------------------------|-----------------------------------|
| spi0_clk   | I/O       | IO_SPIclkm0_GPIO2B0vccio5                                                                 | GRF_GPIO2B_IOMUX[1:0]=2'b<br>01   |
| spi0_rxd   | I         | IO_SPIrxdm0_GPIO2B2vccio5                                                                 | GRF_GPIO2B_IOMUX[5:4]=2'b<br>01   |
| spi0_txd   | 0         | IO_SPItxdm0_GPIO2B1vccio5                                                                 | GRF_GPIO2B_IOMUX[3:2]=2'b<br>01   |
| spi0_csn0  | I/O       | IO_SPIcsn0m0_GPIO2B3vccio5                                                                | GRF_GPIO2B_IOMUX[7:6]=2'b<br>01   |
| spi0_csn1  | 0         | IO_SPIcsn1m0_FLASHvol_sel_G<br>PIO2B4vccio5                                               | GRF_GPIO2B_IOMUX[9:8]=2'b<br>01   |
| spi1_clk   | I/O       | IO_FLASHcs1_SPIclkm1_GPIO3<br>C7vccio2                                                    | GRF_GPIO3C_IOMUX[15:14]=2<br>'b10 |
| spi1_rxd   | I         | IO_FLASHale_SPIrxdm1_GPIO3<br>D0vccio2                                                    | GRF_GPIO3D_IOMUX[1:0]=2'b<br>10   |
| spi1_txd   | 0         | IO_FLASHcle_SPItxdm1_GPIO3<br>D1vccio2                                                    | GRF_GPIO3D_IOMUX[3:2]=2′b<br>10   |
| spi1_csn0  | I/O       | IO_FLASHwrn_SPIcsn0m1_GPI<br>03D2vccio2                                                   | GRF_GPIO3D_IOMUX[5:4]=2'b<br>10   |
| spi1_csn1  | 0         | IO_FLASHcs0_SPIcsn1m1_GPIO<br>3Dvccio2                                                    | GRF_GPIO3D_IOMUX[7:6]=2'b<br>10   |
| spi2_clk   | I/O       | IO_TSPvalid_CIFvsync_SDMMC0EXTc<br>md_SPIclkm2_USB3PHYdebug1_I2S2<br>sclkm1_GPIO3A0vccio6 | GRF_GPIO3AL_IOMUX[2:0]=3'<br>b100 |
| spi2_rxd   | I         | IO_TSLclk_CIFclkin_SDMMC0EXTclko<br>ut_SPIrxdm2_USB3PHYdebug3_I2S2<br>sdim1_GPIO3A2vccio6 | GRF_GPIO3AL_IOMUX[5:3]=3'<br>b100 |
| spi2_txd   | 0         | IO_TSPfail_CIFhref_SDMMC0EXTdet_<br>SPItxdm2_USB3PHYdebug2_I2S2sdo<br>m1_GPIO3A1vccio6    | GRF_GPIO3AL_IOMUX[8:6]=3'<br>b100 |
| spi2_csn0  | I/O       | IO_TSPd4_CIFdata4_SPIcsn0m2_I2S<br>2lrcktxm1_USB3PHYdebug8_I2S2lrck<br>rxm1_GPIO3B0vccio6 | GRF_GPIO3BL_IOMUX[2:0]=3'<br>b011 |

Table 20-1 1SPI interface description

Notes: I=input, O=output, I/O=input/output, bidirectional. spi\_csn1 can only be used in master mode

# **20.6 Application Notes**

### **Clock Ratios**

A summary of the frequency ratio restrictions between the bit-rate clock (sclk\_out/sclk\_in) and the SPI peripheral clock (spi\_clk) are described as,

When SPI Controller works as master, the Fspi\_clk>= 2 × (maximum Fsclk\_out) When SPI Controller works as slave, the Fspi\_clk>= 6 × (maximum Fsclk\_in)

#### RK3328 TRM-Part1

#### **Master Transfer Flow**

When configured as a serial-master device, the SPI initiates and controls all serial transfers. The serial bit-rate clock, generated and controlled by the SPI, is driven out on the sclk\_out line. When the SPI is disabled (SPI\_ENR = 0), no serial transfers can occur and sclk\_out is held in "inactive" state, as defined by the serial protocol under which it operates.

#### **Slave Transfer Flow**

When the SPI is configured as a slave device, all serial transfers are initiated and controlled by the serial bus master.

When the SPI serial slave is selected during configuration, it enables its txd data onto the serial bus. All data transfers to and from the serial slave are regulated on the serial clock line (sclk\_in), driven from the serial-master device. Data are propagated from the serial slave on one edge of the serial clock line and sampled on the opposite edge.

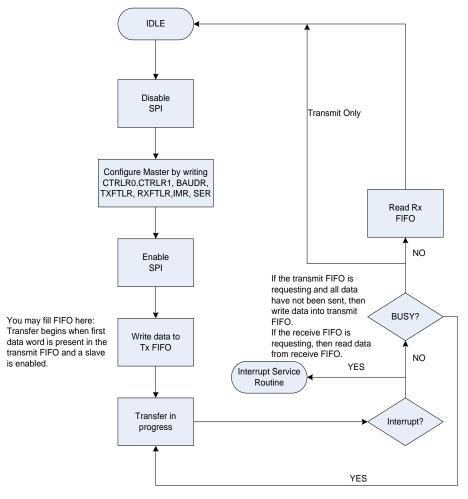



Fig. 20-7 SPI Master transfer flow diagram

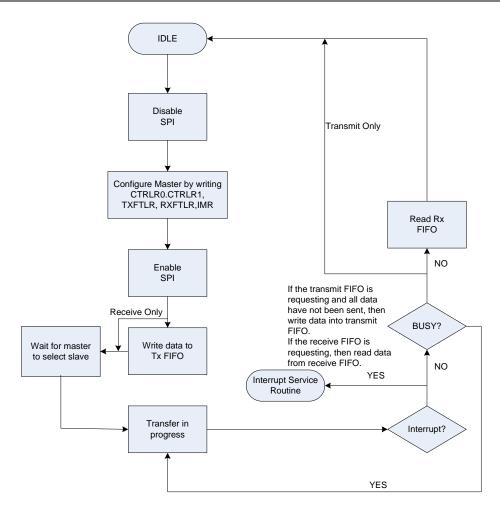



Fig. 20-8 SPI Slave transfer flow diagram

# **Chapter 21 SPDIF Transmitter**

## 21.1 Overview

The SPDIF transmitter is a self-clocking, serial and unidirectional interface for the interconnection of digital audio equipment in consumer and professional applications which uses linear PCM coded audio samples.

When used in professional application, the interface is primarily intended to carry monophonic or stereophonic programmes at a 48 kHz sampling frequency with a resolution of up to 24bits per sample. It may alternatively be used to carry signals sampled at 32 kHz or 44.1 kHz.

When used in consumer application, the interface is primarily intended to carry stereophonic programmes with a resolution of up to 20 bits per sample, an extension to 24 bits per sample being possible.

When used for other purposes, the interface is primarily intended to carry audio data coded other than linear PCM coded audio samples. Provision is also made to allow the interface to carry data related to computer software or signals coded using non-linear PCM. The

maximum sample frequency can be up to 192 kHz for the non-linear PCM mode.

In all cases, the clock references and auxiliary information are transmitted along with the programme.

- Supports one internal 32-bit wide and 32-location deep sample data buffer
- Supports two 16-bit audio data store together in one 32-bit wide location
- Supports AHB bus interface
- Supports biphase format stereo audio data output
- Supports DMA handshake interface and configurable DMA water level
- Supports sample data buffer empty, block terminate and user data interrupt
- Supports combine interrupt output
- Supports 16 to 31 bit audio data left or right justified in 32-bit wide sample data buffer
- Support 16, 20, 24 bits audio data transfer in linear PCM mode
- Support non-linear PCM transfer

# 21.2 Block Diagram

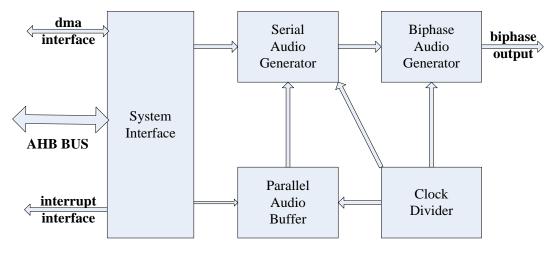



Fig.21-1 SPDIF transmitter Block Diagram

### System Interface

The system interface implements the AHB slave operation. It contains not only control registers of transmitters and receiver inside but also interrupt and DMA handshake interface.

#### **Clock Divider**

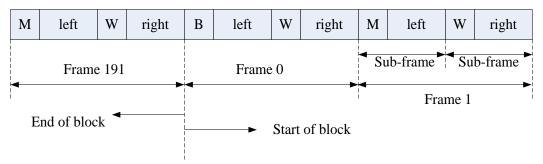
The Clock Divider implements clock generation function. The input source clock to the module is MCLK. By the divider of the module, the clock divider generates work clock for digital audio data transformation.

#### **Parallel Audio Buffer**

The Parallel Audio Buffer is the buffer to store transmitted audio data. The size of the FIFO is 32bits  $\times$  32.

#### Serial Audio Converter

The Serial Audio Converter reads parallel audio data from the Parallel Audio Buffer and converts it to serial audio data.


#### **Biphase Audio Generator**

The Biphase Audio Generator reads serial audio data from the Serial Audio Converter and generates biphase audio data based on IEC-60958 standard.

# **21.3 Function description**

## 21.3.1 Frame Format

A frame is uniquely composed of two sub-frames. For linear coded audio applications, the rate of transmission of frames corresponds exactly to the source sampling frequency. In the 2-channel operation mode, the samples taken from both channels are transmitted by time multiplexing in consecutive sub-frames. The first sub-frame(left channel in stereophonic operation and primary channel in monophonic operation) normally use preamble M. However, the preamble is changed to preamble B once every 192 frame to identify the start of the block structure used to organize the channel status information. The second sub-frame (right in stereophonic operation and secondary channel in monophonic operation) always use preamble W.



#### Fig.21-2 SPDIF Frame Format

In the single channel operation mode in a professional application, the frame format is the same as in the 2-channel mode. Data is carried only in the first sub-frame and may be duplicated in the second sub-frame. If the second sub-frame is not carrying duplicate data, then time slot 28 (validity flag) shall be set to logical '1' (not valid).

#### 21.3.2 Sub-frame Format

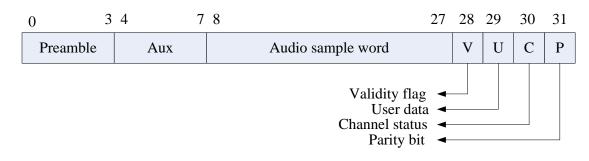



Fig.21-3 SPDIF Sub-frame Format

Each sub-frame is divided into 32 time slots, numbered from 0 to 31. Time slot 0 to 3 carries one of the three permitted preambles. Time slot 4 to 27 carry the audio sample word in linear 2's complement representation. The MSB is carried by time slot 27. When a 24-bit coding range is used, the LSB is in time slot 4. When a 20-bit coding range is used, time slot 8 to 27 carry the audio sample word with the LSB in time slot 8.Time slot 4 to 7 may be used for other application. Under these circumstances, the bits in the time slot 4 to 7 are designated auxiliary sample bits.

If the source provides fewer bits than the interface allows (either 24 or 20), the unused LSBs are set to a logical '0'. For a non-linear PCM audio application or a data application the main data field may carry any other information. Time slot 28 carries the validity flag associated with the main data field. Time slot 29 carries 1 bit of the user data associated with the audio channel transmitted in the same sub-frame. Time slot 30 carries one bit of the channel status words associated with the main data field channel transmitted in the same sub-frame. Time slot 31 carries a parity bit such that time slots 4 to 31 inclusive carries an even number of ones and an even number of zeros.

#### 21.3.3 Channel Coding

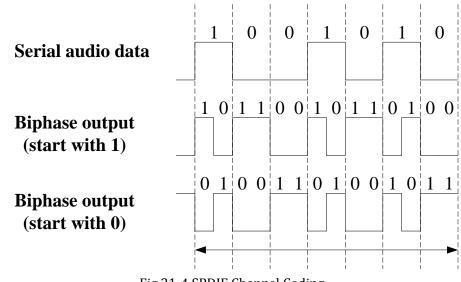
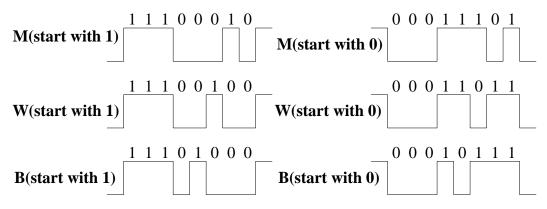



Fig.21-4 SPDIF Channel Coding

To minimize the direct current component on the transmission line, to facilitate clock recovery from the data stream and to make the interface insensitive to the polarity of connections, time slots 4 to 31 are encoded in biphase-mark.

Each bit to be transmitted is represented by a symbol comprising two consecutive binary states. The first state of a symbol is always different from the second state of the previous


symbol. The second state of the symbol is identical to the first if the bit to be transmitted is logical `0'.However, it is different from the first if the bit is logical `1'.

## 21.3.4 Preamble

Preambles are specific patterns providing synchronization and identification of the subframes and blocks.

To achieve synchronization within one sampling period and to make this process completely reliable, these patterns violate the biphase-mark code rules, thereby avoiding the possibility of data imitating the preambles.

A set of three preambles is used. These preambles are transmitted in the time allocated to four time slots (time slots 0 to 3) and are represented by eight successive states. The first state of the preamble is always different from the second state of the previous symbol.



#### Fig.21-5 SPDIF Preamble

Like biphase code, these preambles are dc free and provide clock recovery. They differ in at least two states from any valid biphase sequence.

## 21.3.5 NON-LINEAR PCM ENCODED SOURCE(IEC 61937)

The non-linear PCM encoded audio bitstream is transferred using the basic 16-bit data area of the IEC 60958subframes, i.e. in time slots 12 to 27. Each IEC 60958 frame transfers 32-bit of the non-PCM data in consumer application mode.

If the SPDIF bitstream conveys linear PCM audio, the symbol frequency is 64 times the PCM sampling frequency(32 time slots per PCM sample times two channels). If a non-linear PCM encoded audio bitstream is conveyed by the interface, the symbol frequency is 64 times the sampling rate of the encoded audio within that bitstream. But in the case where a non-linear PCM encoded audio bitstream is conveyed by the interface containing audio with low sampling frequency, the symbol frequency is 128 times the sampling rate of the encoded audio within that bitstream the sampling rate of the encoded frequency is 128 times the sampling rate of the encoded audio within that bitstream the sampling rate of the encoded frequency is 128 times the sampling rate of the encoded audio within that bitstream.

Each data burst contains a burst-preamble consisting of four 16-bit words (Pa, Pb, Pc, Pd), followed by the burst payload which contains data of an encoded audio frame.

The burst-preamble consists of four mandatory fields. Pa and Pb represent a

synchronization word. Pc gives information about the type of data and some

information/control for the receiver. Pd gives the length of the burst payload, the number of bits or number of bytes according to data-type.

The four preamble words are contained in two sequential SPDIF frames. The frame beginning the data-burst contains preamble word Pa in subframe 0 and Pb in subframe 1. The next frame contains Pc in subframe 0 and Pd in subframe 1. When placed into a SPDIF subframe, the MSB of a 16-bit burst-preamble is placed into timeslot 27 and the LSB is placed into time slot 12.

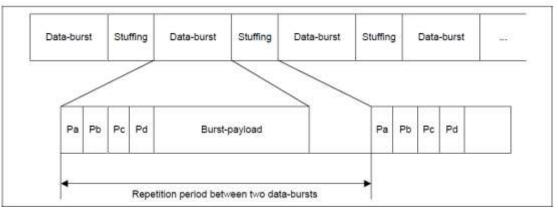



Fig.21-6 Format of Data-burst

# **21.4 Register description**

## 21.4.1 Register Summary

| Name                | Offset | Size | <b>Reset Value</b> | Description                        |
|---------------------|--------|------|--------------------|------------------------------------|
| SPDIF_CFGR          | 0x0000 | W    | 0x0000000          | Transfer Configuration Register    |
| SPDIF_SDBLR         | 0x0004 | W    | 0x0000000          | Sample Date Buffer Level Register  |
| SPDIF_DMACR         | 0x0008 | W    | 0x0000000          | DMA Control Register               |
| SPDIF_INTCR         | 0x000c | W    | 0x0000000          | Interrupt Control Register         |
| SPDIF_INTSR         | 0x0010 | W    | 0x0000000          | Interrupt Status Register          |
| SPDIF_XFER          | 0x0018 | W    | 0x00000000         | Transfer Start Register            |
| SPDIF_SMPDR         | 0x0020 | W    | 0x0000000          | Sample Data Register               |
| SPDIF_VLDFRn        | 0x0060 | W    | 0x0000000          | Validity Flag Register n           |
| SPDIF_USRDRn        | 0x0090 | W    | 0x00000000         | User Data Register n               |
| SPDIF_CHNSRn        | 0x00c0 | W    | 0x0000000          | Channel Status Register n          |
| SPDIF_BURTSINFO     | 0x0100 | W    | 0x00000000         | Channel Burst Info Register        |
| SPDIF_REPETTION     | 0x0104 | W    | 0x0000000          | Channel Repetition Register        |
| SPDIF_BURTSINFO_SHD | 0x0108 | W    | 0x0000000          | Shadow Channel Burst Info Register |
|                     | 0x010c | w    | 0x00000000         | Shadow Channel Repetition          |
| SPDIF_REPETTION_SHD | 020100 | vv   | 0x00000000         | Register                           |
| SPDIF_USRDR_SHDn    | 0x0190 | W    | 0x0000000          | Shadow User Data Register n        |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 21.4.2 Detail Register Description

#### SPDIF\_CFGR

Address: Operational Base + offset (0x0000) Transfer Configuration Register

| Bit   | Attr | <b>Reset Value</b> | Description                                         |
|-------|------|--------------------|-----------------------------------------------------|
| 31:24 | RO   | 0x0                | reserved                                            |
|       |      |                    | MCD                                                 |
|       |      |                    | mclk divider                                        |
| 23:16 | RW   | 0x00               | Fmclk/Fsdo                                          |
|       |      |                    | This parameter can be calculated by Fmclk/(Fs*128). |
|       |      |                    | Fs=the sample frequency be wanted                   |
| 15:9  | RO   | 0x0                | reserved                                            |

| Bit | Attr | Reset Value | Description                                                    |  |  |  |                   |
|-----|------|-------------|----------------------------------------------------------------|--|--|--|-------------------|
|     |      |             | РСМТҮРЕ                                                        |  |  |  |                   |
| 8   | RW   | 0x0         | PCM type                                                       |  |  |  |                   |
| 0   | RW   | UXU         | 0: linear PCM                                                  |  |  |  |                   |
|     |      |             | 1: non-linear PCM                                              |  |  |  |                   |
|     |      |             | CLR                                                            |  |  |  |                   |
| 7   | WO   | 0x0         | mclk domain logic clear                                        |  |  |  |                   |
|     |      |             | Write 1 to clear mclk domain logic. Read return zero.          |  |  |  |                   |
|     |      |             | CSE                                                            |  |  |  |                   |
|     |      |             | Channel status enable                                          |  |  |  |                   |
| 6   | RW   | 0x0         | 0: disable                                                     |  |  |  |                   |
| 0   | 1    | 0.00        | 1: enable                                                      |  |  |  |                   |
|     |      |             | The bit should be set to 1 when the channel conveys non-linear |  |  |  |                   |
|     |      |             | PCM                                                            |  |  |  |                   |
|     |      |             | UDE                                                            |  |  |  |                   |
| 5   | RW   | 0x0         | User data enable                                               |  |  |  |                   |
| 5   | 1    | 0.00        | 0: disable                                                     |  |  |  |                   |
|     |      |             | 1: enable                                                      |  |  |  |                   |
|     |      | / 0x0       | VFE                                                            |  |  |  |                   |
| 4   | RW   |             | Validity flag enable                                           |  |  |  |                   |
| -   |      |             | 0: disable                                                     |  |  |  |                   |
|     |      |             | 1: enable                                                      |  |  |  |                   |
|     |      |             | ADJ                                                            |  |  |  |                   |
| 3   | RW   | 0x0         | audio data justified                                           |  |  |  |                   |
|     |      |             | 0: Right justified                                             |  |  |  |                   |
|     |      |             |                                                                |  |  |  | 1: Left justified |
|     |      |             | HWT                                                            |  |  |  |                   |
|     |      |             | Halfword word transform enable                                 |  |  |  |                   |
| 2   | RW   | 0x0         | 0: disable                                                     |  |  |  |                   |
|     |      |             | 1: enable                                                      |  |  |  |                   |
|     |      |             | It is valid only when the valid data width is 16bit.           |  |  |  |                   |
|     |      |             | VDW                                                            |  |  |  |                   |
|     |      |             | Valid data width                                               |  |  |  |                   |
|     |      |             | 00: 16bit                                                      |  |  |  |                   |
| 1:0 | RW   | 0x0         | 01: 20bit                                                      |  |  |  |                   |
|     |      |             | 10: 24bit                                                      |  |  |  |                   |
|     |      |             | 11: reserved                                                   |  |  |  |                   |
|     |      |             | The valid data width is 16bit only for non-linear PCM          |  |  |  |                   |

### SPDIF\_SDBLR

Address: Operational Base + offset (0x0004)

Sample Date Buffer Level Register

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
| 31:6 | RO   | 0x0                | reserved    |

#### RK3328 TRM-Part1

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                           |
|-----|------|--------------------|-----------------------------------------------------------------------------------------------------------------------|
| 5:0 | RW   | 0x00               | SDBLR<br>Sample Date Buffer Level Register<br>Contains the number of valid data entries in the sample data<br>buffer. |

## SPDIF\_DMACR

Address: Operational Base + offset (0x0008)

DMA Control Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                          |
|------|------|--------------------|----------------------------------------------------------------------|
| 31:6 | RO   | 0x0                | reserved                                                             |
|      |      |                    | TDE                                                                  |
| 5    | RW   | 0.20               | Transmit DMA Enable                                                  |
| 5    | K VV | 0×0                | 0: Transmit DMA disabled                                             |
|      |      |                    | 1: Transmit DMA enabled                                              |
|      | RW   | RW 0x00            | TDL                                                                  |
|      |      |                    | Transmit Data Level                                                  |
|      |      |                    | This bit field controls the level at which a DMA request is made by  |
| 4:0  |      |                    | the transmit logic. It is equal to the watermark level; that is, the |
|      |      |                    | dma_tx_req signal is generated when the number of valid data         |
|      |      |                    | entries in the Sample Date Buffer is equal to or below this field    |
|      |      |                    | value                                                                |

## SPDIF\_INTCR

Address: Operational Base + offset (0x000c)

| Interrupt Control | Register |
|-------------------|----------|
|-------------------|----------|

| Bit   | Attr | <b>Reset Value</b> | Description                                      |
|-------|------|--------------------|--------------------------------------------------|
| 31:18 | RO   | 0x0                | reserved                                         |
|       | W1   |                    | UDTIC                                            |
| 17    | ~    | 0x0                | User Data Interrupt Clear                        |
|       | C    |                    | Write '1' to clear the user data interrupt.      |
|       | W1   |                    | BTTIC                                            |
| 16    |      | 0×0                | Block/Data burst transfer finish interrupt clear |
|       | C    |                    | Write 1 to clear the interrupt.                  |
| 15:10 | RO   | 0x0                | reserved                                         |
|       |      | W 0x00             | SDBT                                             |
| 9:5   | RW   |                    | Sample Date Buffer Threshold                     |
|       |      |                    | Sample Date Buffer Threshold for empty interrupt |
|       |      |                    | SDBEIE                                           |
| 1     |      | 0.40               | Sample Date Buffer empty interrupt enable        |
| 4     | RW   | 0x0                | 0: disable                                       |
|       |      |                    | 1: enable                                        |

| Bit | Attr                                                                                                                                                                                                                                                                                         | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | RW 0x0<br>BTTIE<br>Block transfer/repetition period end interrupt enable<br>When enabled, an interrupt will be asserted when the block<br>transfer is finished if the channel conveys linear PCM or wh<br>repetition period is reached if the channel conveys non-line<br>PCM.<br>0: disable |                    | Block transfer/repetition period end interrupt enable<br>When enabled, an interrupt will be asserted when the block<br>transfer is finished if the channel conveys linear PCM or when the<br>repetition period is reached if the channel conveys non-linear<br>PCM. |
| 2   | RW                                                                                                                                                                                                                                                                                           | 0×0                | UDTIE<br>User Data Interrupt<br>0: disable<br>1: enable<br>If enabled, an interrupt will be asserted when the content of the<br>user data register is fed into the corresponding shadow register                                                                    |
| 1:0 | RO                                                                                                                                                                                                                                                                                           | 0x0                | reserved                                                                                                                                                                                                                                                            |

#### SPDIF\_INTSR

Address: Operational Base + offset (0x0010) Interrupt Status Register

| Bit  | Attr | Reset Value | Description                                |
|------|------|-------------|--------------------------------------------|
| 31:5 | RO   | 0x0         | reserved                                   |
|      |      |             | SDBEIS                                     |
| 4    | RW   | 0x0         | Sample Date Buffer empty interrupt status  |
| 4    | ĸw   | 0.00        | 0: inactive                                |
|      |      |             | 1: active                                  |
|      |      | 0×0         | BTTIS                                      |
| 3    | RW   |             | Block/Data burst transfer interrupt status |
| 5    | ĸw   |             | 0: inactive                                |
|      |      |             | 1: active                                  |
|      |      |             | UDTIS                                      |
| 2    | RW   | 0×0         | User Data Interrupt Status                 |
| 2    | r vv |             | 0: inactive                                |
|      |      |             | 1: active                                  |
| 1:0  | RO   | 0x0         | reserved                                   |

#### SPDIF\_XFER

Address: Operational Base + offset (0x0018) Transfer Start Register

| Bit  | Attr | <b>Reset Value</b> | Description             |
|------|------|--------------------|-------------------------|
| 31:1 | RO   | 0x0                | reserved                |
|      |      |                    | XFER                    |
| 0    | RW   | 0x0                | Transfer Start Register |
|      |      |                    | Transfer Start Register |

#### SPDIF\_SMPDR

Address: Operational Base + offset (0x0020) Sample Data Register

| Bit  | Attr | <b>Reset Value</b> | Description          |
|------|------|--------------------|----------------------|
|      |      |                    | SMPDR                |
| 31:0 | RW   | 0x00000000         | Sample Data Register |
|      |      |                    | Sample Data Register |

#### SPDIF\_VLDFRn

Address: Operational Base + offset (0x0060) Validity Flag Register n

| Bit   | Attr | <b>Reset Value</b> | Description                  |
|-------|------|--------------------|------------------------------|
|       |      |                    | VLDFR_SUB_1                  |
| 31:16 | RW   | 0x0000             | Validity Flag Subframe 1     |
|       |      |                    | Validity Flag Register 0     |
|       |      |                    | VLDFR_SUB_0                  |
| 15:0  | RW   | 0x0000             | Validity Flag Subframe 0     |
|       |      |                    | Validity Flag for Subframe 0 |

#### SPDIF\_USRDRn

Address: Operational Base + offset (0x0090) User Data Register n

| Bit   | Attr | <b>Reset Value</b> | Description                  |
|-------|------|--------------------|------------------------------|
|       |      |                    | USR_SUB_1                    |
| 31:16 | RW   | 0x0000             | User Data Subframe 1         |
|       |      |                    | User Data Bit for Subframe 1 |
|       |      |                    | USR_SUB_0                    |
| 15:0  | RW   | 0x0000             | User Data Subframe 0         |
|       |      |                    | User Data Bit for Subframe 0 |

#### SPDIF\_CHNSRn

Address: Operational Base + offset (0x00c0) Channel Status Register n

| Bit   | Attr | <b>Reset Value</b> | Description                       |
|-------|------|--------------------|-----------------------------------|
|       |      |                    | CHNSR_SUB_1                       |
| 31:16 | RW   | 0x0000             | Channel Status Subframe 1         |
|       |      |                    | Channel Status Bit for Subframe 1 |
|       |      |                    | CHNSR_SUB_0                       |
| 15:0  | RW   | 0x0000             | Channel Status Subframe 0         |
|       |      |                    | Channel Status Bit for Subframe 0 |

#### SPDIF\_BURTSINFO

Address: Operational Base + offset (0x00d0) Channel Burst Info Register

| Bit   | Attr | Reset Value | Description                                                      |
|-------|------|-------------|------------------------------------------------------------------|
|       |      |             | PD                                                               |
| 31:16 | DW   | 0x0000      | pd                                                               |
| 51.10 |      | 0,0000      | Preamble Pd for non-linear pcm, indicating the length of burst   |
|       |      |             | payload in unit of bytes or bits.                                |
|       |      |             | BSNUM                                                            |
| 15:13 | DW   | / 0x0       | Bitstream Number                                                 |
| 15.15 | κ.vv |             | This field indicates the bitstream number. Usually the bitstream |
|       |      |             | number is 0.                                                     |
|       | RW   | W 0×00      | DATAINFO                                                         |
| 12:8  |      |             | Data-type-dependent info                                         |
|       |      |             | This field gives the data-type-dependent info                    |
|       |      |             | ERRFLAG                                                          |
| 7     | RW   |             | Error Flag                                                       |
| /     | r vv | 0x0         | 0: indicates a valid burst-payload                               |
|       |      |             | 1: indicates that the burst-payload may contain errors           |

| Bit | Attr | Reset Value | Description                                                   |
|-----|------|-------------|---------------------------------------------------------------|
|     |      |             | DATATYPE                                                      |
|     |      |             | Data type                                                     |
|     |      |             | 0000000: null data                                            |
|     |      |             | 0000001: AC-3 data                                            |
|     |      |             | 0000011: Pause data                                           |
|     |      |             | 0000100: MPEG-1 layer 1 data                                  |
|     |      |             | 0000101: MPEG-1 layer 2 or 3 data or MPEG-2 without extension |
|     |      |             | 0000110: MPEG-2 data with extension                           |
|     |      |             | 0000111: MPEG-2 AAC                                           |
|     |      |             | 0001000: MPEG-2, layer-1 low sampling frequency               |
|     |      |             | 0001001: MPEG-2, layer-2 low sampling frequency               |
|     |      |             | 0001010: MPEG-2, layer-3 low sampling frequency               |
|     | RW   |             | 0001011: DTS type I                                           |
|     |      |             | 0001100: DTS type II                                          |
|     |      |             | 0001101: DTS type III                                         |
|     |      |             | 0001110: ATRAC                                                |
| 6:0 |      | 0x00        | 0001111: ATRAC 2/3                                            |
| 0.0 | 1    | 0.00        | 0010000: ATRAC-X                                              |
|     |      |             | 0010001: DTS type IV                                          |
|     |      |             | 0010010: WMA professional type I                              |
|     |      |             | 0110010: WMA professional type II                             |
|     |      |             | 1010010: WMA professional type III                            |
|     |      |             | 1110010: WMA professional type IV                             |
|     |      |             | 0010011: MPEG-2 AAC low sampling frequency                    |
|     |      |             | 0110011: MPEG-2 AAC low sampling frequency                    |
|     |      |             | 1010011: MPEG-2 AAC low sampling frequency                    |
|     |      |             | 1110011: MPEG-2 AAC low sampling frequency                    |
|     |      |             | 0010100: MPEG-4 AAC                                           |
|     |      |             | 0110100: MPEG-4 AAC                                           |
|     |      |             | 1010100: MPEG-4 AAC                                           |
|     |      |             | 1110100: MPEG-4 AAC                                           |
|     |      |             | 0010101: Enhanced AC-3                                        |
|     |      |             | 0010110: MAT                                                  |
|     |      |             | others: reserved                                              |

### SPDIF\_REPETTION

Address: Operational Base + offset (0x0104) Channel Repetition Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                     |
|-------|------|--------------------|-----------------------------------------------------------------|
| 31:16 | RO   | 0x0                | reserved                                                        |
|       |      | 0×0000             | REPETTION                                                       |
| 15:0  | RW   |                    | Repetition                                                      |
| 15.0  |      |                    | This define the repetition period when the channel conveys non- |
|       |      |                    | linear PCM                                                      |

### SPDIF\_BURTSINFO\_SHD

Address: Operational Base + offset (0x0108) Shadow Channel Burst Info Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                      |
|-------|------|--------------------|------------------------------------------------------------------|
|       |      |                    | PD                                                               |
| 31:16 |      | 0x0000             | pd                                                               |
| 51:10 | RU   | 00000              | Preamble Pd for non-linear pcm, indicating the length of burst   |
|       |      |                    | payload in unit of bytes or bits.                                |
|       |      |                    | BSNUM                                                            |
| 15.12 |      | 0×0                | Bitstream Number                                                 |
| 15:13 | RU   |                    | This field indicates the bitstream number. Usually the birstream |
|       |      |                    | number is 0.                                                     |
|       | RO   | C 0x00             | DATAINFO                                                         |
| 12:8  |      |                    | Data-type-dependent info                                         |
|       |      |                    | This field gives the data-type-dependent info                    |
|       |      |                    | ERRFLAG                                                          |
| _     |      |                    | Error Flag                                                       |
| 7     | RO   | 0x0                | 0: indicates a valid burst-payload                               |
|       |      |                    | 1: indicates that the burst-payload may contain errors           |

| Bit | Attr | Reset Value | Description                                                   |
|-----|------|-------------|---------------------------------------------------------------|
|     |      |             | DATATYPE                                                      |
|     |      |             | Data type                                                     |
|     |      |             | 0000000: null data                                            |
|     |      |             | 0000001: AC-3 data                                            |
|     |      |             | 0000011: Pause data                                           |
|     |      |             | 0000100: MPEG-1 layer 1 data                                  |
|     |      |             | 0000101: MPEG-1 layer 2 or 3 data or MPEG-2 without extension |
|     |      |             | 0000110: MPEG-2 data with extension                           |
|     |      |             | 0000111: MPEG-2 AAC                                           |
|     |      |             | 0001000: MPEG-2, layer-1 low sampling frequency               |
|     |      |             | 0001001: MPEG-2, layer-2 low sampling frequency               |
|     |      |             | 0001010: MPEG-2, layer-3 low sampling frequency               |
|     | RO   |             | 0001011: DTS type I                                           |
|     |      |             | 0001100: DTS type II                                          |
|     |      |             | 0001101: DTS type III                                         |
|     |      |             | 0001110: ATRAC                                                |
| 6:0 |      | 0x00        | 0001111: ATRAC 2/3                                            |
|     |      |             | 0010000: ATRAC-X                                              |
|     |      |             | 0010001: DTS type IV                                          |
|     |      |             | 0010010: WMA professional type I                              |
|     |      |             | 0110010: WMA professional type II                             |
|     |      |             | 1010010: WMA professional type III                            |
|     |      |             | 1110010: WMA professional type IV                             |
|     |      |             | 0010011: MPEG-2 AAC low sampling frequency                    |
|     |      |             | 0110011: MPEG-2 AAC low sampling frequency                    |
|     |      |             | 1010011: MPEG-2 AAC low sampling frequency                    |
|     |      |             | 1110011: MPEG-2 AAC low sampling frequency                    |
|     |      |             | 0010100: MPEG-4 AAC                                           |
|     |      |             | 0110100: MPEG-4 AAC                                           |
|     |      |             | 1010100: MPEG-4 AAC                                           |
|     |      |             | 1110100: MPEG-4 AAC                                           |
|     |      |             | 0010101: Enhanced AC-3                                        |
|     |      |             | 0010110: MAT                                                  |
|     |      |             | others: reserved                                              |

#### SPDIF\_REPETTION\_SHD

Address: Operational Base + offset (0x010c) Shadow Channel Repetition Register

| Bit   | Attr | <b>Reset Value</b> | Description |
|-------|------|--------------------|-------------|
| 31:16 | RO   | 0x0                | reserved    |

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                               |
|------|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:0 | RO   | 0×0000             | REPETTION<br>Repetition<br>This register provides the repetition of the bitstream when<br>channel conveys non-linear PCM. In the design, it is define the<br>length bwtween Pa of the two consecutive data-burst. For the |
|      |      |                    | same audio format, the definition is different. Please convert the actual repetition in order to comply with the design.                                                                                                  |

#### SPDIF\_USRDR\_SHDn

Address: Operational Base + offset (0x0190) Shadow User Data Register n

| Bit   | Attr | <b>Reset Value</b> | Description                  |
|-------|------|--------------------|------------------------------|
| 31:16 | RO   | 0×0000             | USR_SUB_1                    |
|       |      |                    | User Data Subframe 1         |
|       |      |                    | User Data Bit for Subframe 1 |
| 15:0  | RO   | 0x0000             | USR_SUB_0                    |
|       |      |                    | User Data Subframe 0         |
|       |      |                    | User Data Bit for Subframe 0 |

## **21.5 Interface description**

Table 21-1 SPDIF Interface Description

| Module Pin    | Direction | Pad Name                   | IOMUX Setting                 |
|---------------|-----------|----------------------------|-------------------------------|
| spdif_8ch_sdo | 0         | IO_SPDIFtx_GPIO3d3         | GRF_GPIO3D_IOMUX[7:6]=2'b01   |
| spdif_8ch_sdo | 0         | IO_TESTCLKout1_SPDIF1tx_GP | GRF_GPIO3D_IOMUX[15:14]=2'b10 |
|               |           | IO3d7                      |                               |

The output of SPDIF module which signals as spdif\_8ch\_sdo is also connected to the audio interface of HDMI.

| Module Pin     | Direction | Module Pin | Direction |
|----------------|-----------|------------|-----------|
| mclk_spdif_8ch | 0         | ispdifclk  | I         |
| spdif_8ch_sdo  | 0         | ispdifdata | I         |

# **21.6 Application Notes**

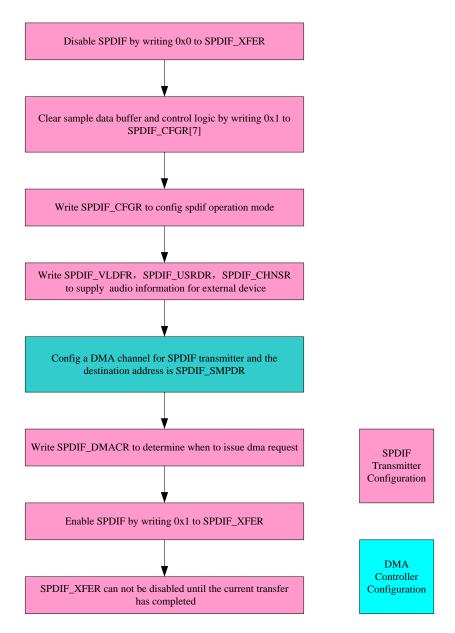



Fig.21-7 SPDIF transmitter operation flow chart

## 21.6.1 Channel Status Bit and Validity Flag Bit

Normally the channel status bits and validity flag bits are not necessarily updated frequently. If it is desired to change the channel status bits or validity flag, please write to the corresponding register after a block termination interrupt is asserted. The new value will take effect immediately.

### 21.6.2 User Data Bit

As the user data bits are updated frequently, the design takes use of the shadow register mechanism to store and convey the user data bit. When the SPDIF interface is disabled, the values of the shadow user data registers keeps the same with the corresponding user data registers. After the SPDIF starts, any change of the user data register will not go to the corresponding shadow user data registers until an user data interrupt is asserted. Therefore before the SPDIF transfer starts, prepare the first 384 user data bits by writing them to the SPDIF\_USRDR registers. After the SPDIF transfer starts, writing the second

384 user data bits to the SPDIF\_USRDR registers. Then wait for the assertion of user data interrupt. The second 384 user data bits goes to the shadow registers, and then third 384 user bits are written to SPDIF\_USRDR.

## 21.6.3 Burst Info and Repetition

The shadow register mechanism is also applied to the data of burst info and repetition as the user data. The difference is that the update of shadow register will be taken after assertion of the block termination interrupt.

It is important to note that the repetition defined in the design is a little different from the repetition defined in IEC-61957. The repetition is always defined as the length (measured in IEC-60958 frame) between Pa of two consecutive data-bursts. Therefore the user needs to calculate the new repetition value if the definition of the repetition is different for some audio formats such as AC-3.

# **Chapter 22 GMAC Ethernet Interface**

## 22.1 Overview

The GMAC Ethernet Controller provides a complete Ethernet interface from processor to a Reduced Media Independent Interface (RMII) and Reduced Gigabit Media Independent Interface (RGMII) compliant Ethernet PHY.

The GMAC includes a DMA controller. The DMA controller efficiently moves packet data from microprocessor's RAM, formats the data for an IEEE 802.3-2002 compliant packet and transmits the data to an Ethernet Physical Interface (PHY). It also efficiently moves packet data from RXFIFO to microprocessor's RAM.

## 22.1.1 Feature

- Supports 10/100/1000-Mbps data transfer rates with the RGMII interfaces
- Supports 10/100-Mbps data transfer rates with the RMII interfaces
- Supports both full-duplex and half-duplex operation
  - Supports CSMA/CD Protocol for half-duplex operation
  - Supports packet bursting and frame extension in 1000 Mbps half-duplex operation
  - Supports IEEE 802.3x flow control for full-duplex operation
  - Optional forwarding of received pause control frames to the user application in fullduplex operation
  - Back-pressure support for half-duplex operation
  - Automatic transmission of zero-quanta pause frame on de-assertion of flow control input in full-duplex operation
- Preamble and start-of-frame data (SFD) insertion in Transmit, and deletion in Receive paths
- Automatic CRC and pad generation controllable on a per-frame basis
- Options for Automatic Pad/CRC Stripping on receive frames
- Programmable frame length to support Standard Ethernet frames
- Programmable InterFrameGap (40-96 bit times in steps of 8)
- Supports a variety of flexible address filtering modes:
  - 64-bit Hash filter (optional) for multicast and uni-cast (DA) addresses
  - Option to pass all multicast addressed frames
  - Promiscuous mode support to pass all frames without any filtering for network monitoring
  - Passes all incoming packets (as per filter) with a status report
- Separate 32-bit status returned for transmission and reception packets
- Supports IEEE 802.1Q VLAN tag detection for reception frames
- MDIO Master interface for PHY device configuration and management
- Support detection of LAN wake-up frames and AMD Magic Packet frames
- Support checksum off-load for received IPv4 and TCP packets encapsulated by the Ethernet frame
- Support checking IPv4 header checksum and TCP, UDP, or ICMP checksum encapsulated in IPv4 or IPv6 datagrams
- Comprehensive status reporting for normal operation and transfers with errors
- Support per-frame Transmit/Receive complete interrupt control
- Supports 4-KB receive FIFO depths on reception.
- Supports 2-KB FIFO depth on transmission
- Automatic generation of PAUSE frame control or backpressure signal to the GMAC core based on Receive FIFO-fill (threshold configurable) level
- Handles automatic retransmission of Collision frames for transmission
- Discards frames on late collision, excessive collisions, excessive deferral and underrun conditions
- AXI interface to any CPU or memory
- Software can select the type of AXI burst (fixed and variable length burst) in the AXI

Master interface

- Supports internal loopback on the RGMII/RMII for debugging
- Debug status register that gives status of FSMs in Transmit and Receive data-paths and FIFO fill-levels.

# 22.2 Block Diagram

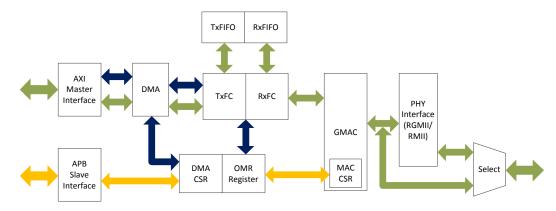



Table 22-1 GMACArchitecture

The GMAC is broken up into multiple separate functional units. These blocks are interconnected in the MAC module. The block diagram shows the general flow of data and control signals between these blocks.

The GMAC transfers data to system memory through the AXI master interface. The host CPU uses the APB Slave interface to access the GMAC subsystem's control and status registers (CSRs).

The GMAC supports the PHY interfaces of reduced GMII (RGMII) and reduced MII (RMII). The Transmit FIFO (Tx FIFO) buffers data read from system memory by the DMA before transmission by the GMAC Core. Similarly, the Receive FIFO (Rx FIFO) stores the Ethernet frames received from the line until they are transferred to system memory by the DMA. These are asynchronous FIFOs, as they also transfer the data between the application clock and the GMAC line clocks.

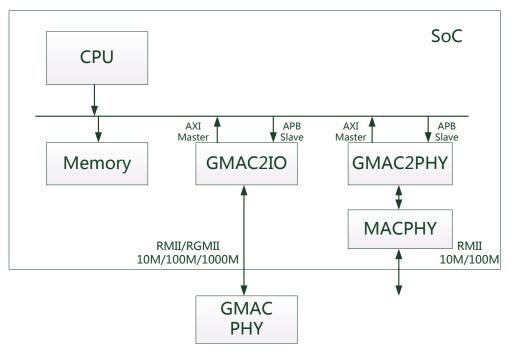



Fig.22-1 GMAC Architecture

#### RK3328 TRM-Part1

There are two independent GMAC controllers named GMAC2IO and GMAC2PHY:

- GMAC2IO Supports 10/100/1000-Mbps data transfer rates with the RGMII interfaces and Supports 10/100-Mbps data transfer rates with the RMII interfaces
- GMAC2PHY Supports 10/100-Mbps data transfer rates with the RMII interfaces

## **22.3 Function Description**

### 22.3.1 Frame Structure

Data frames transmitted shall have the frame format shown in Fig. 25-2.

<inter-frame preamble sfd data efd</pre>

Fig.22-2 MAC Block Diagram

The preamble <preamble> begins a frame transmission. The bit value of the preamble field consists of 7 octets with the following bit values:

10101010 10101010 10101010 10101010 10101010 10101010 10101010

The SFD (start frame delimiter) <sfd> indicates the start of a frame and follows the preamble. The bit value is 10101011.

The data in a well formed frame shall consist of N octet's data.

## 22.3.2 RMII Interface timing diagram

The Reduced Media Independent Interface (RMII) specification reduces the pin count between Ethernet PHYs and Switch ASICs (only in 10/100 mode). According to the IEEE 802.3u standard, an MII contains 16 pins for data and control. In devices incorporating multiple MAC or PHY interfaces (such as switches), the number of pins adds significant cost with increase in port count. The RMII specification addresses this problem by reducing the pin count to 7 for each port - a 62.5% decrease in pin count.

The RMII module is instantiated between the GMAC and the PHY. This helps translation of the MAC's MII into the RMII. The RMII block has the following characteristics:

- Supports 10-Mbps and 100-Mbps operating rates. It does not support 1000-Mbps operation.
- Two clock references are sourced externally or CRU, providing independent, 2-bit wide transmit and receive paths.

#### **Transmit Bit Ordering**

Each nibble from the MII must be transmitted on the RMII a di-bit at a time with the order of di-bit transmission shown in Fig.1-3. The lower order bits (D1 and D0) are transmitted first followed by higher order bits (D2 and D3).

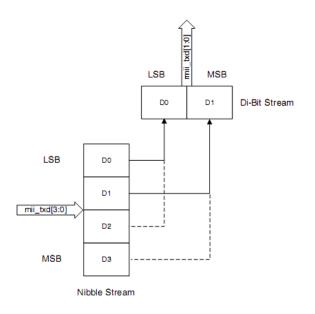
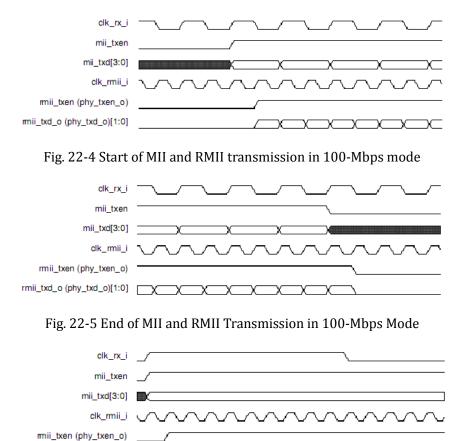




Fig.22-3 RMII transmission bit ordering

### **RMII Transmit Timing Diagrams**

Fig.1-4 through 1-7 show MII-to-RMII transaction timing.The clk\_rmii\_i (REF\_CLK) frequency is 50MHz in RMII interface.In 10Mb/s mode, as the REF\_CLK frequency is 10 times as the data rate, the value on rmii\_txd\_o[1:0] (TXD[1:0]) shall be valid such that TXD[1:0] may be sampled every 10th cycle,regard-less of the starting cycle within the group and yield the correct frame data.





 $\Gamma$ 

mii\_txd\_o (phy\_txd\_o)[1:0]

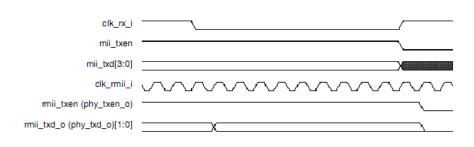



Fig. 22-7 End of MII and RMII Transmission in 10-Mbps Mode

### **Receive Bit Ordering**

Each nibble is transmitted to the MII from the di-bit received from the RMII in the nibble transmission order shown in Fig.1-8. The lower order bits (D0 and D1) are received first, followed by the higher order bits (D2 and D3).

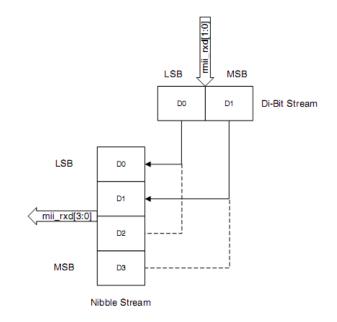



Fig. 22-8 RMII receive bit ordering

# 22.3.3 RGMII interface

The Reduced Gigabit Media Independent Interface (RGMII) specification reduces the pin count of the interconnection between the GMAC 10/100/1000 controller and the PHY for GMII and MII interfaces. To achieve this, the data path and control signals are reduced and multiplexed together with both the edges of the transmission and receive clocks. For gigabit operation the clocks operate at 125 MHz; for 10/100 operation, the clock rates are 2.5 MHz/25 MHz.

In the GMAC 10/100/1000 controller, the RGMII module is instantiated between the GMAC core's GMII and the PHY to translate the control and data signals between the GMII and RGMII protocols.

The RGMII block has the following characteristics:

- Supports 10-Mbps, 100-Mbps, and 1000-Mbps operation rates.
- For the RGMII block, no extra clock is required because both the edges of the incoming clocks are used.
- The RGMII block extracts the in-band (link speed, duplex mode and link status) status signals from the PHY and provides them to the GMAC core logic for link detection.

# 22.3.4 Management Interface

The MAC management interface provides a simple, two-wire, serial interface to connect the GMAC and a managed PHY, for the purposes of controlling the PHY and gathering status from the PHY. The management interface consists of a pair of signals that transport the management information across the MII bus: MDIO and MDC.

The GMAC initiates the management write/read operation. The clock gmii\_mdc\_o(MDC) is a divided clock from the application clock pclk\_gmac. The divide factor depends on the clock range setting in the GMII address register. Clock range is set as follows:

| Selection  | pclk_gmac   | MDC Clock     |
|------------|-------------|---------------|
| 0000       | 60-100 MHz  | pclk_gmac/42  |
| 0001       | 100-150 MHz | pclk_gmac/62  |
| 0010       | 20-35 MHz   | pclk_gmac/16  |
| 0011       | 35-60 MHz   | pclk_gmac/26  |
| 0100       | 150-250 MHz | pclk_gmac/102 |
| 0101       | 250-300 MHz | pclk_gmac/124 |
| 0110, 0111 | Reserved    |               |

The MDC is the derivative of the application clock pclk\_gmac. The management operation is performed through the gmii\_mdi\_i, gmii\_mdo\_o and gmii\_mdo\_o\_e signals. A three-state buffer is implemented in the PAD.

The frame structure on the MDIO line is shown below.

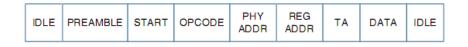



Fig. 22-9 MDIO frame structure

IDLE: The mdio line is three-state; there is no clock on gmii\_mdc\_o

PREAMBLE: 32 continuous bits of value 1

| START: | Start-of-frame is 2'b01 |
|--------|-------------------------|
|        |                         |

OPCODE: 2'b10 for read and 2'b01 for write

PHY ADDR: 5-bit address select for one of 32 PHYs

REG ADDR: Register address in the selected PHY

- TA: Turnaround is 2'bZ0 for read and 2'b10 for Write
- DATA: Any 16-bit value. In a write operation, the GMAC drives mdio; in a read operation, PHY drives it.

### 22.3.5 Power Management Block

Power management (PMT) supports the reception of network (remote) wake-up frames and Magic Packet frames. PMT does not perform the clock gate function, but generates interrupts for wake-up frames and Magic Packets received by the GMAC. The PMT block sits on the receiver path of the GMAC and is enabled with remote wake-up frame enable and Magic Packet enable. These enables are in the PMT control and status register and are programmed by the application.

When the power down mode is enabled in the PMT, then all received frames are dropped by the core and they are not forwarded to the application. The core comes out of the power down mode only when either a Magic Packet or a Remote Wake-up frame is received and the corresponding detection is enabled.

### **Remote Wake-Up Frame Detection**

When the GMAC is in sleep mode and the remote wake-up bit is enabled in register GMAC\_PMT\_CTRL\_STA (0x002C), normal operation is resumed after receiving a remote wake-up frame. The application writes all eight wake-up filter registers, by performing a sequential write to address (0028). The application enables remote wake-up by writing a 1 to bit 2 of the register GMAC\_PMT\_CTRL\_STA.

PMT supports four programmable filters that allow support of different receive frame patterns. If the incoming frame passes the address filtering of Filter Command, and if Filter CRC-16 matches the incoming examined pattern, then the wake-up frame is received. Filter\_offset (minimum value 12, which refers to the 13th byte of the frame) determines the offset from which the frame is to be examined. Filter Byte Mask determines which bytes of the frame must be examined. The thirty-first bit of Byte Mask must be set to zero. The remote wake-up CRC block determines the CRC value that is compared with Filter CRC-16. The wake-up frame is checked only for length error, FCS error, dribble bit error, GMII error, collision, and to ensure that it is not a runt frame. Even if the wake-up frame is more than 512 bytes long, if the frame has a valid CRC value, it is considered valid. Wake-up frame detection is updated in the register GMAC\_PMT\_CTRL\_STA for every remote Wake-up frame received. A PMT interrupt to the application triggers a read to the GMAC\_PMT\_CTRL\_STA register to determine reception of a wake-up frame.

#### **Magic Packet Detection**

The Magic Packet frame is based on a method that uses Advanced Micro Device's Magic Packet technology to power up the sleeping device on the network. The GMAC receives a specific packet of information, called a Magic Packet, addressed to the node on the network.

Only Magic Packets that are addressed to the device or a broadcast address will be checked to determine whether they meet the wake-up requirements. Magic Packets that pass the address filtering (unicast or broadcast) will be checked to determine whether they meet the remote Wake-on-LAN data format of 6 bytes of all ones followed by a GMAC Address appearing 16 times.

The application enables Magic Packet wake-up by writing a 1 to Bit 1 of the register GMAC\_PMT\_CTRL\_STA. The PMT block constantly monitors each frame addressed to the node for a specific Magic Packet pattern. Each frame received is checked for a 48'hFF\_FF\_FF\_FF\_FF\_FF\_FF pattern following the destination and source address field. The PMT block then checks the frame for 16 repetitions of the GMAC address without any breaks or interruptions. In case of a break in the 16 repetitions of the address, the 48'hFF\_FF\_FF\_FF\_FF\_FF\_FF pattern is scanned for again in the incoming frame. The 16 repetitions can be anywhere in the frame, but must be preceded by the synchronization stream (48'hFF\_FF\_FF\_FF\_FF\_FF\_FF). The device will also accept a multicast frame, as long as the 16 duplications of the GMAC address are detected.

If the MAC address of a node is 48'h00\_11\_22\_33\_44\_55, then the GMAC scans for the data sequence:

Magic Packet detection is updated in the PMT Control and Status register for Magic Packet received. A PMT interrupt to the Application triggers a read to the PMT CSR to determine whether a Magic Packet frame has been received.

# 22.3.6 MAC Management Counters

The counters in the MAC Management Counters (MMC) module can be viewed as an extension of the register address space of the CSR module. The MMC module maintains a set of registers for gathering statistics on the received and transmitted frames. These include a control register for controlling the behavior of the registers, two 32-bit registers containing interrupts generated (receive and transmit), and two 32-bit registers containing masks for the Interrupt register (receive and transmit). These registers are accessible from the Application through the MAC Control Interface (MCI). Non-32-bit accesses are allowed as long as the address is word-aligned.

The organization of these registers is shown in Register Description. The MMCs are accessed using transactions, in the same way the CSR address space is accessed. The Register Description in this chapter describe the various counters and list the address for each of the statistics counters. This address will be used for Read/Write accesses to the desired transmit/receive counter.

The MMC module gathers statistics on encapsulated IPv4, IPv6, TCP, UDP, or ICMP payloads in received Ethernet frames.

# 22.4 Register Description

| Name                 | Offset   | Size | Reset<br>Value | Description                     |
|----------------------|----------|------|----------------|---------------------------------|
| GMAC_MAC_CONF        | 0x0000   | W    | 0x00000000     | MAC Configuration Register      |
| GMAC_MAC_FRM_FILT    | 0x0004   | W    | 0x00000000     | MAC Frame Filter                |
| GMAC_HASH_TAB_HI     | 0x0008   | W    | 0x00000000     | Hash Table High Register        |
| GMAC_HASH_TAB_LO     | 0x000c   | W    | 0x00000000     | Hash Table Low Register         |
| GMAC_GMII_ADDR       | 0x0010   | W    | 0x00000000     | GMII Address Register           |
| GMAC_GMII_DATA       | 0x0014   | W    | 0x00000000     | GMII Data Register              |
| GMAC_FLOW_CTRL       | 0x0018   | W    | 0x00000000     | Flow Control Register           |
| GMAC_VLAN_TAG        | 0x001c   | W    | 0x00000000     | VLAN Tag Register               |
| GMAC_DEBUG           | 0x0024   | W    | 0x00000000     | Debug register                  |
| GMAC_PMT_CTRL_STA    | 0x002c   | W    | 0x00000000     | PMT Control and Status Register |
| GMAC_INT_STATUS      | 0x0038   | W    | 0x00000000     | Interrupt Status Register       |
| GMAC_INT_MASK        | 0x003c   | W    | 0x00000000     | Interrupt Mask Register         |
| GMAC_MAC_ADDR0_HI    | 0x0040   | W    | 0x0000ffff     | MAC Address0 High Register      |
| GMAC_MAC_ADDR0_LO    | 0x0044   | W    | 0xfffffff      | MAC Address0 Low Register       |
| GMAC_AN_CTRL         | 0x00c0   | W    | 0x00000000     | AN Control Register             |
| GMAC_AN_STATUS       | 0x00c4   | W    | 0x0000008      | AN Status Register              |
|                      | 0,00,00  | ۱۸/  | 0,000,001,00   | Auto Negotiation Advertisement  |
| GMAC_AN_ADV          | 0x00c8   | W    | 0x000001e0     | Register                        |
|                      | 0,00000  | ۱۸/  |                | Auto Negotiation Link Partner   |
| GMAC_AN_LINK_PART_AB | 0x00cc W |      | 0x00000000     | Ability Register                |

### 22.4.1 Registers Summary

| Name                        | Offset | Size | Reset<br>Value | Description                                             |
|-----------------------------|--------|------|----------------|---------------------------------------------------------|
| GMAC_AN_EXP                 | 0x00d0 | W    | 0x00000000     | Auto Negotiation Expansion<br>Register                  |
| GMAC_INTF_MODE_STA          | 0x00d8 | W    | 0x00000000     | RGMII Status Register                                   |
| GMAC_MMC_CTRL               | 0x0100 | W    | 0x00000000     | MMC Control Register                                    |
| GMAC_MMC_RX_INTR            | 0x0104 | W    | 0x00000000     | MMC Receive Interrupt Register                          |
| GMAC_MMC_TX_INTR            | 0x0108 | W    | 0x00000000     | MMC Transmit Interrupt Register                         |
| GMAC_MMC_RX_INT_MSK         | 0x010c | W    | 0x00000000     | MMC Receive Interrupt Mask<br>Register                  |
| GMAC_MMC_TX_INT_MSK         | 0x0110 | w    | 0×00000000     | MMC Transmit Interrupt Mask<br>Register                 |
| GMAC_MMC_TXOCTETCNT<br>_GB  | 0x0114 | W    | 0×00000000     | MMC TX OCTET Good and Bad<br>Counter                    |
| GMAC_MMC_TXFRMCNT_<br>GB    | 0x0118 | W    | 0×00000000     | MMC TX Frame Good and Bad<br>Counter                    |
| GMAC_MMC_TXUNDFLWE          | 0x0148 | W    | 0×00000000     | MMC TX Underflow Error                                  |
| GMAC_MMC_TXCARERR           | 0x0160 | W    | 0x00000000     | MMC TX Carrier Error                                    |
| GMAC_MMC_TXOCTETCNT<br>_G   | 0x0164 | W    | 0x00000000     | MMC TX OCTET Good Counter                               |
| GMAC_MMC_TXFRMCNT_<br>G     | 0x0168 | W    | 0x00000000     | MMC TX Frame Good Counter                               |
| GMAC_MMC_RXFRMCNT_<br>GB    | 0x0180 | W    | 0x00000000     | MMC RX Frame Good and Bad<br>Counter                    |
| GMAC_MMC_RXOCTETCN<br>T_GB  | 0x0184 | W    | 0x00000000     | MMC RX OCTET Good and Bad<br>Counter                    |
| GMAC_MMC_RXOCTETCN<br>T_G   | 0x0188 | W    | 0x00000000     | MMC RX OCTET Good Counter                               |
| GMAC_MMC_RXMCFRMCN<br>T_G   | 0x0190 | W    | 0x00000000     | MMC RX Multicast Frame Good<br>Counter                  |
| GMAC_MMC_RXCRCERR           | 0x0194 | W    | 0x00000000     | MMC RX Carrier                                          |
| GMAC_MMC_RXLENERR           | 0x01c8 | W    | 0x00000000     | MMC RX Length Error                                     |
| GMAC_MMC_RXFIFOOVRF<br>LW   | 0x01d4 | W    | 0x00000000     | MMC RX FIFO Overflow                                    |
| GMAC_MMC_IPC_INT_MS<br>K    | 0x0200 | W    | 0x00000000     | MMC Receive Checksum Offload<br>Interrupt Mask Register |
| GMAC_MMC_IPC_INTR           | 0x0208 | W    | 0x00000000     | MMC Receive Checksum Offload<br>Interrupt Register      |
| GMAC_MMC_RXIPV4GFRM         | 0x0210 | W    | 0x00000000     | MMC RX IPV4 Good Frame                                  |
| GMAC_MMC_RXIPV4HDER<br>RFRM | 0x0214 | W    | 0x00000000     | MMC RX IPV4 Head Error Frame                            |
| GMAC_MMC_RXIPV6GFRM         | 0x0224 | W    | 0x00000000     | MMC RX IPV6 Good Frame                                  |
| GMAC_MMC_RXIPV6HDER<br>RFRM | 0x0228 | W    | 0x00000000     | MMC RX IPV6 Head Error Frame                            |

| Name                          | Offset | Size | Reset<br>Value | Description                                          |
|-------------------------------|--------|------|----------------|------------------------------------------------------|
| GMAC_MMC_RXUDPERRF<br>RM      | 0x0234 | w    | 0x00000000     | MMC RX UDP Error Frame                               |
| GMAC_MMC_RXTCPERRFR<br>M      | 0x023c | w    | 0x00000000     | MMC RX TCP Error Frame                               |
| GMAC_MMC_RXICMPERRF<br>RM     | 0x0244 | w    | 0x00000000     | MMC RX ICMP Error Frame                              |
| GMAC_MMC_RXIPV4HDER<br>ROCT   | 0x0254 | w    | 0x00000000     | MMC RX OCTET IPV4 Head Error                         |
| GMAC_MMC_RXIPV6HDER<br>ROCT   | 0x0268 | w    | 0x00000000     | MMC RX OCTET IPV6 Head Error                         |
| GMAC_MMC_RXUDPERRO<br>CT      | 0x0274 | w    | 0x00000000     | MMC RX OCTET UDP Error                               |
| GMAC_MMC_RXTCPERRO<br>CT      | 0x027c | w    | 0x00000000     | MMC RX OCTET TCP Error                               |
| GMAC_MMC_RXICMPERR<br>OCT     | 0x0284 | w    | 0x00000000     | MMC RX OCTET ICMP Error                              |
| GMAC_BUS_MODE                 | 0x1000 | W    | 0x00020101     | Bus Mode Register                                    |
| GMAC_TX_POLL_DEMAND           | 0x1004 | W    | 0x00000000     | Transmit Poll Demand Register                        |
| GMAC_RX_POLL_DEMAND           | 0x1008 | W    | 0x00000000     | Receive Poll Demand Register                         |
| GMAC_RX_DESC_LIST_A<br>DDR    | 0x100c | w    | 0x00000000     | Receive Descriptor List Address<br>Register          |
| GMAC_TX_DESC_LIST_AD<br>DR    | 0x1010 | w    | 0x00000000     | Transmit Descriptor List Address<br>Register         |
| GMAC_STATUS                   | 0x1014 | W    | 0x00000000     | Status Register                                      |
| GMAC_OP_MODE                  | 0x1018 | W    | 0x00000000     | Operation Mode Register                              |
| GMAC_INT_ENA                  | 0x101c | W    | 0x00000000     | Interrupt Enable Register                            |
| GMAC_OVERFLOW_CNT             | 0x1020 | W    | 0x00000000     | Missed Frame and Buffer Overflow<br>Counter Register |
| GMAC_REC_INT_WDT_TI<br>MER    | 0x1024 | w    | 0x00000000     | Receive Interrupt Watchdog Timer<br>Register         |
| GMAC_AXI_BUS_MODE             | 0x1028 | W    | 0x00110001     | AXI Bus Mode Register                                |
| GMAC_AXI_STATUS               | 0x102c | W    | 0x0000000      | AXI Status Register                                  |
| GMAC_CUR_HOST_TX_DE<br>SC     | 0x1048 | W    | 0x00000000     | Current Host Transmit Descriptor<br>Register         |
| GMAC_CUR_HOST_RX_DE<br>SC     | 0x104c | W    | 0x00000000     | Current Host Receive Descriptor<br>Register          |
| GMAC_CUR_HOST_TX_BU<br>F_ADDR | 0x1050 | w    | 0x00000000     | Current Host Transmit Buffer<br>Address Register     |
| GMAC_CUR_HOST_RX_BU<br>F_ADDR | 0x1054 | W    | 0x00000000     | Current Host Receive Buffer<br>Address Register      |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

# 22.4.2 Detail Register Description

# GMAC\_MAC\_CONF

Address: Operational Base + offset (0x0000) MAC Configuration Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                          |
|-------|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:25 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                             |
| 24    | RW   | 0×0                | TC<br>Transmit Configuration in RGMII<br>When set, this bit enables the transmission of duplex mode, link<br>speed, and link up/down information to the PHY in the RGMII<br>ports. When this bit is reset, no such information is driven to the<br>PHY.                                                                              |
| 23    | RW   | 0x0                | WD<br>Watchdog Disable<br>When this bit is set, the GMAC disables the watchdog timer on<br>the receiver, and can receive frames of up to 16,384 bytes.<br>When this bit is reset, the GMAC allows no more than 2,048 bytes<br>(10,240 if JE is set high) of the frame being received and cuts off<br>any bytes received after that.  |
| 22    | RW   | 0×0                | JD<br>Jabber Disable<br>When this bit is set, the GMAC disables the jabber timer on the<br>transmitter, and can transfer frames of up to 16,384 bytes.<br>When this bit is reset, the GMAC cuts off the transmitter if the<br>application sends out more than 2,048 bytes of data (10,240 if JE<br>is set high) during transmission. |
| 21    | RW   | 0x0                | BE<br>Frame Burst Enable<br>When this bit is set, the GMAC allows frame bursting during<br>transmission in GMII Half-Duplex mode.                                                                                                                                                                                                    |
| 20    | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                             |
| 19:17 | RW   | 0×0                | IFG<br>Inter-Frame Gap<br>These bits control the minimum IFG between frames during<br>transmission.<br>3'b000: 96 bit times<br>3'b001: 88 bit times<br>3'b010: 80 bit times<br><br>3'b111: 40 bit times                                                                                                                              |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16  | RW   | 0×0                | DCRS<br>Disable Carrier Sense During Transmission<br>When set high, this bit makes the MAC transmitter ignore the<br>(G)MII CRS signal during frame transmission in Half-Duplex<br>mode. This request results in no errors generated due to Loss of<br>Carrier or No Carrier during such transmission. When this bit is<br>low, the MAC transmitter generates such errors due to Carrier<br>Sense and will even abort the transmissions. |
| 15  | RW   | 0×0                | PS<br>Port Select<br>Selects between GMII and MII:<br>1'b0: GMII (1000 Mbps)<br>1'b1: MII (10/100 Mbps)                                                                                                                                                                                                                                                                                                                                  |
| 14  | RW   | 0×0                | FES<br>Speed<br>Indicates the speed in Fast Ethernet (MII) mode:<br>1'b0: 10 Mbps<br>1'b1: 100 Mbps                                                                                                                                                                                                                                                                                                                                      |
| 13  | RW   | 0×0                | DO<br>Disable Receive Own<br>When this bit is set, the GMAC disables the reception of frames<br>when the gmii_txen_o is asserted in Half-Duplex mode.<br>When this bit is reset, the GMAC receives all packets that are<br>given by the PHY while transmitting.                                                                                                                                                                          |
| 12  | RW   | 0×0                | LM<br>Loopback Mode<br>When this bit is set, the GMAC operates in loopback mode at<br>GMII/MII. The (G)MII Receive clock input (clk_rx_i) is required<br>for the loopback to work properly, as the Transmit clock is not<br>looped-back internally.                                                                                                                                                                                      |
| 11  | RW   | 0×0                | DM<br>Duplex Mode<br>When this bit is set, the GMAC operates in a Full-Duplex mode<br>where it can transmit and receive simultaneously. This bit is RO<br>with default value of 1'b1 in Full-Duplex-only configuration.                                                                                                                                                                                                                  |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10  | RW   | 0×0                | IPC<br>Checksum Offload<br>When this bit is set, the GMAC calculates the 16-bit one's<br>complement of the one's complement sum of all received<br>Ethernet frame payloads. It also checks whether the IPv4 Header<br>checksum (assumed to be bytes 25-26 or 29-30 (VLAN-tagged)<br>of the received Ethernet frame) is correct for the received frame<br>and gives the status in the receive status word. The GMAC core<br>also appends the 16-bit checksum calculated for the IP header<br>datagram payload (bytes after the IPv4 header) and appends it<br>to the Ethernet frame transferred to the application (when Type 2<br>COE is deselected).<br>When this bit is reset, this function is disabled.<br>When Type 2 COE is selected, this bit, when set, enables IPv4<br>checksum checking for received frame payloads TCP/UDP/ICMP<br>headers. When this bit is reset, the COE function in the receiver<br>is disabled and the corresponding PCE and IP HCE status bits are<br>always cleared. |
| 9   | RW   | 0×0                | DR<br>Disable Retry<br>When this bit is set, the GMAC will attempt only 1 transmission.<br>When a collision occurs on the GMII/MII, the GMAC will ignore<br>the current frame transmission and report a Frame Abort with<br>excessive collision error in the transmit frame status.<br>When this bit is reset, the GMAC will attempt retries based on the<br>settings of BL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8   | RW   | 0×0                | LUD<br>Link Up/Down<br>Indicates whether the link is up or down during the transmission<br>of configuration in RGMII interface:<br>1'b0: Link Down<br>1'b1: Link Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7   | RW   | 0×0                | ACS<br>Automatic Pad/CRC Stripping<br>When this bit is set, the GMAC strips the Pad/FCS field on<br>incoming frames only if the length's field value is less than or<br>equal to 1,500 bytes. All received frames with length field greater<br>than or equal to 1,501 bytes are passed to the application<br>without stripping the Pad/FCS field.<br>When this bit is reset, the GMAC will pass all incoming frames to<br>the Host unmodified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6:5 | RW   | 0×0                | BL<br>Back-Off Limit<br>The Back-Off limit determines the random integer number (r) of<br>slot time delays (4,096 bit times for 1000 Mbps and 512 bit times<br>for 10/100 Mbps) the GMAC waits before rescheduling a<br>transmission attempt during retries after a collision. This bit is<br>applicable only to Half-Duplex mode and is reserved (RO) in Full-<br>Duplex-only configuration.<br>2'b00: k = min (n, 10)<br>2'b01: k = min (n, 8)<br>2'b10: k = min (n, 4)<br>2'b11: k = min (n, 1),<br>Where n = retransmission attempt. The random integer r takes<br>the value in the range 0 = $r < 2^k$                                                                                                                                                                                                                                                                                                                                                             |
| 4   | RW   | 0×0                | DC<br>Deferral Check<br>When this bit is set, the deferral check function is enabled in the<br>GMAC. The GMAC will issue a Frame Abort status, along with the<br>excessive deferral error bit set in the transmit frame status when<br>the transmission state machine is deferred for more than 24,288<br>bit times in 10/100-Mbps mode. If the Core is configured for<br>1000 Mbps operation, the threshold for deferral is 155,680 bits<br>times. Deferral begins when the transmitter is ready to transmit,<br>but is prevented because of an active CRS (carrier sense) signal<br>on the GMII/MII. Defer time is not cumulative. If the transmitter<br>defers for 10,000 bit times, then transmits, collides, backs off,<br>and then has to defer again after completion of back-off, the<br>deferral timer resets to 0 and restarts.<br>When this bit is reset, the deferral check function is disabled and<br>the GMAC defers until the CRS signal goes inactive. |
| 3   | RW   | 0x0                | TE<br>Transmitter Enable<br>When this bit is set, the transmission state machine of the GMAC<br>is enabled for transmission on the GMII/MII. When this bit is<br>reset, the GMAC transmit state machine is disabled after the<br>completion of the transmission of the current frame, and will not<br>transmit any further frames.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2   | RW   | 0×0<br>0×0         | RE<br>Receiver Enable<br>When this bit is set, the receiver state machine of the GMAC is<br>enabled for receiving frames from the GMII/MII. When this bit is<br>reset, the GMAC receive state machine is disabled after the<br>completion of the reception of the current frame, and will not<br>receive any further frames from the GMII/MII.<br>reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | INU  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# GMAC\_MAC\_FRM\_FILT

Address: Operational Base + offset (0x0004) MAC Frame Filter

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31    | RW   | 0×0         | RA<br>Receive All<br>When this bit is set, the GMAC Receiver module passes to the<br>Application all frames received irrespective of whether they pass<br>the address filter. The result of the SA/DA filtering is updated<br>(pass or fail) in the corresponding bits in the Receive Status<br>Word. When this bit is reset, the Receiver module passes to the<br>Application only those frames that pass the SA/DA address filter.                                                                                          |
| 30:11 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10    | RW   | 0×0         | HPF<br>Hash or Perfect Filter<br>When set, this bit configures the address filter to pass a frame if<br>it matches either the perfect filtering or the hash filtering as set<br>by HMC or HUC bits. When low and if the HUC/HMC bit is set, the<br>frame is passed only if it matches the Hash filter.                                                                                                                                                                                                                        |
| 9     | RW   | 0x0         | SAF<br>Source Address Filter Enable<br>The GMAC core compares the SA field of the received frames with<br>the values programmed in the enabled SA registers. If the<br>comparison matches, then the SAMatch bit of RxStatus Word is<br>set high. When this bit is set high and the SA filter fails, the<br>GMAC drops the frame.<br>When this bit is reset, then the GMAC Core forwards the received<br>frame to the application and with the updated SA Match bit of the<br>RxStatus depending on the SA address comparison. |
| 8     | RW   | 0×0         | SAIF<br>SA Inverse Filtering<br>When this bit is set, the Address Check block operates in inverse<br>filtering mode for the SA address comparison. The frames whose<br>SA matches the SA registers will be marked as failing the SA<br>Address filter.<br>When this bit is reset, frames whose SA does not match the SA<br>registers will be marked as failing the SA Address filter.                                                                                                                                         |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 | RW   | 0×0                | PCF<br>Pass Control Frames<br>These bits control the forwarding of all control frames (including<br>unicast and multicast PAUSE frames). Note that the processing of<br>PAUSE control frames depends only on RFE of Register<br>GMAC_FLOW_CTRL[2].<br>2'b00: GMAC filters all control frames from reaching the<br>application.<br>2'b01: GMAC forwards all control frames except PAUSE control<br>frames to application even if they fail the Address filter.<br>2'b10: GMAC forwards all control frames to application even if<br>they fail the Address Filter.<br>2'b11: GMAC forwards control frames that pass the Address<br>Filter. |
| 5   | RW   | 0×0                | DBF<br>Disable Broadcast Frames<br>When this bit is set, the AFM module filters all incoming<br>broadcast frames.<br>When this bit is reset, the AFM module passes all received<br>broadcast frames.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4   | RW   | 0×0                | PM<br>Pass All Multicast<br>When set, this bit indicates that all received frames with a<br>multicast destination address (first bit in the destination address<br>field is '1') are passed.<br>When reset, filtering of multicast frame depends on HMC bit.                                                                                                                                                                                                                                                                                                                                                                             |
| 3   | RW   | 0×0                | DAIF<br>DA Inverse Filtering<br>When this bit is set, the Address Check block operates in inverse<br>filtering mode for the DA address comparison for both unicast<br>and multicast frames.<br>When reset, normal filtering of frames is performed.                                                                                                                                                                                                                                                                                                                                                                                      |
| 2   | RW   | 0×0                | HMC<br>Hash Multicast<br>When set, MAC performs destination address filtering of received<br>multicast frames according to the hash table.<br>When reset, the MAC performs a perfect destination address<br>filtering for multicast frames, that is, it compares the DA field<br>with the values programmed in DA registers.                                                                                                                                                                                                                                                                                                             |
| 1   | RW   | 0×0                | HUC<br>Hash Unicast<br>When set, MAC performs destination address filtering of unicast<br>frames according to the hash table.<br>When reset, the MAC performs a perfect destination address<br>filtering for unicast frames, that is, it compares the DA field with<br>the values programmed in DA registers.                                                                                                                                                                                                                                                                                                                            |

| Bit | Attr   | <b>Reset Value</b>                                         | Description                                                        |
|-----|--------|------------------------------------------------------------|--------------------------------------------------------------------|
|     | RW 0x0 |                                                            | PR                                                                 |
|     |        |                                                            | Promiscuous Mode                                                   |
| 0   |        | When this bit is set, the Address Filter module passes all |                                                                    |
| U   |        | r vv                                                       | incoming frames regardless of its destination or source address.   |
|     |        |                                                            | The SA/DA Filter Fails status bits of the Receive Status Word will |
|     |        |                                                            | always be cleared when PR is set.                                  |

### GMAC\_HASH\_TAB\_HI

Address: Operational Base + offset (0x0008) Hash Table High Register

| Bit  | Attr | <b>Reset Value</b> | Description                                         |
|------|------|--------------------|-----------------------------------------------------|
|      |      |                    | НТН                                                 |
| 31:0 | RW   | 0x00000000         | Hash Table High                                     |
|      |      |                    | This field contains the upper 32 bits of Hash table |

### GMAC\_HASH\_TAB\_LO

Address: Operational Base + offset (0x000c)

Hash Table Low Register

| Bit  | Attr | <b>Reset Value</b> | Description                                         |
|------|------|--------------------|-----------------------------------------------------|
|      |      |                    | HTL                                                 |
| 31:0 | RW   | 0x00000000         | Hash Table Low                                      |
|      |      |                    | This field contains the lower 32 bits of Hash table |

### GMAC\_GMII\_ADDR

Address: Operational Base + offset (0x0010) GMII Address Register

| Bit   | Attr | Reset Value | Description                                                                                                 |  |
|-------|------|-------------|-------------------------------------------------------------------------------------------------------------|--|
| 31:16 | RO   | 0x0         | reserved                                                                                                    |  |
| 15:11 | RW   | 0×00        | PA<br>Physical Layer Address<br>This field tells which of the 32 possible PHY devices are being<br>accessed |  |
| 10:6  | RW   | 0×00        | GR<br>GMII Register<br>These bits select the desired GMII register in the selected PHY<br>device            |  |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:2 | RW   | 0x0         | Description           CR           APB Clock Range           The APB Clock Range selection determines the frequency of the<br>MDC clock as per the pclk_gmac frequency used in your design.<br>The suggested range of pclk_gmac frequency applicable for each<br>value below (when Bit[5] = 0) ensures that the MDC clock is<br>approximately between the frequency range 1.0 MHz - 2.5 MHz.           Selection         pclk_gmacMDC Clock           0000         60-100 MHz         pclk_gmac/42           0001         100-150 MHz         pclk_gmac/26           0101         20-35 MHz         pclk_gmac/16           0011         35-60 MHz         pclk_gmac/102           0101         250-300 MHz         pclk_gmac/124           0110         150-250 MHz         pclk_gmac/124           0110         0111         Reserved           When bit 5 is set, you can achieve MDC clock of frequency higher         than the IEEE802.3 specified frequency limit of 2.5 MHz and           program a clock divider of lower value. For example, when         pclk_gmac is of frequency 100 MHz and you program these bits           as "1010", then the resultant MDC clock will be of 12.5 MHz         which is outside the limit of IEEE 802.3 specified range. Please           program the values given below only if the interfacing chips         supports faster MDC clocks.           Selection         MDC Clock           1000 |
| 1   | RW   | 0×0         | GW<br>GMII Write<br>When set, this bit tells the PHY that this will be a Write operation<br>using register GMAC_GMII_DATA. If this bit is not set, this will be<br>a Read operation, placing the data in register GMAC_GMII_DATA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|-----|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0   | W1C  | 0x0                | GB<br>GMII Busy<br>This bit should read a logic 0 before writing to Register<br>GMII_ADDR and Register GMII_DATA. This bit must also be set to<br>0 during a Write to Register GMII_ADDR. During a PHY register<br>access, this bit will be set to 1'b1 by the Application to indicate<br>that a Read or Write access is in progress. Register GMII_DATA<br>(GMII Data) should be kept valid until this bit is cleared by the<br>GMAC during a PHY Write operation. The Register GMII_DATA is<br>invalid until this bit is cleared by the GMAC during a PHY Read<br>operation. The Register GMII_ADDR (GMII Address) should not<br>be written to until this bit is cleared. |  |  |

### GMAC\_GMII\_DATA

Address: Operational Base + offset (0x0014) GMII Data Register

| Bit   | Attr | Reset Value | Description                                                   |  |  |
|-------|------|-------------|---------------------------------------------------------------|--|--|
| 31:16 | RO   | 0x0         | reserved                                                      |  |  |
|       |      |             | GD                                                            |  |  |
|       |      |             | GMII Data                                                     |  |  |
| 15:0  | RW   | 0x0000      | This contains the 16-bit data value read from the PHY after a |  |  |
|       |      |             | Management Read operation or the 16-bit data value to be      |  |  |
|       |      |             | written to the PHY before a Management Write operation.       |  |  |

### GMAC\_FLOW\_CTRL

Address: Operational Base + offset (0x0018) Flow Control Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                              |  |  |
|-------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 31:16 | RW   | 0×0000             | PT<br>Pause Time<br>This field holds the value to be used in the Pause Time field in the<br>transmit control frame. If the Pause Time bits is configured to be<br>double-synchronized to the (G)MII clock domain, then<br>consecutive writes to this register should be performed only after<br>at least 4 clock cycles in the destination clock domain. |  |  |
| 15:8  | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                 |  |  |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|-----|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7   | RW   | 0×0         | DZPQ<br>Disable Zero-Quanta Pause<br>When set, this bit disables the automatic generation of Zero-<br>Quanta Pause Control frames on the de-assertion of the flow-<br>control signal from the FIFO layer (MTL or external sideband flow<br>control signal sbd_flowctrl_i/mti_flowctrl_i).<br>When this bit is reset, normal operation with automatic Zero-<br>Quanta Pause Control frame generation is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 6   | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 5:4 | RW   | 0×0         | PLT<br>Pause Low Threshold<br>This field configures the threshold of the PAUSE timer at which<br>the input flow control signal mti_flowctrl_i (or sbd_flowctrl_i) is<br>checked for automatic retransmission of PAUSE Frame. The<br>threshold values should be always less than the Pause Time<br>configured in Bits[31:16]. For example, if PT = 100H (256 slot-<br>times), and PLT = 01, then a second PAUSE frame is<br>automatically transmitted if the mti_flowctrl_i signal is asserted<br>at 228 (256-28) slot-times after the first PAUSE frame is<br>transmitted.<br><b>Selection</b><br>D1 Pause time minus 4 slot times<br>01 Pause time minus 28 slot times<br>10 Pause time minus 144 slot times<br>11 Pause time minus 256 slot times<br>Slot time is defined as time taken to transmit 512 bits (64 bytes)<br>on the GMII/MII interface. |  |  |
| 3   | RW   | 0×0         | UP<br>Unicast Pause Frame Detect<br>When this bit is set, the GMAC will detect the Pause frames with<br>the station's unicast address specified in MAC Address0 High<br>Register and MAC Address0 Low Register, in addition to the<br>detecting Pause frames with the unique multicast address. When<br>this bit is reset, the GMAC will detect only a Pause frame with the<br>unique multicast address specified in the 802.3x standard.                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 2   | RW   | 0×0         | RFE<br>Receive Flow Control Enable<br>When this bit is set, the GMAC will decode the received Pause<br>frame and disable its transmitter for a specified (Pause Time)<br>time. When this bit is reset, the decode function of the Pause<br>frame is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |

| Bit                                                      | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tra<br>In F<br>flov<br>1 RW 0x0 res<br>GM<br>In F<br>bac |      | 0×0                | TFE<br>Transmit Flow Control Enable<br>In Full-Duplex mode, when this bit is set, the GMAC enables the<br>flow control operation to transmit Pause frames. When this bit is<br>reset, the flow control operation in the GMAC is disabled, and the<br>GMAC will not transmit any Pause frames.<br>In Half-Duplex mode, when this bit is set, the GMAC enables the<br>back-pressure operation. When this bit is reset, the backpressure<br>feature is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0                                                        | RW   | 0×0                | FCB_BPA<br>Flow Control Busy/Backpressure Activate<br>This bit initiates a Pause Control frame in Full-Duplex mode and<br>activates the backpressure function in Half-Duplex mode if TFE<br>bit is set.<br>In Full-Duplex mode, this bit should be read as 1'b0 before<br>writing to the register GMAC_FLOW_CTRL. To initiate a pause<br>control frame, the application must set this bit to 1'b1. During a<br>transfer of the control frame, this bit will continue to be set to<br>signify that a frame transmission is in progress. After the<br>completion of Pause control frame transmission, the GMAC will<br>reset this bit to 1'b0. The register GMAC_FLOW_CTRL should not<br>be written to until this bit is cleared.<br>In Half-Duplex mode, when this bit is set (and TFE is set), then<br>backpressure is asserted by the GMAC Core. During<br>backpressure, when the GMAC receives a new frame, the<br>transmitter starts sending a JAM pattern resulting in a collision.<br>This control register bit is logically OR'ed with the mti_flowctrl_i<br>input signal for the backpressure function. |

### GMAC\_VLAN\_TAG

Address: Operational Base + offset (0x001c)

| VLAN | lag | Register |
|------|-----|----------|
|      |     |          |

| Bit   | Attr | <b>Reset Value</b> | Description                                                      |  |  |  |
|-------|------|--------------------|------------------------------------------------------------------|--|--|--|
| 31:17 | RO   | 0x0                | reserved                                                         |  |  |  |
|       |      |                    | ETV                                                              |  |  |  |
|       |      |                    | Enable 12-Bit VLAN Tag Comparison                                |  |  |  |
|       | RW   | 0×0                | When this bit is set, a 12-bit VLAN identifier, rather than the  |  |  |  |
| 16    |      |                    | complete 16-bit VLAN tag, is used for comparison and filtering.  |  |  |  |
| 10    |      | 0.00               | Bits[11:0] of the VLAN tag are compared with the corresponding   |  |  |  |
|       |      |                    | field in the received VLAN-tagged frame.                         |  |  |  |
|       |      |                    | When this bit is reset, all 16 bits of the received VLAN frame's |  |  |  |
|       |      |                    | fifteenth and sixteenth bytes are used for comparison.           |  |  |  |

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|------|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 15:0 | RW   |             | VL<br>VLAN Tag Identifier for Receive Frames<br>This contains the 802.1Q VLAN tag to identify VLAN frames, and<br>is compared to the fifteenth and sixteenth bytes of the frames<br>being received for VLAN frames. Bits[15:13] are the User Priority,<br>Bit[12] is the Canonical Format Indicator (CFI) and bits[11:0] are<br>the VLAN tag's VLAN Identifier (VID) field. When the ETV bit is<br>set, only the VID (Bits[11:0]) is used for comparison.<br>If VL (VL[11:0] if ETV is set) is all zeros, the GMAC does not<br>check the fifteenth and sixteenth bytes for VLAN tag comparison,<br>and declares all frames with a Type field value of 0x8100 to be<br>VLAN frames. |  |  |

### GMAC\_DEBUG

Address: Operational Base + offset (0x0024)

Debug register

| Bit   | Attr | <b>Reset Value</b> | Description                                                      |
|-------|------|--------------------|------------------------------------------------------------------|
| 31:26 | RO   | 0x0                | reserved                                                         |
|       |      |                    | TFIFO3                                                           |
| 25    | RW   | 0x0                | When high, it indicates that the MTL TxStatus FIFO is full and   |
| 25    |      | 0.00               | hence the MTL will not be accepting any more frames for          |
|       |      |                    | transmission.                                                    |
|       |      |                    | TFIFO2                                                           |
| 24    | RW   | 0x0                | When high, it indicates that the MTL TxFIFO is not empty and has |
|       |      |                    | some data left for transmission.                                 |
| 23    | RO   | 0x0                | reserved                                                         |
|       | RW   | 0×0                | TFIF01                                                           |
| 22    |      |                    | When high, it indicates that the MTL TxFIFO Write Controller is  |
|       |      |                    | active and transferring data to the TxFIFO.                      |
|       |      | W 0×0              | TFIFOSTA                                                         |
|       |      |                    | This indicates the state of the TxFIFO read Controller:          |
| 21:20 | RW   |                    | 2'b00: IDLE state                                                |
| 21.20 |      |                    | 2'b01: READ state (transferring data to MAC transmitter)         |
|       |      |                    | 2'b10: Waiting for TxStatus from MAC transmitter                 |
|       |      |                    | 2'b11: Writing the received TxStatus or flushing the TxFIFO      |
|       |      |                    | PAUSE                                                            |
| 19    | RW   |                    | When high, it indicates that the MAC transmitter is in PAUSE     |
|       |      |                    | condition (in full-duplex only) and hence will not schedule any  |
|       |      |                    | frame for transmission                                           |

| Bit   | Attr | Reset Value | Description                                                                    |
|-------|------|-------------|--------------------------------------------------------------------------------|
|       |      |             | TSAT                                                                           |
|       |      |             | This indicates the state of the MAC Transmit Frame Controller module:          |
|       |      |             | 2'b00: IDLE                                                                    |
| 18:17 | RW   | 0x0         | 2'b01: Waiting for Status of previous frame or IFG/backoff period              |
|       |      |             | to be over                                                                     |
|       |      |             | 2'b10: Generating and transmitting a PAUSE control frame (in full duplex mode) |
|       |      |             | 2'b11: Transferring input frame for transmission                               |
|       |      |             | ТАСТ                                                                           |
| 16    | RW   | 0x0         | When high, it indicates that the MAC GMII/MII transmit protocol                |
|       |      |             | engine is actively transmitting data and not in IDLE state.                    |
| 15:10 | RO   | 0x0         | reserved                                                                       |
|       |      |             | RFIFO                                                                          |
|       |      |             | This gives the status of the RxFIFO Fill-level:                                |
| 0.0   |      | 0×0         | 2'b00: RxFIFO Empty                                                            |
| 9:8   | RW   |             | 2'b01: RxFIFO fill-level below flow-control de-activate threshold              |
|       |      |             | 2'b10: RxFIFO fill-level above flow-control activate threshold                 |
|       |      |             | 2'b11: RxFIFO Full                                                             |
| 7     | RO   | 0x0         | reserved                                                                       |
|       |      |             | RFIFORD                                                                        |
|       |      |             | It gives the state of the RxFIFO read Controller:                              |
| C.F   |      | W 0×0       | 2'b00: IDLE state                                                              |
| 6:5   | RW   |             | 2'b01: Reading frame data                                                      |
|       |      |             | 2'b10: Reading frame status (or time-stamp)                                    |
|       |      |             | 2'b11: Flushing the frame data and Status                                      |
|       |      |             | RFIFOWR                                                                        |
| 4     | RW   | 0x0         | When high, it indicates that the MTL RxFIFO Write Controller is                |
|       |      |             | active and transferring a received frame to the FIFO.                          |
| 3     | RO   | 0x0         | reserved                                                                       |
|       |      |             | ACT                                                                            |
| 2.1   |      | 0.40        | When high, it indicates the active state of the small FIFO Read                |
| 2:1   | RW   | 0x0         | and Write controllers respectively of the MAC receive Frame                    |
|       |      |             | Controller module                                                              |
|       |      |             | RDB                                                                            |
| 0     | RW   | 0x0         | When high, it indicates that the MAC GMII/MII receive protocol                 |
|       |      |             | engine is actively receiving data and not in IDLE state.                       |

### GMAC\_PMT\_CTRL\_STA

Address: Operational Base + offset (0x002c) PMT Control and Status Register

| Bit            | Attr | Reset Value | Description                                                          |
|----------------|------|-------------|----------------------------------------------------------------------|
|                |      |             | WFFRPR                                                               |
|                |      |             | Wake-Up Frame Filter Register Pointer Reset                          |
| 31             | W1C  | 0x0         | When set, resets the Remote Wake-up Frame Filter register            |
|                |      |             | pointer to 3'b000. It is automatically cleared after 1 clock cycle.  |
| 30:10          | RO   | 0x0         | reserved                                                             |
|                |      |             | GU                                                                   |
|                |      | 0.40        | Global Unicast                                                       |
| 9              | RW   | 0x0         | When set, enables any unicast packet filtered by the GMAC (DAF)      |
|                |      |             | address recognition to be a wake-up frame.                           |
| 8:7            | RO   | 0x0         | reserved                                                             |
|                |      |             | WFR                                                                  |
|                |      |             | Wake-Up Frame Received                                               |
| 6              | RC   | 0x0         | When set, this bit indicates the power management event was          |
|                |      |             | generated due to reception of a wake-up frame. This bit is           |
|                |      |             | cleared by a read into this register.                                |
|                |      |             | MPR                                                                  |
|                |      | 0×0         | Magic Packet Received                                                |
| 5              | RC   |             | When set, this bit indicates the power management event was          |
|                |      |             | generated by the reception of a Magic Packet. This bit is cleared    |
|                |      |             | by a read into this register.                                        |
| 4:3            | RO   | 0x0         | reserved                                                             |
|                |      | 0×0         | WFE                                                                  |
| 2              | RW   |             | Wake-Up Frame Enable                                                 |
| [ <sup>-</sup> |      |             | When set, enables generation of a power management event due         |
|                |      |             | to wake-up frame reception.                                          |
|                |      |             | MPE                                                                  |
| 1              | RW   | V 0x0       | Magic Packet Enable                                                  |
|                |      |             | When set, enables generation of a power management event due         |
|                |      |             | to Magic Packet reception.                                           |
|                |      |             | PD                                                                   |
|                |      |             | Power Down                                                           |
|                |      |             | When set, all received frames will be dropped. This bit is cleared   |
| 0              | R/W  | 0x0         | automatically when a magic packet or Wake-Up frame is                |
|                | SC   |             | received, and Power-Down mode is disabled. Frames received           |
|                |      |             | after this bit is cleared are forwarded to the application. This bit |
|                |      |             | must only be set when either the Magic Packet Enable or Wake-        |
|                |      |             | Up Frame Enable bit is set high.                                     |

# GMAC\_INT\_STATUS

Address: Operational Base + offset (0x0038)

Interrupt Status Register

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
| 31:8 | RO   | 0x0                | reserved    |

| Bit | Attr | <b>Reset Value</b> | Description                                                                         |
|-----|------|--------------------|-------------------------------------------------------------------------------------|
|     |      |                    | MRCOIS                                                                              |
|     |      |                    | MMC Receive Checksum Offload Interrupt Status                                       |
| 7   | RO   | 0x0                | This bit is set high whenever an interrupt is generated in the MMC                  |
|     |      |                    | Receive Checksum Offload Interrupt Register. This bit is cleared                    |
|     |      |                    | when all the bits in this interrupt register are cleared.                           |
|     |      |                    | MTIS                                                                                |
|     |      |                    | MMC Transmit Interrupt Status                                                       |
| 6   | RO   | 0x0                | This bit is set high whenever an interrupt is generated in the MMC                  |
| Ŭ   |      | 0,0                | Transmit Interrupt Register. This bit is cleared when all the bits in               |
|     |      |                    | this interrupt register are cleared. This bit is only valid when the                |
|     |      |                    | optional MMC module is selected during configuration.                               |
|     |      |                    | MRIS                                                                                |
|     |      |                    | MMC Receive Interrupt Status                                                        |
| 5   | RO   | 0×0                | This bit is set high whenever an interrupt is generated in the MMC                  |
|     |      |                    | Receive Interrupt Register. This bit is cleared when all the bits in                |
|     |      |                    | this interrupt register are cleared. This bit is only valid when the                |
|     |      |                    | optional MMC module is selected during configuration.                               |
|     |      |                    | MIS                                                                                 |
|     | RO   | 0×0                | MMC Interrupt Status                                                                |
| 4   |      |                    | This bit is set high whenever any of bits 7:5 is set high and                       |
|     |      |                    | cleared only when all of these bits are low. This bit is valid only                 |
|     |      |                    | when the optional MMC module is selected during configuration.                      |
|     |      |                    | PIS                                                                                 |
|     |      |                    | PMT Interrupt Status                                                                |
| 3   | RO   | 0x0                | This bit is set whenever a Magic packet or Wake-on-LAN frame is                     |
|     |      |                    | received in Power-Down mode). This bit is cleared when both                         |
|     |      |                    | bits[6:5] are cleared due to a read operation to the register<br>GMAC_PMT_CTRL_STA. |
| 2:1 | RO   | 0x0                | reserved                                                                            |
|     |      |                    | RIS                                                                                 |
|     |      |                    | RGMII Interrupt Status                                                              |
| 0   | RO   | 0x0                | This bit is set due to any change in value of the Link Status of                    |
| 0   |      |                    | RGMII interface. This bit is cleared when the user makes a read                     |
|     |      |                    | operation the RGMII Status register.                                                |
| L   | 1    | 1                  |                                                                                     |

# GMAC\_INT\_MASK

Address: Operational Base + offset (0x003c) Interrupt Mask Register

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
| 31:4 | RO   | 0x0                | reserved    |

| Bit | Attr | <b>Reset Value</b> | Description                                                           |
|-----|------|--------------------|-----------------------------------------------------------------------|
|     |      |                    | PIM                                                                   |
|     |      |                    | PMT Interrupt Mask                                                    |
| 3   | RW   | 0x0                | This bit when set, will disable the assertion of the interrupt signal |
|     |      |                    | due to the setting of PMT Interrupt Status bit in Register            |
|     |      |                    | GMAC_INT_STATUS.                                                      |
| 2:1 | RO   | 0x0                | reserved                                                              |
|     |      |                    | RIM                                                                   |
|     |      |                    | RGMII Interrupt Mask                                                  |
| 0   | RW   | 0x0                | This bit when set, will disable the assertion of the interrupt signal |
|     |      |                    | due to the setting of RGMII Interrupt Status bit in Register          |
|     |      |                    | GMAC_INT_STATUS.                                                      |

### GMAC\_MAC\_ADDR0\_HI

Address: Operational Base + offset (0x0040) MAC Address0 High Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                       |
|-------|------|--------------------|-------------------------------------------------------------------|
| 31:16 | RO   | 0x0                | reserved                                                          |
|       |      |                    | A47_A32                                                           |
|       | RW   | 0xffff             | MAC Address0 [47:32]                                              |
| 15:0  |      |                    | This field contains the upper 16 bits (47:32) of the 6-byte first |
| 15.0  |      |                    | MAC address. This is used by the MAC for filtering for received   |
|       |      |                    | frames and for inserting the MAC address in the Transmit Flow     |
|       |      |                    | Control (PAUSE) Frames.                                           |

### GMAC\_MAC\_ADDR0\_LO

Address: Operational Base + offset (0x0044) MAC Address0 Low Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                        |
|------|------|--------------------|--------------------------------------------------------------------|
|      |      | 0×fffffff          | A31_A0                                                             |
|      | RW   |                    | MAC Address0 [31:0]                                                |
| 31:0 |      |                    | This field contains the lower 32 bits of the 6-byte first MAC      |
| 51:0 |      |                    | address. This is used by the MAC for filtering for received frames |
|      |      |                    | and for inserting the MAC address in the Transmit Flow Control     |
|      |      |                    | (PAUSE) Frames.                                                    |

### GMAC\_AN\_CTRL

Address: Operational Base + offset (0x00c0)

AN Control Register

| Bit   | Attr | <b>Reset Value</b> | Description |
|-------|------|--------------------|-------------|
| 31:13 | RO   | 0x0                | reserved    |

| Bit   | Attr      | <b>Reset Value</b> | Description                                                                                                                                                                                                            |
|-------|-----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12    | RW        | 0×0                | ANE<br>Auto-Negotiation Enable<br>When set, will enable the GMAC to perform auto-negotiation with<br>the link partner.<br>Clearing this bit will disable auto-negotiation.                                             |
| 11:10 | RO        | 0x0                | reserved                                                                                                                                                                                                               |
| 9     | R/W<br>SC | 0×0                | RAN<br>Restart Auto-Negotiation<br>When set, will cause auto-negotiation to restart if the ANE is set.<br>This bit is self-clearing after auto-negotiation starts. This bit<br>should be cleared for normal operation. |
| 8:0   | RO        | 0x0                | reserved                                                                                                                                                                                                               |

### GMAC\_AN\_STATUS

Address: Operational Base + offset (0x00c4)

AN Status Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                          |
|------|------|--------------------|----------------------------------------------------------------------|
| 31:6 | RO   | 0x0                | reserved                                                             |
|      |      |                    | ANC                                                                  |
|      |      |                    | Auto-Negotiation Complete                                            |
| 5    | RO   | 0x0                | When set, this bit indicates that the auto-negotiation process is    |
|      |      |                    | completed.                                                           |
|      |      |                    | This bit is cleared when auto-negotiation is reinitiated.            |
| 4    | RO   | 0x0                | reserved                                                             |
|      |      | 0x1                | ANA                                                                  |
| 3    | RO   |                    | Auto-Negotiation Ability                                             |
| 5    |      |                    | This bit is always high, because the GMAC supports auto-             |
|      |      |                    | negotiation.                                                         |
|      |      |                    | LS                                                                   |
| 2    | R/W  | 0x0                | Link Status                                                          |
| Z    | SC   |                    | When set, this bit indicates that the link is up. When cleared, this |
|      |      |                    | bit indicates that the link is down.                                 |
| 1:0  | RO   | 0x0                | reserved                                                             |

### GMAC\_AN\_ADV

Address: Operational Base + offset (0x00c8) Auto Negotiation Advertisement Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                             |
|-------|------|--------------------|---------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0                | reserved                                                                                                |
| 15    | RO   | () <b>x</b> ()     | NP<br>Next Page Support<br>This bit is tied to low, because the GMAC does not support the<br>next page. |

| Bit   | Attr | Reset Value | Description                                                        |
|-------|------|-------------|--------------------------------------------------------------------|
| 14    | RO   | 0x0         | reserved                                                           |
|       |      |             | RFE                                                                |
| 13:12 |      | 0x0         | Remote Fault Encoding                                              |
| 13.12 | K VV | 0.00        | These 2 bits provide a remote fault encoding, indicating to a link |
|       |      |             | partner that a fault or error condition has occurred.              |
| 11:9  | RO   | 0x0         | reserved                                                           |
|       |      |             | PSE                                                                |
|       |      |             | Pause Encoding                                                     |
| 8:7   | RW   | 0x3         | These 2 bits provide an encoding for the PAUSE bits, indicating    |
|       |      |             | that the GMAC is capable of configuring the PAUSE function as      |
|       |      |             | defined in IEEE 802.3x.                                            |
|       |      | W 0×1       | HD                                                                 |
|       |      |             | Half-Duplex                                                        |
| 6     | RW   |             | This bit, when set high, indicates that the GMAC supports Half-    |
|       |      |             | Duplex. This bit is tied to low (and RO) when the GMAC is          |
|       |      |             | configured for Full-Duplex-only operation.                         |
|       |      |             | FD                                                                 |
| 5     | RW   | W 0×1       | Full-Duplex                                                        |
| 5     |      |             | This bit, when set high, indicates that the GMAC supports Full-    |
|       |      |             | Duplex.                                                            |
| 4:0   | RO   | 0x0         | reserved                                                           |

### GMAC\_AN\_LINK\_PART\_AB

Address: Operational Base + offset (0x00cc) Auto Negotiation Link Partner Ability Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                               |
|-------|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                  |
| 15    | RO   | 0×0                | NP<br>Next Page Support<br>When set, this bit indicates that more next page information is<br>available.<br>When cleared, this bit indicates that next page exchange is not<br>desired.                                                                                   |
| 14    | RO   | 0x0                | ACK<br>Acknowledge<br>When set, this bit is used by the auto-negotiation function to<br>indicate that the link partner has successfully received the<br>GMAC's base page. When cleared, it indicates that a successful<br>receipt of the base page has not been achieved. |
| 13:12 | RO   | 0×0                | RFE<br>Remote Fault Encoding<br>These 2 bits provide a remote fault encoding, indicating a fault or<br>error condition of the link partner.                                                                                                                               |
| 11:9  | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                  |

| Bit | Attr | Reset Value | Description                                                           |
|-----|------|-------------|-----------------------------------------------------------------------|
|     |      |             | PSE                                                                   |
|     |      |             | Pause Encoding                                                        |
| 8:7 | RO   | 0x0         | These 2 bits provide an encoding for the PAUSE bits, indicating       |
|     |      |             | that the link partner's capability of configuring the PAUSE           |
|     |      |             | function as defined in IEEE 802.3x.                                   |
|     |      |             | HD                                                                    |
|     |      |             | Half-Duplex                                                           |
| 6   | RO   | 0x0         | When set, this bit indicates that the link partner has the ability to |
|     |      |             | operate in Half-Duplex mode. When cleared, the link partner does      |
|     |      |             | not have the ability to operate in Half-Duplex mode.                  |
|     |      |             | FD                                                                    |
|     |      |             | Full-Duplex                                                           |
| 5   | RO   | 0x0         | When set, this bit indicates that the link partner has the ability to |
|     |      |             | operate in Full-Duplex mode. When cleared, the link partner does      |
|     |      |             | not have the ability to operate in Full-Duplex mode.                  |
| 4:0 | RO   | 0x0         | reserved                                                              |

### GMAC\_AN\_EXP

Address: Operational Base + offset (0x00d0) Auto Negotiation Expansion Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                       |
|------|------|--------------------|-------------------------------------------------------------------|
| 31:3 | RO   | 0x0                | reserved                                                          |
|      |      |                    | NPA                                                               |
| 2    |      | 0.40               | Next Page Ability                                                 |
| Z    | RO   | 0×0                | This bit is tied to low, because the GMAC does not support next   |
|      |      |                    | page function.                                                    |
|      |      | 0x0                | NPR                                                               |
| 1    | RO   |                    | New Page Received                                                 |
|      | ĸŪ   |                    | When set, this bit indicates that a new page has been received by |
|      |      |                    | the GMAC. This bit will be cleared when read.                     |
| 0    | RO   | 0x0                | reserved                                                          |

### GMAC\_INTF\_MODE\_STA

Address: Operational Base + offset (0x00d8) RGMII Status Register

| Bit  | Attr | <b>Reset Value</b> | Description                                            |
|------|------|--------------------|--------------------------------------------------------|
| 31:4 | RO   | 0x0                | reserved                                               |
|      |      |                    | LST                                                    |
| 3    | RO   | 0x0                | Link Status                                            |
|      |      |                    | Indicates whether the link is up (1'b1) or down (1'b0) |

| Bit | Attr | <b>Reset Value</b> | Description                                          |
|-----|------|--------------------|------------------------------------------------------|
|     |      |                    | LSD                                                  |
|     |      |                    | Link Speed                                           |
| 2:1 |      | 0.40               | Indicates the current speed of the link:             |
| 2:1 | RO   | 0×0                | 2'b00: 2.5 MHz                                       |
|     |      |                    | 2'b01: 25 MHz                                        |
|     |      |                    | 2'b10: 125 MHz                                       |
|     |      |                    | LM                                                   |
|     |      |                    | Link Mode                                            |
| 0   | RW   |                    | Indicates the current mode of operation of the link: |
|     |      |                    | 1'b0: Half-Duplex mode                               |
|     |      |                    | 1'b1: Full-Duplex mode                               |

### GMAC\_MMC\_CTRL

Address: Operational Base + offset (0x0100) MMC Control Register

| Bit  | Attr      | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|-----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:6 | RO        | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5    | RW        | 0×0                | FHP<br>Full-Half preset<br>When low and bit4 is set, all MMC counters get preset to almost-<br>half value. All octet counters get preset to 0x7FFF_F800 (half -<br>2K Bytes) and all frame-counters gets preset to 0x7FFF_FF0<br>(half - 16)<br>When high and bit4 is set, all MMC counters get preset to almost-<br>full value. All octet counters get preset to 0xFFFF_F800 (full - 2K<br>Bytes) and all frame-counters gets preset to 0xFFFF_FF0 (full -<br>16) |
| 4    | R/W<br>SC | 0×0                | CP<br>Counters Preset<br>When set, all counters will be initialized or preset to almost full or<br>almost half as per Bit5 above. This bit will be cleared<br>automatically after 1 clock cycle. This bit along with bit5 is useful<br>for debugging and testing the assertion of interrupts due to MMC<br>counter becoming half-full or full.                                                                                                                     |
| 3    | RW        | 0x0                | MCF<br>MMC Counter Freeze<br>When set, this bit freezes all the MMC counters to their current<br>value. (None of the MMC counters are updated due to any<br>transmitted or received frame until this bit is reset to 0. If any<br>MMC counter is read with the Reset on Read bit set, then that<br>counter is also cleared in this mode.)                                                                                                                          |

| Bit | Attr      | <b>Reset Value</b> | Description                                                                                                                                                                                                |
|-----|-----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2   | RW        | 0x0                | ROR<br>Reset on Read<br>When set, the MMC counters will be reset to zero after Read (self-<br>clearing after reset). The counters are cleared when the least<br>significant byte lane (bits[7:0]) is read. |
| 1   | RW        | 0x0                | CSR<br>Counter Stop Rollover<br>When set, counter after reaching maximum value will not roll<br>over to zero                                                                                               |
| 0   | R/W<br>SC | 0×0                | CR<br>Counters Reset<br>When set, all counters will be reset. This bit will be cleared<br>automatically after 1 clock cycle                                                                                |

### GMAC\_MMC\_RX\_INTR

Address: Operational Base + offset (0x0104) MMC Receive Interrupt Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                      |
|-------|------|--------------------|------------------------------------------------------------------|
| 31:22 | RO   | 0x0                | reserved                                                         |
|       |      |                    | INT21                                                            |
| 21    | RW   | 0x0                | The bit is set when the rxfifooverflow counter reaches half the  |
|       |      |                    | maximum value, and also when it reaches the maximum value.       |
| 20:19 | RO   | 0x0                | reserved                                                         |
|       |      |                    | INT18                                                            |
| 18    | RC   | 0x0                | The bit is set when the rxlengtherror counter reaches half the   |
|       |      |                    | maximum value, and also when it reaches the maximum value.       |
| 17:6  | RO   | 0x0                | reserved                                                         |
|       |      |                    | INT5                                                             |
| 5     | RW   | 0x0                | The bit is set when the rxcrcerror counter reaches half the      |
|       |      |                    | maximum value, and also when it reaches the maximum value.       |
|       |      |                    | INT4                                                             |
| 4     | RC   | 0x0                | The bit is set when the rxmulticastframes_g counter reaches half |
| 4     | κC   | 0.00               | the maximum value, and also when it reaches the maximum          |
|       |      |                    | value.                                                           |
| 3     | RO   | 0x0                | reserved                                                         |
|       |      |                    | INT2                                                             |
| 2     | RC   | 0x0                | The bit is set when the rxoctetcount_g counter reaches half the  |
|       |      |                    | maximum value, and also when it reaches the maximum value.       |
|       |      |                    | INT1                                                             |
| 1     | RC   | 0x0                | The bit is set when the rxoctetcount_gb counter reaches half the |
|       |      |                    | maximum value, and also when it reaches the maximum value.       |
|       |      |                    | INTO                                                             |
| 0     | RC   | 0x0                | The bit is set when the rxframecount_gb counter reaches half the |
|       |      |                    | maximum value, and also when it reaches the maximum value.       |

#### GMAC\_MMC\_TX\_INTR

Address: Operational Base + offset (0x0108) MMC Transmit Interrupt Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                       |
|-------|------|--------------------|-------------------------------------------------------------------|
| 31:22 | RO   | 0x0                | reserved                                                          |
|       |      |                    | INT21                                                             |
| 21    | RC   | 0x0                | The bit is set when the txframecount_g counter reaches half the   |
|       |      |                    | maximum value, and also when it reaches the maximum value.        |
|       |      |                    | INT20                                                             |
| 20    | RC   | 0x0                | The bit is set when the txoctetcount_g counter reaches half the   |
|       |      |                    | maximum value, and also when it reaches the maximum value.        |
|       |      |                    | INT19                                                             |
| 19    | RC   | 0x0                | The bit is set when the txcarriererror counter reaches half the   |
|       |      |                    | maximum value, and also when it reaches the maximum value.        |
| 18:14 | RO   | 0x0                | reserved                                                          |
|       |      |                    | INT13                                                             |
| 13    | RC   | 0x0                | The bit is set when the txunderflowerror counter reaches half the |
|       |      |                    | maximum value, and also when it reaches the maximum value.        |
| 12:2  | RO   | 0x0                | reserved                                                          |
|       |      |                    | INT1                                                              |
| 1     | RC   | 0x0                | The bit is set when the txframecount_gb counter reaches half the  |
|       |      |                    | maximum value, and also when it reaches the maximum value.        |
|       |      |                    | INTO                                                              |
| 0     | RC   | 0x0                | The bit is set when the txoctetcount_gb counter reaches half the  |
|       |      |                    | maximum value, and also when it reaches the maximum value.        |

### GMAC\_MMC\_RX\_INT\_MSK

Address: Operational Base + offset (0x010c) MMC Receive Interrupt Mask Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                  |
|-------|------|--------------------|--------------------------------------------------------------|
| 31:22 | RO   | 0x0                | reserved                                                     |
|       |      |                    | INT21                                                        |
| 21    | RW   | 0×0                | Setting this bit masks the interrupt when the rxfifooverflow |
| 21    | ĸw   | 0x0                | counter reaches half the maximum value, and also when it     |
|       |      |                    | reaches the maximum value.                                   |
| 20:19 | RO   | 0x0                | reserved                                                     |
|       |      | 0×0                | INT18                                                        |
| 18    | RW   |                    | Setting this bit masks the interrupt when the rxlengtherror  |
| 10    |      |                    | counter reaches half the maximum value, and also when it     |
|       |      |                    | reaches the maximum value.                                   |
| 17:6  | RO   | 0x0                | reserved                                                     |

| Bit | Attr | Reset Value | Description                                                      |
|-----|------|-------------|------------------------------------------------------------------|
|     |      |             | INT5                                                             |
| 5   | RW   | 0×0         | Setting this bit masks the interrupt when the rxcrcerror counter |
| 5   |      | 0.00        | reaches half the maximum value, and also when it reaches the     |
|     |      |             | maximum value.                                                   |
|     |      |             | INT4                                                             |
| 4   | RW   | 0×0         | Setting this bit masks the interrupt when the                    |
| 4   | RVV  | 0.00        | rxmulticastframes_g counter reaches half the maximum value,      |
|     |      |             | and also when it reaches the maximum value.                      |
| 3   | RO   | 0x0         | reserved                                                         |
|     |      | 0×0         | INT2                                                             |
| 2   | RW   |             | Setting this bit masks the interrupt when the rxoctetcount_g     |
| 2   | RVV  |             | counter reaches half the maximum value, and also when it         |
|     |      |             | reaches the maximum value.                                       |
|     |      |             | INT1                                                             |
| 1   | RW   | 0x0         | Setting this bit masks the interrupt when the rxoctetcount_gb    |
| T   | RVV  | W UXU       | counter reaches half the maximum value, and also when it         |
|     |      |             | reaches the maximum value.                                       |
|     |      |             | INTO                                                             |
| 0   | RW   | 0.20        | Setting this bit masks the interrupt when the rxframecount_gb    |
| 0   | K VV | RW 0x0      | counter reaches half the maximum value, and also when it         |
|     |      |             | reaches the maximum value.                                       |

### GMAC\_MMC\_TX\_INT\_MSK

Address: Operational Base + offset (0x0110) MMC Transmit Interrupt Mask Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                    |
|-------|------|--------------------|----------------------------------------------------------------|
| 31:22 | RO   | 0x0                | reserved                                                       |
|       |      |                    | INT21                                                          |
| 21    | RW   | 0x0                | Setting this bit masks the interrupt when the txframecount_g   |
| 21    | L AN | 0.00               | counter reaches half the maximum value, and also when it       |
|       |      |                    | reaches the maximum value.                                     |
|       |      |                    | INT20                                                          |
| 20    | RW   | 0x0                | Setting this bit masks the interrupt when the txoctetcount_g   |
| 20    | K VV |                    | counter reaches half the maximum value, and also when it       |
|       |      |                    | reaches the maximum value.                                     |
|       |      | / 0×0              | INT19                                                          |
| 19    | RW   |                    | Setting this bit masks the interrupt when the txcarriererror   |
| 19    | L AN |                    | counter reaches half the maximum value, and also when it       |
|       |      |                    | reaches the maximum value.                                     |
| 18:14 | RO   | 0x0                | reserved                                                       |
|       |      |                    | INT13                                                          |
| 13    | RW   | V 0×0              | Setting this bit masks the interrupt when the txunderflowerror |
| 13    | KW   |                    | counter reaches half the maximum value, and also when it       |
|       |      |                    | reaches the maximum value.                                     |

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                     |
|------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12:2 | RO   | 0x0                | reserved                                                                                                                                                        |
| 1    | RW   | 0x0                | INT1<br>Setting this bit masks the interrupt when the txframecount_gb<br>counter reaches half the maximum value, and also when it<br>reaches the maximum value. |
| 0    | RW   | 0×0                | INT0<br>Setting this bit masks the interrupt when the txoctetcount_gb<br>counter reaches half the maximum value, and also when it<br>reaches the maximum value. |

### GMAC\_MMC\_TXOCTETCNT\_GB

Address: Operational Base + offset (0x0114)

MMC TX OCTET Good and Bad Counter

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                         |
|------|------|--------------------|---------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | txoctetcount_gb<br>Number of bytes transmitted, exclusive of preamble and retried<br>bytes, in good and bad frames. |

### GMAC\_MMC\_TXFRMCNT\_GB

Address: Operational Base + offset (0x0118)

MMC TX Frame Good and Bad Counter

| Bit  | Attr | Reset Value | Description                                                                                   |
|------|------|-------------|-----------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000  | txframecount_gb<br>Number of good and bad frames transmitted, exclusive of retried<br>frames. |

### GMAC\_MMC\_TXUNDFLWERR

Address: Operational Base + offset (0x0148) MMC TX Underflow Error

| Bit  | Attr | <b>Reset Value</b> | Description                                            |
|------|------|--------------------|--------------------------------------------------------|
| 31:0 | RW   | 10×00000000        | txunderflowerror                                       |
| 31:0 | KW   |                    | Number of frames aborted due to frame underflow error. |

### GMAC\_MMC\_TXCARERR

Address: Operational Base + offset (0x0160) MMC TX Carrier Error

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                               |
|------|------|--------------------|-----------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | txcarriererror<br>Number of frames aborted due to carrier sense error (no carrier<br>or loss of carrier). |

### GMAC\_MMC\_TXOCTETCNT\_G

Address: Operational Base + offset (0x0164) MMC TX OCTET Good Counter

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                   |
|------|------|--------------------|-----------------------------------------------------------------------------------------------|
| 31:0 | RW   |                    | txoctetcount_g<br>Number of bytes transmitted, exclusive of preamble, in good<br>frames only. |

#### GMAC\_MMC\_TXFRMCNT\_G

Address: Operational Base + offset (0x0168)

MMC TX Frame Good Counter

| Bit  | Attr | <b>Reset Value</b> | Description                        |
|------|------|--------------------|------------------------------------|
| 31:0 | RW   | 10x00000000        | txframecount_g                     |
|      |      |                    | Number of good frames transmitted. |

#### GMAC\_MMC\_RXFRMCNT\_GB

Address: Operational Base + offset (0x0180)

MMC RX Frame Good and Bad Counter

| Bit    | Attr | <b>Reset Value</b>           | Description                             |
|--------|------|------------------------------|-----------------------------------------|
| 31:0 F | RW   | $0 \times 0 0 0 0 0 0 0 0 0$ | rxframecount_gb                         |
|        |      |                              | Number of good and bad frames received. |

#### GMAC\_MMC\_RXOCTETCNT\_GB

Address: Operational Base + offset (0x0184) MMC RX OCTET Good and Bad Counter

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                    |
|------|------|--------------------|------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxoctetcount_gb<br>Number of bytes received, exclusive of preamble, in good and<br>bad frames. |

#### GMAC\_MMC\_RXOCTETCNT\_G

Address: Operational Base + offset (0x0188) MMC RX OCTET Good Counter

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                |
|------|------|--------------------|--------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxoctetcount_g<br>Number of bytes received, exclusive of preamble, only in good<br>frames. |

#### GMAC\_MMC\_RXMCFRMCNT\_G

Address: Operational Base + offset (0x0190)

MMC RX Mulitcast Frame Good Counter

| Bit  | Attr | <b>Reset Value</b> | Description                                                      |
|------|------|--------------------|------------------------------------------------------------------|
| 31:0 | RW   | 0x000000000        | rxmulticastframes_g<br>Number of good multicast frames received. |

#### GMAC\_MMC\_RXCRCERR

Address: Operational Base + offset (0x0194)

MMC RX Carrier

| Bit  | Attr | <b>Reset Value</b> | Description                               |
|------|------|--------------------|-------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxcrcerror                                |
| 51.0 |      | 0,00000000         | Number of frames received with CRC error. |

#### GMAC\_MMC\_RXLENERR

Address: Operational Base + offset (0x01c8) MMC RX Length Error

| Bit  | Attr | <b>Reset Value</b> | Description                                                    |
|------|------|--------------------|----------------------------------------------------------------|
|      |      |                    | rxlengtherror                                                  |
| 31:0 | RW   | 0x00000000         | Number of frames received with length error (Length type field |
|      |      |                    | $\neq$ frame size), for all frames with valid length field.    |

### GMAC\_MMC\_RXFIFOOVRFLW

Address: Operational Base + offset (0x01d4)

MMC RX FIFO Overflow

| Bit     | Attr | <b>Reset Value</b> | Description                                            |
|---------|------|--------------------|--------------------------------------------------------|
| 31:0 RV | RW   | 0x00000000         | rxfifooverflow                                         |
| 51.0    |      | 0x00000000         | Number of missed received frames due to FIFO overflow. |

### GMAC\_MMC\_IPC\_INT\_MSK

Address: Operational Base + offset (0x0200)

MMC Receive Checksum Offload Interrupt Mask Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                     |
|-------|------|--------------------|-----------------------------------------------------------------|
| 31:30 | RO   | 0x0                | reserved                                                        |
|       |      |                    | INT29                                                           |
| 29    | RW   | 0×0                | Setting this bit masks the interrupt when the rxicmp_err_octets |
| 29    | κ.vv | 0.00               | counter reaches half the maximum value, and also when it        |
|       |      |                    | reaches the maximum value.                                      |
| 28    | RO   | 0x0                | reserved                                                        |
|       |      | 0x0                | INT27                                                           |
| 27    | RW   |                    | Setting this bit masks the interrupt when the rxtcp_err_octets  |
| 27    | ĸw   |                    | counter reaches half the maximum value, and also when it        |
|       |      |                    | reaches the maximum value.                                      |
| 26    | RO   | 0x0                | reserved                                                        |

| Bit   | Attr | <b>Reset Value</b> | Description                                                      |
|-------|------|--------------------|------------------------------------------------------------------|
|       |      |                    | INT25                                                            |
| 25    | RW   | 00                 | Setting this bit masks the interrupt when the rxudp_err_octets   |
| 25    | RVV  | 0x0                | counter reaches half the maximum value, and also when it         |
|       |      |                    | reaches the maximum value.                                       |
| 24:23 | RO   | 0x0                | reserved                                                         |
|       |      |                    | INT22                                                            |
| 22    |      | 0.40               | Setting this bit masks the interrupt when the                    |
| 22    | RW   | 0x0                | rxipv6_hdrerr_octets counter reaches half the maximum value,     |
|       |      |                    | and also when it reaches the maximum value.                      |
| 21:18 | RO   | 0x0                | reserved                                                         |
|       |      |                    | INT17                                                            |
|       | D14/ |                    | Setting this bit masks the interrupt when the                    |
| 17    | RW   | 0x0                | rxipv4_hdrerr_octets counter reaches half the maximum value,     |
|       |      |                    | and also when it reaches the maximum value.                      |
| 16:14 | RO   | 0x0                | reserved                                                         |
|       |      |                    | INT13                                                            |
| 10    |      | 00                 | Setting this bit masks the interrupt when the rxicmp_err_frms    |
| 13    | RW   | 0x0                | counter reaches half the maximum value, and also when it         |
|       |      |                    | reaches the maximum value.                                       |
| 12    | RO   | 0x0                | reserved                                                         |
|       |      | 0.0                | INT11                                                            |
| 1.1   |      |                    | Setting this bit masks the interrupt when the rxtcp_err_frms     |
| 11    | RW   | 0x0                | counter reaches half the maximum value, and also when it         |
|       |      |                    | reaches the maximum value.                                       |
| 10    | RO   | 0x0                | reserved                                                         |
|       |      |                    | INT9                                                             |
| 9     |      | 0.40               | Setting this bit masks the interrupt when the rxudp_err_frms     |
| 9     | K VV | 0×0                | counter reaches half the maximum value, and also when it         |
|       |      |                    | reaches the maximum value.                                       |
| 8:7   | RO   | 0x0                | reserved                                                         |
|       |      |                    | INT6                                                             |
| C     |      | 0.40               | Setting this bit masks the interrupt when the rxipv6_hdrerr_frms |
| 6     | RW   | 0x0                | counter reaches half the maximum value, and also when it         |
|       |      |                    | reaches the maximum value.                                       |
|       |      |                    | INT5                                                             |
| F     | RW   | 0.40               | Setting this bit masks the interrupt when the rxipv6_gd_frms     |
| 5     | RVV  | 0x0                | counter reaches half the maximum value, and also when it         |
|       |      |                    | reaches the maximum value.                                       |
| 4:2   | RO   | 0x0                | reserved                                                         |
|       |      |                    | INT1                                                             |
| 1     |      |                    | Setting this bit masks the interrupt when the rxipv4_hdrerr_frms |
| 1     | RW   | 0x0                | counter reaches half the maximum value, and also when it         |
|       |      |                    | reaches the maximum value.                                       |

| Bit | Attr | <b>Reset Value</b> | Description                                                  |
|-----|------|--------------------|--------------------------------------------------------------|
|     |      | UXU                | INTO                                                         |
| 0   | RW   |                    | Setting this bit masks the interrupt when the rxipv4_gd_frms |
| 0   |      |                    | counter reaches half the maximum value, and also when it     |
|     |      |                    | reaches the maximum value.                                   |

### GMAC\_MMC\_IPC\_INTR

Address: Operational Base + offset (0x0208) MMC Receive Checksum Offload Interrupt Register

| Bit   | Attr | Reset Value | Description                                                       |
|-------|------|-------------|-------------------------------------------------------------------|
| 31:30 | RO   | 0x0         | reserved                                                          |
|       |      |             | INT29                                                             |
| 20    |      | 0.40        | The bit is set when the rxicmp_err_octets counter reaches half    |
| 29    | RC   | 0x0         | the maximum value, and also when it reaches the maximum           |
|       |      |             | value.                                                            |
| 28    | RO   | 0x0         | reserved                                                          |
|       |      |             | INT27                                                             |
| 27    | RC   | 0x0         | The bit is set when the rxtcp_err_octets counter reaches half the |
|       |      |             | maximum value, and also when it reaches the maximum value.        |
| 26    | RO   | 0x0         | reserved                                                          |
|       |      |             | INT25                                                             |
| 25    | RC   | 0x0         | The bit is set when the rxudp_err_octets counter reaches half the |
|       |      |             | maximum value, and also when it reaches the maximum value.        |
| 24:23 | RO   | 0x0         | reserved                                                          |
|       |      |             | INT22                                                             |
| 22    | RC   | 0x0         | The bit is set when the rxipv6_hdrerr_octets counter reaches half |
| 22    | RC   | UXU         | the maximum value, and also when it reaches the maximum           |
|       |      |             | value.                                                            |
| 21:18 | RO   | 0x0         | reserved                                                          |
|       |      |             | INT17                                                             |
| 17    | RC   | 0x0         | The bit is set when the rxipv4_hdrerr_octets counter reaches half |
| 17    |      |             | the maximum value, and also when it reaches the maximum           |
|       |      |             | value.                                                            |
| 16:14 | RO   | 0x0         | reserved                                                          |
|       |      |             | INT13                                                             |
| 13    | RC   | 0x0         | The bit is set when the rxicmp_err_frms counter reaches half the  |
|       |      |             | maximum value, and also when it reaches the maximum value.        |
| 12    | RO   | 0x0         | reserved                                                          |
|       |      |             | INT11                                                             |
| 11    | RC   | 0x0         | The bit is set when the rxtcp_err_frms counter reaches half the   |
|       |      |             | maximum value, and also when it reaches the maximum value.        |
| 10    | RO   | 0x0         | reserved                                                          |
|       |      |             | INT9                                                              |
| 9     | RC   | 0x0         | The bit is set when the rxudp_err_frms counter reaches half the   |
|       |      |             | maximum value, and also when it reaches the maximum value.        |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                  |
|-----|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 8:7 | RO   | 0x0                | reserved                                                                                                                                     |
| 6   | RC   | 0×0                | INT6<br>The bit is set when the rxipv6_hdrerr_frms counter reaches half                                                                      |
|     |      |                    | the maximum value, and also when it reaches the maximum value.                                                                               |
| 5   | RC   | 0×0                | INT5<br>The bit is set when the rxipv6_gd_frms counter reaches half the<br>maximum value, and also when it reaches the maximum value.        |
| 4:2 | RO   | 0x0                | reserved                                                                                                                                     |
| 1   | RC   | 0x0                | INT1<br>The bit is set when the rxipv4_hdrerr_frms counter reaches half<br>the maximum value, and also when it reaches the maximum<br>value. |
| 0   | RC   | 0x0                | INT0<br>The bit is set when the rxipv4_gd_frms counter reaches half the<br>maximum value, and also when it reaches the maximum value.        |

#### GMAC\_MMC\_RXIPV4GFRM

Address: Operational Base + offset (0x0210) MMC RX IPV4 Good Frame

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                    |
|------|------|--------------------|------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxipv4_gd_frms<br>Number of good IPv4 datagrams received with the TCP, UDP, or<br>ICMP payload |

### GMAC\_MMC\_RXIPV4HDERRFRM

Address: Operational Base + offset (0x0214) MMC RX IPV4 Head Error Frame

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                           |
|------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxipv4_hdrerr_frms<br>Number of IPv4 datagrams received with header (checksum,<br>length, or version mismatch) errors |

### GMAC\_MMC\_RXIPV6GFRM

Address: Operational Base + offset (0x0224) MMC RX IPV6 Good Frame

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                  |
|------|------|--------------------|----------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxipv6_gd_frms<br>Number of good IPv6 datagrams received with TCP, UDP, or ICMP<br>payloads. |

## GMAC\_MMC\_RXIPV6HDERRFRM

Address: Operational Base + offset (0x0228) MMC RX IPV6 Head Error Frame

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                 |
|------|------|--------------------|-------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxipv6_hdrerr_frms<br>Number of IPv6 datagrams received with header errors (length or<br>version mismatch). |

#### GMAC\_MMC\_RXUDPERRFRM

Address: Operational Base + offset (0x0234) MMC RX UDP Error Frame

| Bit  | Attr | <b>Reset Value</b> | Description                                                                              |
|------|------|--------------------|------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxudp_err_frms<br>Number of good IP datagrams whose UDP payload has a<br>checksum error. |

#### GMAC\_MMC\_RXTCPERRFRM

Address: Operational Base + offset (0x023c)

MMC RX TCP Error Frame

| Bit  | Attr | <b>Reset Value</b> | Description                                                                              |
|------|------|--------------------|------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxtcp_err_frms<br>Number of good IP datagrams whose TCP payload has a<br>checksum error. |

#### GMAC\_MMC\_RXICMPERRFRM

Address: Operational Base + offset (0x0244) MMC RX ICMP Error Frame

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                |
|------|------|--------------------|--------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxicmp_err_frms<br>Number of good IP datagrams whose ICMP payload has a<br>checksum error. |

#### GMAC\_MMC\_RXIPV4HDERROCT

Address: Operational Base + offset (0x0254) MMC RX OCTET IPV4 Head Error

| Bit  | Attr | <b>Reset Value</b> | Description                                                   |
|------|------|--------------------|---------------------------------------------------------------|
|      | RW   | 0x00000000         | rxipv4_hdrerr_octets                                          |
| 31:0 |      |                    | Number of bytes received in IPv4 datagrams with header errors |
| 51.0 |      |                    | (checksum, length, version mismatch). The value in the Length |
|      |      |                    | field of IPv4 header is used to update this counter.          |

## GMAC\_MMC\_RXIPV6HDERROCT

Address: Operational Base + offset (0x0268)

MMC RX OCTET IPV6 Head Error

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                         |
|------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxipv6_hdrerr_octets<br>Number of bytes received in IPv6 datagrams with header errors<br>(length, version mismatch). The value in the IPv6 header's<br>Length field is used to update this counter. |

#### GMAC\_MMC\_RXUDPERROCT

Address: Operational Base + offset (0x0274) MMC RX OCTET UDP Error

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                |
|------|------|--------------------|--------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxudp_err_octets<br>Number of bytes received in a UDP segment that had checksum<br>errors. |

#### **GMAC\_MMC\_RXTCPERROCT**

Address: Operational Base + offset (0x027c) MMC RX OCTET TCP Error

| Bit  | Attr | <b>Reset Value</b> | Description                                                                 |
|------|------|--------------------|-----------------------------------------------------------------------------|
| 31:0 | RW   |                    | rxtcp_err_octets<br>Number of bytes received in a TCP segment with checksum |
|      |      |                    | errors.                                                                     |

#### **GMAC\_MMC\_RXICMPERROCT**

Address: Operational Base + offset (0x0284) MMC RX OCTET ICMP Error

| Bit  | Attr | <b>Reset Value</b> | Description                                                                               |
|------|------|--------------------|-------------------------------------------------------------------------------------------|
| 31:0 | RW   | 0x00000000         | rxicmp_err_octets<br>Number of bytes received in an ICMP segment with checksum<br>errors. |

#### GMAC\_BUS\_MODE

Address: Operational Base + offset (0x1000) Bus Mode Register

| Bit   | Attr | <b>Reset Value</b> | Description |
|-------|------|--------------------|-------------|
| 31:26 | RO   | 0x0                | reserved    |

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25    | RW   | 0x0                | AAL<br>Address-Aligned Beats<br>When this bit is set high and the FB bit equals 1, the AXI<br>interface generates all bursts aligned to the start address LS bits.<br>If the FB bit equals 0, the first burst (accessing the data buffer's<br>start address) is not aligned, but subsequent bursts are aligned<br>to the address.                                                                                                                                                                                             |
| 24    | RW   | 0x0                | PBL_Mode<br>8xPBL Mode<br>When set high, this bit multiplies the PBL value programmed (bits<br>[22:17] and bits [13:8]) eight times. Thus the DMA will transfer<br>data in to a maximum of 8, 16, 32, 64, 128, and 256 beats<br>depending on the PBL value.                                                                                                                                                                                                                                                                   |
| 23    | RW   | 0×0                | USP<br>Use Separate PBL<br>When set high, it configures the RxDMA to use the value<br>configured in bits [22:17] as PBL while the PBL value in bits<br>[13:8] is applicable to TxDMA operations only. When reset to low,<br>the PBL value in bits [13:8] is applicable for both DMA engines.                                                                                                                                                                                                                                  |
| 22:17 | RW   | 0×01               | RPBL<br>RxDMA PBL<br>These bits indicate the maximum number of beats to be<br>transferred in one RxDMA transaction. This will be the maximum<br>value that is used in a single block Read/Write. The RxDMA will<br>always attempt to burst as specified in RPBL each time it starts a<br>Burst transfer on the host bus. RPBL can be programmed with<br>permissible values of 1, 2, 4, 8, 16, and 32. Any other value will<br>result in undefined behavior. These bits are valid and applicable<br>only when USP is set high. |
| 16    | RW   | 0×0                | FB<br>Fixed Burst<br>This bit controls whether the AXI Master interface performs fixed<br>burst transfers or not. When set, the AHB will use only SINGLE,<br>INCR4, INCR8 or INCR16 during start of normal burst transfers.<br>When reset, the AXI will use SINGLE and INCR burst transfer                                                                                                                                                                                                                                    |
|       |      |                    | operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Bit | Attr      | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|-----------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |           | 0x01        | DescriptionPBLProgrammable Burst LengthThese bits indicate the maximum number of beats to betransferred in one DMA transaction. This will be the maximumvalue that is used in a single block Read/Write.The DMA will always attempt to burst as specified in PBL eachtime it starts a Burst transfer on the host bus. PBL can beprogrammed with permissible values of 1, 2, 4, 8, 16, and 32.Any other value will result in undefined behavior. When USP isset high, this PBL value is applicable for TxDMA transactions only.The PBL values have the following limitations.The maximum number of beats (PBL) possible is limited by thesize of the Tx FIFO and Rx FIFO in the MTL layer and the data buswidth on the DMA. The FIFO has a constraint that the maximumbeat supported is half the depth of the FIFO, except whenspecified (as given below). For different data bus widths and FIFOsizes, the valid PBL range (including x8 mode) is provided in thefollowing table. If the PBL is common for both transmit andreceive DMA, the minimum Rx FIFO and Tx FIFO depths must beconsidered. Do not program out-of-range PBL values, becausethe system may not behave properly.For TxFIFO, valid PBL range in full duplex mode and duplex modeis 128 or less. |
| 7   | RO        | 0×0<br>0×00 | For RxFIFO, valid PBL range in full duplex mode is all.<br>reserved<br>DSL<br>Descriptor Skip Length<br>This bit specifies the number of dword to skip between two<br>unchained descriptors. The address skipping starts from the end<br>of current descriptor to the start of next descriptor. When DSL<br>value equals zero, then the descriptor table is taken as<br>contiguous by the DMA, in Ring mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1   | RO        | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0   | R/W<br>SC | 0x1         | SWR<br>Software Reset<br>When this bit is set, the MAC DMA Controller resets all GMAC<br>Subsystem internal registers and logic. It is cleared automatically<br>after the reset operation has completed in all of the core clock<br>domains. Read a 0 value in this bit before re-programming any<br>register of the core.<br>Note: The reset operation is completed only when all the resets in<br>all the active clock domains are de-asserted. Hence it is essential<br>that all the PHY inputs clocks (applicable for the selected PHY<br>interface) are present for software reset completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

## GMAC\_TX\_POLL\_DEMAND

Address: Operational Base + offset (0x1004) Transmit Poll Demand Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                    |
|------|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | RO   | 0×00000000         | TPD<br>Transmit Poll Demand<br>When these bits are written with any value, the DMA reads the<br>current descriptor pointed to by Register<br>GMAC_CUR_HOST_TX_DESC. If that descriptor is not available<br>(owned by Host), transmission returns to the Suspend state and<br>DMA Register GMAC_STATUS[2] is asserted. If the descriptor is<br>available, transmission resumes. |

## GMAC\_RX\_POLL\_DEMAND

Address: Operational Base + offset (0x1008) Receive Poll Demand Register

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                              |
|-----|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | 0×00000000         | RPD<br>Receive Poll Demand<br>When these bits are written with any value, the DMA reads the<br>current descriptor pointed to by Register<br>GMAC_CUR_HOST_RX_DESC. If that descriptor is not available<br>(owned by Host), reception returns to the Suspended state and<br>Register GMAC_STATUS[7] is not asserted. If the descriptor is |
|     |      |                    | available, the Receive DMA returns to active state.                                                                                                                                                                                                                                                                                      |

#### GMAC\_RX\_DESC\_LIST\_ADDR

Address: Operational Base + offset (0x100c) Receive Descriptor List Address Register

| Bit  | Attr                                                                                                              | <b>Reset Value</b>                                          | Description                                                         |
|------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|
|      |                                                                                                                   | 0×00000000                                                  | SRL                                                                 |
|      | 1:0 RW 0x00000000 Receive Descriptor list. The LSB bits [1/2/3:0] bus width) will be ignored and taken as all-zer |                                                             | Start of Receive List                                               |
| 21.0 |                                                                                                                   |                                                             | This field contains the base address of the First Descriptor in the |
| 51.0 |                                                                                                                   |                                                             | Receive Descriptor list. The LSB bits [1/2/3:0] for 32/64/128-bit   |
|      |                                                                                                                   | bus width) will be ignored and taken as all-zero by the DMA |                                                                     |
|      |                                                                                                                   |                                                             | internally. Hence these LSB bits are Read Only.                     |

## GMAC\_TX\_DESC\_LIST\_ADDR

Address: Operational Base + offset (0x1010) Transmit Descriptor List Address Register

| Bit  | Attr | <b>Reset Value</b>                      | Description                                                         |
|------|------|-----------------------------------------|---------------------------------------------------------------------|
|      | RW   | 0×00000000                              | STL                                                                 |
|      |      |                                         | Start of Transmit List                                              |
| 31:0 |      |                                         | This field contains the base address of the First Descriptor in the |
| 51.0 | L AN | 0.0000000000000000000000000000000000000 | Transmit Descriptor list. The LSB bits [1/2/3:0] for 32/64/128-bit  |
|      |      |                                         | bus width) will be ignored and taken as all-zero by the DMA         |
|      |      |                                         | internally. Hence these LSB bits are Read Only.                     |

## GMAC\_STATUS

Address: Operational Base + offset (0x1014)

Status Register

| Attr | <b>Reset Value</b> | Description                                                        |
|------|--------------------|--------------------------------------------------------------------|
| RO   | 0x0                | reserved                                                           |
|      |                    | GPI                                                                |
|      |                    | GMAC PMT Interrupt                                                 |
|      |                    | This bit indicates an interrupt event in the GMAC core's PMT       |
| RO   | 0x0                | module. The software must read the corresponding registers in      |
|      |                    | the GMAC core to get the exact cause of interrupt and clear its    |
|      |                    | source to reset this bit to 1'b0. The interrupt signal from the    |
|      |                    | GMAC subsystem (sbd_intr_o) is high when this bit is high.         |
|      |                    | GMI                                                                |
| RO   | 0×0                | GMAC MMC Interrupt                                                 |
|      |                    | This bit reflects an interrupt event in the MMC module of the      |
|      |                    | GMAC core. The software must read the corresponding registers      |
|      |                    | in the GMAC core to get the exact cause of interrupt and clear the |
|      |                    | source of interrupt to make this bit as 1'b0. The interrupt signal |
|      |                    | from the GMAC subsystem (sbd_intr_o) is high when this bit is      |
|      |                    | high.<br>GLI                                                       |
|      |                    | GMAC Line interface Interrupt                                      |
|      | RO 0x0             | This bit reflects an interrupt event in the GMAC Core's PCS or     |
|      |                    | RGMII interface block. The software must read the corresponding    |
| RO   |                    | registers in the GMAC core to get the exact cause of interrupt and |
|      |                    | clear the source of interrupt to make this bit as 1'b0. The        |
|      |                    | interrupt signal from the GMAC subsystem (sbd_intr_o) is high      |
|      |                    | when this bit is high.                                             |
|      | RO                 | RO 0x0                                                             |

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25:23 | RO   | 0×0                | EB<br>Error Bits<br>These bits indicate the type of error that caused a Bus Error<br>(e.g., error response on the AXI interface). Valid only with Fatal<br>Bus Error bit (Register GMAC_STATUS[13]) set. This field does<br>not generate an interrupt.<br>Bit 23: 1'b1 Error during data transfer by TxDMA<br>1'b0 Error during data transfer by RxDMA<br>Bit 24: 1'b1 Error during read transfer<br>1'b0 Error during write transfer<br>Bit 25: 1'b1 Error during descriptor access<br>1'b0 Error during data buffer access                                                                                        |
| 22:20 | RO   | 0×0                | TS<br>Transmit Process State<br>These bits indicate the Transmit DMA FSM state. This field does<br>not generate an interrupt.<br>3'b000: Stopped; Reset or Stop Transmit Command issued.<br>3'b001: Running; Fetching Transmit Transfer Descriptor.<br>3'b010: Running; Waiting for status.<br>3'b010: Running; Reading Data from host memory buffer and<br>queuing it to transmit buffer (Tx FIFO).<br>3'b100: TIME_STAMP write state.<br>3'b101: Reserved for future use.<br>3'b101: Ruspended; Transmit Descriptor Unavailable or Transmit<br>Buffer Underflow.<br>3'b111: Running; Closing Transmit Descriptor. |
| 19:17 | RO   | 0×0                | RS<br>Receive Process State<br>These bits indicate the Receive DMA FSM state. This field does<br>not generate an interrupt.<br>3'b000: Stopped: Reset or Stop Receive Command issued.<br>3'b001: Running: Fetching Receive Transfer Descriptor.<br>3'b010: Reserved for future use.<br>3'b011: Running: Waiting for receive packet.<br>3'b100: Suspended: Receive Descriptor Unavailable.<br>3'b101: Running: Closing Receive Descriptor.<br>3'b101: TIME_STAMP write state.<br>3'b111: Running: Transferring the receive packet data from<br>receive buffer to host memory.                                        |

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16    | W1C  | 0×0                | NIS<br>Normal Interrupt Summary<br>Normal Interrupt Summary bit value is the logical OR of the<br>following when the corresponding interrupt bits are enabled in<br>Register OP_MODE:<br>Register GMAC_STATUS[0]: Transmit Interrupt<br>Register GMAC_STATUS[2]: Transmit Buffer Unavailable<br>Register GMAC_STATUS[6]: Receive Interrupt<br>Register GMAC_STATUS[6]: Receive Interrupt<br>Only unmasked bits affect the Normal Interrupt Summary bit.<br>This is a sticky bit and must be cleared (by writing a 1 to this bit)<br>each time a corresponding bit that causes NIS to be set is<br>cleared.                                                                                                                                                                                                                                                                                                                                                    |
| 15    | W1C  | 0×0                | AIS<br>Abnormal Interrupt Summary<br>Abnormal Interrupt Summary bit value is the logical OR of the<br>following when the corresponding interrupt bits are enabled in<br>Register OP_MODE:<br>Register GMAC_STATUS[1]: Transmit Process Stopped<br>Register GMAC_STATUS[3]: Transmit Jabber Timeout<br>Register GMAC_STATUS[3]: Transmit Jabber Timeout<br>Register GMAC_STATUS[4]: Receive FIFO Overflow<br>Register GMAC_STATUS[5]: Transmit Underflow<br>Register GMAC_STATUS[5]: Transmit Underflow<br>Register GMAC_STATUS[7]: Receive Buffer Unavailable<br>Register GMAC_STATUS[8]: Receive Process Stopped<br>Register GMAC_STATUS[9]: Receive Watchdog Timeout<br>Register GMAC_STATUS[10]: Early Transmit Interrupt<br>Register GMAC_STATUS[13]: Fatal Bus Error<br>Only unmasked bits affect the Abnormal Interrupt Summary bit.<br>This is a sticky bit and must be cleared each time a<br>corresponding bit that causes AIS to be set is cleared. |
| 14    | W1C  | 0x0                | ERI<br>Early Receive Interrupt<br>This bit indicates that the DMA had filled the first data buffer of<br>the packet. Receive Interrupt Register GMAC_STATUS[6]<br>automatically clears this bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13    | W1C  |                    | FBI<br>Fatal Bus Error Interrupt<br>This bit indicates that a bus error occurred, as detailed in<br>[25:23]. When this bit is set, the corresponding DMA engine<br>disables all its bus accesses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12:11 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10    | W1C  | 0x0                | ETI<br>Early Transmit Interrupt<br>This bit indicates that the frame to be transmitted was fully<br>transferred to the MTL Transmit FIFO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Bit | Attr | <b>Reset Value</b> | Description                                                          |
|-----|------|--------------------|----------------------------------------------------------------------|
|     |      |                    | RWT                                                                  |
|     |      | 00                 | Receive Watchdog Timeout                                             |
| 9   | W1C  | UXU                | This bit is asserted when a frame with a length greater than         |
|     |      |                    | 2,048 bytes is received.                                             |
|     |      |                    | RPS                                                                  |
|     | W10  | 00                 | Receive Process Stopped                                              |
| 8   | W1C  | UXU                | This bit is asserted when the Receive Process enters the Stopped     |
|     |      |                    | state.                                                               |
|     |      |                    | RU                                                                   |
|     |      |                    | Receive Buffer Unavailable                                           |
|     |      |                    | This bit indicates that the Next Descriptor in the Receive List is   |
|     |      |                    | owned by the host and cannot be acquired by the DMA. Receive         |
|     |      |                    | Process is suspended. To resume processing Receive descriptors,      |
| 7   | W1C  | 0x0                | the host should change the ownership of the descriptor and issue     |
|     |      |                    | a Receive Poll Demand command. If no Receive Poll Demand is          |
|     |      |                    | issued, Receive Process resumes when the next recognized             |
|     |      |                    | incoming frame is received. Register GMAC_STATUS[7] is set           |
|     |      |                    | only when the previous Receive Descriptor was owned by the           |
|     |      |                    | DMA.                                                                 |
|     |      |                    | RI                                                                   |
|     |      |                    | Receive Interrupt                                                    |
| 6   | W1C  | 0x0                | This bit indicates the completion of frame reception. Specific       |
|     |      |                    | frame status information has been posted in the descriptor.          |
|     |      |                    | Reception remains in the Running state.                              |
|     |      |                    | UNF                                                                  |
|     |      |                    | Transmit Underflow                                                   |
| 5   | W1C  | 0x0                | This bit indicates that the Transmit Buffer had an Underflow         |
|     |      |                    | during frame transmission. Transmission is suspended and an          |
|     |      |                    | Underflow Error TDES0[1] is set.                                     |
|     |      |                    | OVF                                                                  |
|     |      |                    | Receive Overflow                                                     |
| 4   | W1C  | 0x0                | This bit indicates that the Receive Buffer had an Overflow during    |
|     |      |                    | frame reception. If the partial frame is transferred to application, |
|     |      |                    | the overflow status is set in RDES0[11].                             |
|     |      |                    |                                                                      |
|     |      |                    | Transmit Jabber Timeout                                              |
|     |      |                    | This bit indicates that the Transmit Jabber Timer expired,           |
| 3   | W1C  | UXU                | meaning that the transmitter had been excessively active. The        |
|     |      |                    | transmission process is aborted and placed in the Stopped state.     |
|     |      |                    | This causes the Transmit Jabber Timeout TDES0[14] flag to            |
|     |      |                    | assert.                                                              |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2   | W1C  | 0x0                | TU<br>Transmit Buffer Unavailable<br>This bit indicates that the Next Descriptor in the Transmit List is<br>owned by the host and cannot be acquired by the DMA.<br>Transmission is suspended. Bits[22:20] explain the Transmit<br>Process state transitions. To resume processing transmit<br>descriptors, the host should change the ownership of the bit of<br>the descriptor and then issue a Transmit Poll Demand command. |
| 1   | W1C  | 0x0                | TPS<br>Transmit Process Stopped<br>This bit is set when the transmission is stopped.                                                                                                                                                                                                                                                                                                                                            |
| 0   | W1C  | 0x0                | TI<br>Transmit Interrupt<br>This bit indicates that frame transmission is finished and<br>TDES1[31] is set in the First Descriptor.                                                                                                                                                                                                                                                                                             |

## GMAC\_OP\_MODE

Address: Operational Base + offset (0x1018) Operation Mode Register

| Bit   | Attr | Reset Value | Description                                                         |
|-------|------|-------------|---------------------------------------------------------------------|
| 31:27 | RO   | 0x0         | reserved                                                            |
|       |      |             | DT                                                                  |
|       |      |             | Disable Dropping of TCP/IP Checksum Error Frames                    |
|       |      |             | When this bit is set, the core does not drop frames that only have  |
| 26    | RW   | 0×0         | errors detected by the Receive Checksum Offload engine. Such        |
| 20    |      | 0.00        | frames do not have any errors (including FCS error) in the          |
|       |      |             | Ethernet frame received by the MAC but have errors in the           |
|       |      |             | encapsulated payload only. When this bit is reset, all error frames |
|       |      |             | are dropped if the FEF bit is reset.                                |
|       | RW   | N 0x0       | RSF                                                                 |
|       |      |             | Receive Store and Forward                                           |
| 25    |      |             | When this bit is set, the MTL only reads a frame from the Rx FIFO   |
| 25    |      |             | after the complete frame has been written to it, ignoring RTC       |
|       |      |             | bits. When this bit is reset, the Rx FIFO operates in Cut-Through   |
|       |      |             | mode, subject to the threshold specified by the RTC bits.           |
|       |      |             | DFF                                                                 |
|       |      |             | Disable Flushing of Received Frames                                 |
| 24    | RW   | / 0x0       | When this bit is set, the RxDMA does not flush any frames due to    |
|       |      |             | the unavailability of receive descriptors/buffers as it does        |
|       |      |             | normally when this bit is reset.                                    |
| 23:22 | RO   | 0x0         | reserved                                                            |

| Bit   | Attr       | <b>Reset Value</b> | Description                                                                                                                        |
|-------|------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------|
|       |            |                    | TSF                                                                                                                                |
|       |            |                    | Transmit Store and Forward                                                                                                         |
| 21    | RW         | 0x0                | When this bit is set, transmission starts when a full frame resides                                                                |
| ~ 1   | 1          | 0,0                | in the MTL Transmit FIFO. When this bit is set, the TTC values                                                                     |
|       |            |                    | specified in Register GMAC_OP_MODE[16:14] are ignored. This                                                                        |
|       |            |                    | bit should be changed only when transmission is stopped.                                                                           |
|       |            |                    | FTF                                                                                                                                |
|       |            |                    | Flush Transmit FIFO                                                                                                                |
|       |            |                    | When this bit is set, the transmit FIFO controller logic is reset to                                                               |
|       |            |                    | its default values and thus all data in the Tx FIFO is lost/flushed.                                                               |
|       |            |                    | This bit is cleared internally when the flushing operation is                                                                      |
|       |            |                    | completed fully. The Operation Mode register should not be                                                                         |
|       |            |                    | written to until this bit is cleared. The data which is already                                                                    |
| 20    | W1C        | 0x0                | accepted by the MAC transmitter will not be flushed. It will be                                                                    |
|       |            |                    | scheduled for transmission and will result in underflow and runt                                                                   |
|       |            |                    | frame transmission.                                                                                                                |
|       |            |                    | Note: The flush operation completes only after emptying the                                                                        |
|       |            |                    | TxFIFO of its contents and all the pending Transmit Status of the                                                                  |
|       |            |                    | transmitted frames are accepted by the host. In order to                                                                           |
|       |            |                    | complete this flush operation, the PHY transmit clock (clk_tx_i) is                                                                |
| 10.17 | <b>D</b> O |                    | required to be active.                                                                                                             |
| 19:17 | RO         | 0x0                | reserved                                                                                                                           |
|       |            |                    |                                                                                                                                    |
|       |            |                    | Transmit Threshold Control                                                                                                         |
|       |            |                    | These three bits control the threshold level of the MTL Transmit                                                                   |
|       |            |                    | FIFO. Transmission starts when the frame size within the MTL                                                                       |
|       |            |                    | Transmit FIFO is larger than the threshold. In addition, full                                                                      |
|       |            |                    | frames with a length less than the threshold are also transmitted.<br>These bits are used only when the TSF bit (Bit 21) is reset. |
| 16:14 | עע         | 0x0                | 3'b000: 64                                                                                                                         |
| 10:14 | ĸw         | UXU                | 3'b001: 128                                                                                                                        |
|       |            |                    | 3'b010: 192                                                                                                                        |
|       |            |                    | 3'b011: 256                                                                                                                        |
|       |            |                    | 3'b100: 40                                                                                                                         |
|       |            |                    | 3'b101: 32                                                                                                                         |
|       |            |                    | 3'b110: 24                                                                                                                         |
|       |            |                    | 3'b111: 16                                                                                                                         |
|       |            |                    | 5 5111, 10                                                                                                                         |

| Bit   | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13    | RW   | 0×0                | ST<br>Start/Stop Transmission Command<br>When this bit is set, transmission is placed in the Running state,<br>and the DMA checks the Transmit List at the current position for a<br>frame to be transmitted. Descriptor acquisition is attempted<br>either from the current position in the list, which is the Transmit<br>List Base Address set by Register GMAC_TX_DESC_LIST_ADDR,<br>or from the position retained when transmission was stopped<br>previously. If the current descriptor is not owned by the DMA,<br>transmission enters the Suspended state and Transmit Buffer<br>Unavailable (Register GMAC_STATUS[2]) is set. The Start<br>Transmission command is effective only when transmission is<br>stopped. If the command is issued before setting DMA Register<br>TX_DESC_LIST_ADDR, then the DMA behavior is unpredictable.<br>When this bit is reset, the transmission process is placed in the<br>Stopped state after completing the transmission of the current<br>frame. The Next Descriptor position in the Transmit List is saved,<br>and becomes the current position when transmission is restarted.<br>The stop transmission command is effective only the transmission is restarted.<br>The stop transmission command is effective only the transmission is restarted.<br>The stop transmission command is effective only the transmission<br>of the current frame is complete or when the transmission is in<br>the Suspended state. |
| 12:11 | RW   | 0×0                | RFD<br>Threshold for deactivating flow control (in both HD and FD)<br>These bits control the threshold (Fill-level of Rx FIFO) at which<br>the flow-control is de-asserted after activation.<br>2'b00: Full minus 1 KB<br>2'b01: Full minus 2 KB<br>2'b10: Full minus 3 KB<br>2'b11: Full minus 4 KB<br>Note that the de-assertion is effective only after flow control is<br>asserted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10:9  | RW   | 0×0                | RFA<br>Threshold for activating flow control (in both HD and FD)<br>These bits control the threshold (Fill level of Rx FIFO) at which<br>flow control is activated.<br>2'b00: Full minus 1 KB<br>2'b01: Full minus 2 KB<br>2'b10: Full minus 3 KB<br>2'b11: Full minus 4 KB<br>Note that the above only applies to Rx FIFOs of 4 KB or more<br>when the EFC bit is set high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8     | RW   | 0x0                | EFC<br>Enable HW flow control<br>When this bit is set, the flow control signal operation based on<br>fill-level of Rx FIFO is enabled. When reset, the flow control<br>operation is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | RW   | 0×0         | FEF<br>Forward Error Frames<br>When this bit is reset, the Rx FIFO drops frames with error status<br>(CRC error, collision error, GMII_ER, giant frame, watchdog<br>timeout, overflow). However, if the frame's start byte (write)<br>pointer is already transferred to the read controller side (in<br>Threshold mode), then the frames are not dropped.<br>When FEF is set, all frames except runt error frames are<br>forwarded to the DMA. But when RxFIFO overflows when a partial<br>frame is written, then such frames are dropped even when FEF is<br>set.                         |
| 6   | RW   | 0×0         | FUF<br>Forward Undersized Good Frames<br>When set, the Rx FIFO will forward Undersized frames (frames<br>with no Error and length less than 64 bytes) including pad-bytes<br>and CRC).<br>When reset, the Rx FIFO will drop all frames of less than 64<br>bytes, unless it is already transferred due to lower value of<br>Receive Threshold (e.g., RTC = 01).                                                                                                                                                                                                                             |
| 5   | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4:3 | RW   | 0×0         | RTC<br>Receive Threshold Control<br>These two bits control the threshold level of the MTL Receive<br>FIFO. Transfer (request) to DMA starts when the frame size<br>within the MTL Receive FIFO is larger than the threshold. In<br>addition, full frames with a length less than the threshold are<br>transferred automatically. Note that value of 11 is not applicable<br>if the configured Receive FIFO size is 128 bytes. These bits are<br>valid only when the RSF bit is zero, and are ignored when the<br>RSF bit is set to 1.<br>2'b00: 64<br>2'b01: 32<br>2'b10: 96<br>2'b11: 128 |
| 2   | RW   | 0x0         | OSF<br>Operate on Second Frame<br>When this bit is set, this bit instructs the DMA to process a<br>second frame of Transmit data even before status for first frame<br>is obtained.                                                                                                                                                                                                                                                                                                                                                                                                        |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   |      | 0×0                | SR<br>Start/Stop Receive<br>When this bit is set, the Receive process is placed in the Running<br>state. The DMA attempts to acquire the descriptor from the<br>Receive list and processes incoming frames. Descriptor<br>acquisition is attempted from the current position in the list,<br>which is the address set by register GMAC_RX_DESC_LIST_ADDR<br>or the position retained when the Receive process was previously<br>stopped. If no descriptor is owned by the DMA, reception is<br>suspended and Receive Buffer Unavailable (Register<br>GMAC_STATUS[7]) is set. The Start Receive command is effective<br>only when reception has stopped. If the command was issued<br>before setting register GMAC_RX_DESC_LIST_ADDR, DMA<br>behavior is unpredictable.<br>When this bit is cleared, RxDMA operation is stopped after the<br>transfer of the current frame. The next descriptor position in the<br>Receive list is saved and becomes the current position after the<br>transfer of the current frame. The Stop Receive command is<br>effective only when the Receive process is in either the Running<br>(waiting for receive packet) or in the Suspended state. |
| 0   | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## GMAC\_INT\_ENA

Address: Operational Base + offset (0x101c) Interrupt Enable Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                        |
|-------|------|--------------------|--------------------------------------------------------------------|
| 31:17 | RO   | 0x0                | reserved                                                           |
|       |      |                    | NIE                                                                |
|       |      |                    | Normal Interrupt Summary Enable                                    |
|       |      |                    | When this bit is set, a normal interrupt is enabled. When this bit |
|       |      |                    | is reset, a normal interrupt is disabled. This bit enables the     |
| 16    | RW   | 0x0                | following bits:                                                    |
|       |      |                    | Register GMAC_STATUS[0]: Transmit Interrupt                        |
|       |      |                    | Register GMAC_STATUS[2]: Transmit Buffer Unavailable               |
|       |      |                    | Register GMAC_STATUS[6]: Receive Interrupt                         |
|       |      |                    | Register GMAC_STATUS[14]: Early Receive Interrupt                  |

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15    | RW   | 0×0         | AIE<br>Abnormal Interrupt Summary Enable<br>When this bit is set, an Abnormal Interrupt is enabled. When this<br>bit is reset, an Abnormal Interrupt is disabled. This bit enables<br>the following bits<br>Register GMAC_STATUS[1]: Transmit Process Stopped<br>Register GMAC_STATUS[3]: Transmit Jabber Timeout<br>Register GMAC_STATUS[3]: Transmit Jabber Timeout<br>Register GMAC_STATUS[4]: Receive Overflow<br>Register GMAC_STATUS[5]: Transmit Underflow<br>Register GMAC_STATUS[7]: Receive Buffer Unavailable<br>Register GMAC_STATUS[8]: Receive Process Stopped<br>Register GMAC_STATUS[9]: Receive Watchdog Timeout<br>Register GMAC_STATUS[10]: Early Transmit Interrupt<br>Register GMAC_STATUS[13]: Fatal Bus Error |
| 14    | RW   | 0×0         | ERE<br>Early Receive Interrupt Enable<br>When this bit is set with Normal Interrupt Summary Enable (BIT<br>16), Early Receive Interrupt is enabled. When this bit is reset,<br>Early Receive Interrupt is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13    | RW   | 0x0         | FBE<br>Fatal Bus Error Enable<br>When this bit is set with Abnormal Interrupt Summary Enable<br>(BIT 15), the Fatal Bus Error Interrupt is enabled. When this bit is<br>reset, Fatal Bus Error Enable Interrupt is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12:11 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10    | RW   | 0×0         | ETE<br>Early Transmit Interrupt Enable<br>When this bit is set with an Abnormal Interrupt Summary Enable<br>(BIT 15), Early Transmit Interrupt is enabled. When this bit is<br>reset, Early Transmit Interrupt is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9     | RW   | 0x0         | RWE<br>Receive Watchdog Timeout Enable<br>When this bit is set with Abnormal Interrupt Summary Enable<br>(BIT 15), the Receive Watchdog Timeout Interrupt is enabled.<br>When this bit is reset, Receive<br>Watchdog Timeout Interrupt is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8     | RW   | 0x0         | RSE<br>Receive Stopped Enable<br>When this bit is set with Abnormal Interrupt Summary Enable<br>(BIT 15), Receive Stopped Interrupt is enabled. When this bit is<br>reset, Receive Stopped Interrupt is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                              |
|-----|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | RW   | 0x0         | RUE<br>Receive Buffer Unavailable Enable<br>When this bit is set with Abnormal Interrupt Summary Enable<br>(BIT 15), Receive Buffer Unavailable Interrupt is enabled. When<br>this bit is reset, the Receive Buffer Unavailable Interrupt is<br>disabled |
| 6   | RW   | 0×0         | RIE<br>Receive Interrupt Enable<br>When this bit is set with Normal Interrupt Summary Enable (BIT<br>16), Receive Interrupt is enabled. When this bit is reset, Receive<br>Interrupt is disabled.                                                        |
| 5   | RW   | 0×0         | UNE<br>Underflow Interrupt Enable<br>When this bit is set with Abnormal Interrupt Summary Enable<br>(BIT 15), Transmit Underflow Interrupt is enabled. When this bit<br>is reset, Underflow Interrupt is disabled.                                       |
| 4   | RW   | 0×0         | OVE<br>Overflow Interrupt Enable<br>When this bit is set with Abnormal Interrupt Summary Enable<br>(BIT 15), Receive Overflow Interrupt is enabled. When this bit is<br>reset, Overflow Interrupt is disabled                                            |
| 3   | RW   | 0×0         | TJE<br>Transmit Jabber Timeout Enable<br>When this bit is set with Abnormal Interrupt Summary Enable<br>(BIT 15), Transmit Jabber Timeout Interrupt is enabled. When<br>this bit is reset, Transmit Jabber Timeout Interrupt is disabled.                |
| 2   | RW   | 0x0         | TUE<br>Transmit Buffer Unavailable Enable<br>When this bit is set with Normal Interrupt Summary Enable (BIT<br>16), Transmit Buffer Unavailable Interrupt is enabled. When this<br>bit is reset, Transmit Buffer Unavailable Interrupt is disabled.      |
| 1   | RW   | 0×0         | TSE<br>Transmit Stopped Enable<br>When this bit is set with Abnormal Interrupt Summary Enable<br>(BIT 15), Transmission Stopped Interrupt is enabled. When this<br>bit is reset, Transmission Stopped Interrupt is disabled.                             |
| 0   | RW   | 0×0         | TIE<br>Transmit Interrupt Enable<br>When this bit is set with Normal Interrupt Summary Enable (BIT<br>16), Transmit Interrupt is enabled. When this bit is reset,<br>Transmit Interrupt is disabled.                                                     |

# GMAC\_OVERFLOW\_CNT

Address: Operational Base + offset (0x1020) Missed Frame and Buffer Overflow Counter Register

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit   | Attr | Reset Value | Description                                                       |
|-------|------|-------------|-------------------------------------------------------------------|
| 31:29 | RO   | 0x0         | reserved                                                          |
| 20    | RC   | 0.40        | FIFO_overflow_bit                                                 |
| 28    | RC   | 0x0         | Overflow bit for FIFO Overflow Counter                            |
|       |      |             | Frame_miss_number                                                 |
|       |      |             | Indicates the number of frames missed by the application          |
| 27:17 | RC   | 0×000       | This counter is incremented each time the MTL asserts the         |
|       |      |             | sideband signal mtl_rxoverflow_o. The counter is cleared when     |
|       |      |             | this register is read with mci_be_i[2] at 1'b1.                   |
| 16    | RC   | C 0x0       | Miss_frame_overflow_bit                                           |
| 10    |      |             | Overflow bit for Missed Frame Counter                             |
|       |      |             | Frame_miss_number_2                                               |
|       |      | RC 0×0000   | Indicates the number of frames missed by the controller due to    |
| 15:0  | DC   |             | the Host Receive Buffer being unavailable. This counter is        |
| 12.0  | ĸĊ   |             | incremented each time the DMA discards an incoming frame. The     |
|       |      |             | counter is cleared when this register is read with mci_be_i[0] at |
|       |      |             | 1'b1.                                                             |

### GMAC\_REC\_INT\_WDT\_TIMER

Address: Operational Base + offset (0x1024) Receive Interrupt Watchdog Timer Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO   | 0x0                | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |      |                    | RIWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |      |                    | RI Watchdog Timer count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7:0  | RW   | 0×00               | Indicates the number of system clock cycles multiplied by 256 for<br>which the watchdog timer is set. The watchdog timer gets<br>triggered with the programmed value after the RxDMA completes<br>the transfer of a frame for which the RI status bit is not set due<br>to the setting in the corresponding descriptor RDES1[31]. When<br>the watch-dog timer runs out, the RI bit is set and the timer is<br>stopped. The watchdog timer is reset when RI bit is set high due<br>to automatic setting of RI as per RDES1[31] of any received<br>frame. |

## GMAC\_AXI\_BUS\_MODE

Address: Operational Base + offset (0x1028) AXI Bus Mode Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                         |
|-------|------|--------------------|---------------------------------------------------------------------|
|       |      |                    | EN_LPI                                                              |
|       |      |                    | Enable LPI (Low Power Interface)                                    |
|       |      |                    | When set to 1, enable the LPI (Low Power Interface) supported       |
| 31    | RW   | 0x0                | by the GMAC and accepts the LPI request from the AXI System         |
|       |      |                    | Clock controller.                                                   |
|       |      |                    | When set to 0, disables the Low Power Mode and always denies        |
|       |      |                    | the LPI request from the AXI System Clock controller.               |
|       |      |                    | UNLCK_ON_MGK_RWK                                                    |
|       |      |                    | Unlock on Magic Packet or Remote Wake Up                            |
|       |      |                    | When set to 1, enables it to request coming out of Low Power        |
| 30    | RW   | 0x0                | mode only when Magic Packet or Remote Wake Up Packet is             |
|       |      |                    | received.                                                           |
|       |      |                    | When set to 0, enables it requests to come out of Low Power         |
|       |      |                    | mode when any frame is received.                                    |
| 29:22 | RO   | 0x0                | reserved                                                            |
|       |      |                    | WR_OSR_LMT                                                          |
|       |      |                    | AXI Maximum Write Out Standing Request Limit                        |
| 21:20 | RW   | 0x1                | This value limits the maximum outstanding request on the AXI        |
|       |      |                    | write interface.                                                    |
|       |      |                    | Maximum outstanding requests = WR_OSR_LMT+1                         |
| 19:18 | RO   | 0x0                | reserved                                                            |
|       |      |                    | RD_OSR_LMT                                                          |
|       |      |                    | AXI Maximum Read Out Standing Request Limit                         |
| 17:16 | RW   | 0x1                | This value limits the maximum outstanding request on the AXI        |
|       |      |                    | read interface.                                                     |
|       |      |                    | Maximum outstanding requests = RD_OSR_LMT+1                         |
| 15:13 | RO   | 0x0                | reserved                                                            |
|       |      |                    | AXI_AAL                                                             |
|       |      |                    | Address-Aligned Beats                                               |
| 12    | RO   | 0x0                | This bit is read-only bit and reflects the AAL bit (register        |
| 12    | Ň    | 0.00               | GMAC_BUS_MODE[25]).                                                 |
|       |      |                    | When this bit set to 1, it performs address-aligned burst transfers |
|       |      |                    | on both read and write channels.                                    |
| 11:4  | RO   | 0x0                | reserved                                                            |
|       |      |                    | BLEN16                                                              |
| 3     | RW   | 0x0                | AXI Burst Length 16                                                 |
| J     | KVV  | 0.0                | When this bit is set to 1, or when UNDEF is set to 1, it is allowed |
|       |      |                    | to select a burst length of 16.                                     |
|       |      |                    | BLEN8                                                               |
| 2     | RW   | 0×0                | AXI Burst Length 8                                                  |
| 2     | КVV  | 0x0                | When this bit is set to 1, or when UNDEF is set to 1, it is allowed |
|       |      |                    | to select a burst length of 8.                                      |

| Bit | Attr | <b>Reset Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | RW   | 0×0                | BLEN4<br>AXI Burst Length 4<br>When this bit is set to 1, or when UNDEF is set to 1, it is allowed                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0   | RO   | 0x1                | to select a burst length of 4.<br>UNDEF<br>AXI Undefined Burst Length<br>This bit is read-only bit and indicates the complement (invert)<br>value of FB bit in register GMAC_BUS_MODE[16].<br>When this bit is set to 1, it is allowed to perform any burst length<br>equal to or below the maximum allowed burst length as<br>programmed in bits[7:1];<br>When this bit is set to 0, it is allowed to perform only fixed burst<br>lengths as indicated by BLEN256/128/64/32/16/8/4, or a burst<br>length of 1. |

## GMAC\_AXI\_STATUS

Address: Operational Base + offset (0x102c)

AXI Status Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                       |
|------|------|--------------------|-------------------------------------------------------------------|
| 31:2 | RO   | 0x0                | reserved                                                          |
|      |      |                    | RD_CH_STA                                                         |
| 1    | RO   | 0x0                | When high, it indicates that AXI Master's read channel is active  |
|      |      |                    | and transferring data.                                            |
|      |      |                    | WR_CH_STA                                                         |
| 0    | RO   | 0x0                | When high, it indicates that AXI Master's write channel is active |
|      |      |                    | and transferring data.                                            |

## GMAC\_CUR\_HOST\_TX\_DESC

Address: Operational Base + offset (0x1048) Current Host Transmit Descriptor Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                |
|------|------|--------------------|------------------------------------------------------------|
|      |      |                    | HTDAP                                                      |
| 31:0 | RO   | 0x00000000         | Host Transmit Descriptor Address Pointer                   |
|      |      |                    | Cleared on Reset. Pointer updated by DMA during operation. |

## GMAC\_CUR\_HOST\_RX\_DESC

Address: Operational Base + offset (0x104c) Current Host Receive Descriptor Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                |
|------|------|--------------------|------------------------------------------------------------|
|      |      |                    | HRDAP                                                      |
| 31:0 | RO   | 0x00000000         | Host Receive Descriptor Address Pointer                    |
|      |      |                    | Cleared on Reset. Pointer updated by DMA during operation. |

## GMAC\_CUR\_HOST\_TX\_Buf\_ADDR

Address: Operational Base + offset (0x1050) Current Host Transmit Buffer Address Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                |
|------|------|--------------------|------------------------------------------------------------|
|      |      |                    | НТВАР                                                      |
| 31:0 | RO   | 0x00000000         | Host Transmit Buffer Address Pointer                       |
|      |      |                    | Cleared on Reset. Pointer updated by DMA during operation. |

### GMAC\_CUR\_HOST\_RX\_BUF\_ADDR

Address: Operational Base + offset (0x1054) Current Host Receive Buffer Adderss Register

| Bit  | Attr | <b>Reset Value</b> | Description                                                |
|------|------|--------------------|------------------------------------------------------------|
|      |      |                    | HRBAP                                                      |
| 31:0 | RO   | 0x00000000         | Host Receive Buffer Address Pointer                        |
|      |      |                    | Cleared on Reset. Pointer updated by DMA during operation. |

# 22.5 Interface Description

| Table 22-2 M0 RMII Interface Description |           |                             |                             |
|------------------------------------------|-----------|-----------------------------|-----------------------------|
| Module pin                               | Direction | Pad name                    | IOMUX setting               |
|                                          |           | RMII interface              |                             |
| mac_clk                                  | I/O       | IO_GMACclkm0_GPIO0D0vccio1  | GPIO0D_IOMUX_SEL[1:0]=2'b01 |
| mac_txen                                 | 0         | IO_GMACtxenm0_GPIO0B4vccio1 | GPIO0B_IOMUX_SEL[9:8]=2'b01 |
| mac_txd1                                 | 0         | IO_GMACtxd1m0_GPIO0C0vccio1 | GPIO0C_IOMUX_SEL[1:0]=2'b01 |
| mac_txd0                                 | 0         | IO_GMACtxd0m0_GPIO0C1vccio1 | GPIO0C_IOMUX_SEL[3:2]=2'b01 |
| mac_rxdv                                 | I         | IO_GMACrxdvm0_GPIO0D1vccio1 | GPIO0D_IOMUX_SEL[3:2]=2'b01 |
|                                          | I         | IO_GMACrxerm0_GPIO0B5vccio1 | GPIO0B_IOMUX_SEL[11:10]=2'b |
| mac_rxer                                 |           |                             | 01                          |
| mag mid 1                                | I         | IO_GMACrxd1m0_GPIO0B6vccio1 | GPIO0B_IOMUX_SEL[13:12]=2'b |
| mac_rxd1                                 |           |                             | 01                          |
| mac m/d0                                 | I         |                             | GPIO0B_IOMUX_SEL[15:14]=2'b |
| mac_rxd0                                 | 1         | IO_GMACrxd0m0_GPIO0B7vccio1 | 01                          |
| Management interface                     |           |                             |                             |
| mac_mdio                                 | I/O       | IO_GMACmdiom0_GPIO0B3vccio1 | GPIO0B_IOMUX_SEL[7:6]=2'b01 |
| mac_mdc                                  | 0         | IO_GMACmdcm0_GPIO0C3vccio1  | GPIO0C_IOMUX_SEL[7:6]=2'b01 |

#### Table 22-3 M0 RGMII Interface Description

| Module pin | Direction | Pad name                     | IOMUX setting               |
|------------|-----------|------------------------------|-----------------------------|
|            |           | RGMII/RMII interface         |                             |
| mac_clk    | I/O       | IO_GMACclkm0_GPIO0D0vccio1   | GPIO0D_IOMUX_SEL[1:0]=2'b01 |
| mac_txclk  | 0         | IO_GMACtxclkm0_GPIO0B0vccio1 | GPIO0B_IOMUX_SEL[1:0]=2'b01 |
| mac_txen   | 0         | IO_GMACtxenm0_GPIO0B4vccio1  | GPIO0B_IOMUX_SEL[9:8]=2'b01 |
|            | 0         | IO_GMACtxd3m0_GPIO0C7vccio1  | GPIO0C_IOMUX_SEL[15:14]=2'b |
| mac_txd3   |           |                              | 01                          |

| maa tuda  | 0                    |                              | GPIO0C_IOMUX_SEL[13:12]=2'b |  |
|-----------|----------------------|------------------------------|-----------------------------|--|
| mac_txd2  | 0                    | IO_GMACtxd2m0_GPIO0C6vccio1  | 01                          |  |
| mac_txd1  | 0                    | IO_GMACtxd1m0_GPIO0C0vccio1  | GPIO0C_IOMUX_SEL[1:0]=2'b01 |  |
| mac_txd0  | 0                    | IO_GMACtxd0m0_GPIO0C1vccio1  | GPIO0C_IOMUX_SEL[3:2]=2'b01 |  |
| mac_rxclk | I                    | IO_GMACrxclkm0_GPIO0B2vccio1 | GPIO0B_IOMUX_SEL[5:4]=2'b01 |  |
| mac_rxdv  | Ι                    | IO_GMACrxdvm0_GPIO0D1vccio1  | GPIO0D_IOMUX_SEL[3:2]=2'b01 |  |
| mac_rxd3  | I                    | IO_GMACrxd3m0_GPIO0C4vccio1  | GPIO0C_IOMUX_SEL[9:8]=2'b01 |  |
| mac m/d2  | I                    | IQ CMACryd2m0 CDIO0CEverin1  | GPIO0C_IOMUX_SEL[11:10]=2'b |  |
| mac_rxd2  | 1                    | IO_GMACrxd2m0_GPIO0C5vccio1  | 01                          |  |
| mac ryd1  | Ι                    | IO_GMACrxd1m0_GPIO0B6vccio1  | GPIO0B_IOMUX_SEL[13:12]=2'b |  |
| mac_rxd1  |                      |                              | 01                          |  |
| mac ryd0  | I                    | IO CMACnudomo CDIOOR7uccio1  | GPIO0B_IOMUX_SEL[15:14]=2'b |  |
| mac_rxd0  | 1                    | IO_GMACrxd0m0_GPIO0B7vccio1  | 01                          |  |
| mac_crs   | I                    | IO_GMACcrsm0_GPIO0B1vccio1   | GPIO0B_IOMUX_SEL[3:2]=2'b01 |  |
| mac_col   | Ι                    | IO_GMACcolm0_GPIO0C2vccio1   | GPIO0C_IOMUX_SEL[5:4]=2'b01 |  |
|           | Management interface |                              |                             |  |
| mac_mdio  | I/O                  | IO_GMACmdiom0_GPIO0B3vccio1  | GPIO0B_IOMUX_SEL[7:6]=2'b01 |  |
| mac_mdc   | 0                    | IO_GMACmdcm0_GPIO0C3vccio1   | GPIO0C_IOMUX_SEL[7:6]=2'b01 |  |

### Table 22-3 M1 RMII Interface Description

| Module pin | Direction | Pad name                          | IOMUX setting               |
|------------|-----------|-----------------------------------|-----------------------------|
|            |           | RMII interface                    |                             |
| mac_clk    | I/O       | IO_I2S2mclk_GMACclkm1_GPIO1C5vcci | GPIO1C_IOMUX_SEL[11:10]=2'b |
| IIIdC_CIK  | 1/0       | 04                                | 10                          |
| mac tyon   | 0         | IO_I2S2sdom0_GMACtxenm1_PDMsdi2   | GPIO1D_IOMUX_SEL[3:2]=2'b10 |
| mac_txen   | 0         | m1_GPIO1D1vccio4                  | GPI01D_10M0A_3EE[3.2]=2.010 |
| mac tyd1   | 0         | IO_UART0rx_GMACtxd1m1_GPIO1B0vcci | GPIO1B_IOMUX_SEL[1:0]=2'b10 |
| mac_txd1   | 0         | 04                                | GPI01B_10M0A_SEL[1.0]=2 010 |
| mac_txd0   | 0         | IO_UART0tx_GMACtxd0m1_GPIO1B1vcci | GPIO1B_IOMUX_SEL[3:2]=2'b10 |
| IIIac_txuu | 0         | 04                                | GPIOIB_IOMOX_SEL[3:2]=2 DIO |
| mac rydy   | I         | IO_I2S2sclkm0_GMACrxdvm1_PDMclkm  | GPIO1C_IOMUX_SEL[13:12]=2'b |
| mac_rxdv   |           | 1_GPIO1C6vccio4                   | 10                          |
| mac ryor   | I         | IO_I2S2sdim0_GMACrxerm1_PDMsdi1m  | GPIO1D_IOMUX_SEL[1:0]=2'b10 |
| mac_rxer   |           | 1_GPIO1D0vccio4                   | GF101D_10H0A_3EE[1.0]=2 010 |
| mac_rxd1   | I         | IO_UART0rtsn_GMACrxd1m1_GPIO1B2v  | GPIO1B_IOMUX_SEL[5:4]=2'b10 |
| IIIdc_IXUI | 1         | ccio4                             | GF101B_10M0X_3EE[5.4]=2 010 |
| mac_rxd0   | Ι         | IO_UART0ctsn_GMACrxd0m1_GPIO1B3v  | GPIO1B_IOMUX_SEL[7:6]=2'b10 |
| IIIac_IXuu |           | ccio4                             | GPIOIB_IOMOX_SEL[7:0]=2 DIO |
|            |           | Management interface              |                             |
| mac mdic   | I/O       | IO_SDMMC1detn_GMACmdiom1_PDMfsy   |                             |
| mac_mdio   |           | ncm1_GPIO1C3vccio4                | GPIO1C_IOMUX_SEL[7:6]=2'b10 |
| mac mdc    | 0         | IO_I2S2lrcktxm0_GMACmdcm1_PDMsdi  | GPIO1C_IOMUX_SEL[15:14]=2'b |
| mac_mdc    | 0         | 0m1_GPIO1C7vccio4                 | 10                          |

| Table 22-4 M1 | RGMII Interface Description | L |
|---------------|-----------------------------|---|

| Module pin Direction Pad name | IOMUX setting |
|-------------------------------|---------------|
|-------------------------------|---------------|

|           |     | RGMII/RMII interface                                  |                                   |
|-----------|-----|-------------------------------------------------------|-----------------------------------|
| mac_clk   | I/O | IO_I2S2mclk_GMACclkm1_GPIO1C5vcci<br>o4               | GPIO1C_IOMUX_SEL[11:10]=2'b<br>10 |
| mac_txclk | 0   | IO_SDMMC1clkout_GMACtxclkm1_GPIO<br>1B4vccio4         | GPIO1B_IOMUX_SEL[9:8]=2'b10       |
| mac_txen  | 0   | IO_I2S2sdom0_GMACtxenm1_PDMsdi2<br>m1_GPI01D1vccio4   | GPIO1D_IOMUX_SEL[3:2]=2'b10       |
| mac_txd3  | 0   | IO_SDMMC1d2_GMACtxd3m1_GPIO1C0<br>vccio4              | GPIO1C_IOMUX_SEL[1:0]=2'b10       |
| mac_txd2  | 0   | IO_SDMMC1d3_GMACtxd2m1_GPIO1C1<br>vccio4              | GPIO1C_IOMUX_SEL[3:2]=2'b10       |
| mac_txd1  | 0   | IO_UART0rx_GMACtxd1m1_GPIO1B0vc<br>cio4               | GPIO1B_IOMUX_SEL[1:0]=2'b10       |
| mac_txd0  | 0   | IO_UART0tx_GMACtxd0m1_GPIO1B1vc<br>cio4               | GPIO1B_IOMUX_SEL[3:2]=2'b10       |
| mac_rxclk | I   | IO_SDMMC1cmd_GMACrxclkm1_GPIO1<br>B5vccio4            | GPIO1B_IOMUX_SEL[11:10]=2'b<br>10 |
| mac_rxdv  | I   | IO_I2S2sclkm0_GMACrxdvm1_PDMclk<br>m1_GPI01C6vccio4   | GPIO1C_IOMUX_SEL[13:12]=2'b<br>10 |
| mac_rxd3  | I   | IO_SDMMC1d0_GMACrxd3m1_GPIO1B6<br>vccio4              | GPIO1B_IOMUX_SEL[13:12]=2'b<br>10 |
| mac_rxd2  | I   | IO_SDMMC1d1_GMACrxd2m1_GPIO1B7<br>vccio4              | GPIO1B_IOMUX_SEL[15:14]=2'b<br>10 |
| mac_rxd1  | I   | IO_UART0rtsn_GMACrxd1m1_GPIO1B2<br>vccio4             | GPIO1B_IOMUX_SEL[5:4]=2'b10       |
| mac_rxd0  | I   | IO_UART0ctsn_GMACrxd0m1_GPIO1B3<br>vccio4             | GPIO1B_IOMUX_SEL[7:6]=2'b10       |
| mac_crs   | I   | IO_SDMMC1pwren_GMACcrsm1_GPIO1<br>C2vccio4            | GPIO1C_IOMUX_SEL[5:4]=2'b10       |
| mac_col   | I   | IO_SDMMC1wp_GMACcolm1_GPIO1C4v<br>ccio4               | GPIO1C_IOMUX_SEL[9:8]=2'b10       |
|           |     | Management interface                                  | ·                                 |
| mac_mdio  | I/O | IO_SDMMC1detn_GMACmdiom1_PDMfs<br>yncm1_GPIO1C3vccio4 | GPIO1C_IOMUX_SEL[7:6]=2'b10       |
| mac_mdc   | 0   | IO_I2S2lrcktxm0_GMACmdcm1_PDMsdi<br>0m1_GPI01C7vccio4 | GPIO1C_IOMUX_SEL[15:14]=2'b<br>10 |

Notes: I=input, O=output, I/O=input/output, bidirectional

# **22.6 Application Notes**

# 22.6.1 Descriptors

The DMA in GMAC can communicate with Host driver through descriptor lists and data buffers. The DMA transfers data frames received by the core to the Receive Buffer in the Host memory, and Transmit data frames from the Transmit Buffer in the Host memory. Descriptors that reside in the Host memory act as pointers to these buffers. There are two descriptor lists; one for reception, and one for transmission. The base address of each list is written into DMA Registers RX\_DESC\_LIST\_ADDR and TX\_DESC\_LIST\_ADDR, respectively. A descriptor list is forward linked (either implicitly or

explicitly). The last descriptor may point back to the first entry to create a ring structure. Explicit chaining of descriptors is accomplished by setting the second address chained in both Receive and Transmit descriptors (RDES1[24] and TDES1[24]). The descriptor lists resides in the Host physical memory address space. Each descriptor can point to a maximum of two buffers. This enables two buffers to be used, physically addressed, rather than contiguous buffers in memory.

A data buffer resides in the Host physical memory space, and consists of an entire frame or part of a frame, but cannot exceed a single frame. Buffers contain only data, buffer status is maintained in the descriptor. Data chaining refers to frames that span multiple data buffers. However, a single descriptor cannot span multiple frames. The DMA will skip to the next frame buffer when end-of-frame is detected. Data chaining can be enabled or disabled The descriptor ring and chain structure is shown in following figure.

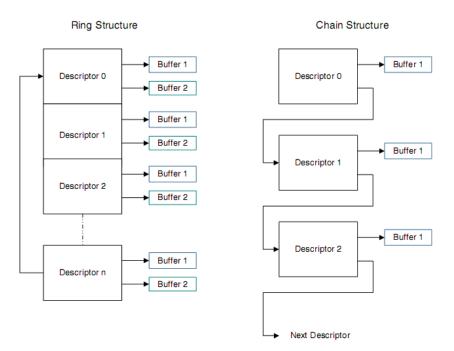



Fig. 22-10 Descriptor Ring and Chain Structure

Each descriptor contains two buffers, two byte-count buffers, and two address pointers, which enable the adapter port to be compatible with various types of memory management schemes. The descriptor addresses must be aligned to the bus width used (Word/Dword/Lword for 32/64/128-bit buses).

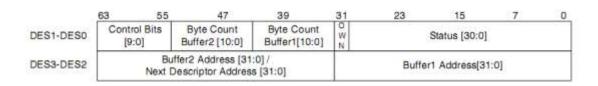



Fig. 22-11 Rx/Tx Descriptors definition

## 22.6.2 Receive Descriptor

The GMAC Subsystem requires at least two descriptors when receiving a frame. The Receive state machine of the DMAalways attempts to acquire an extra descriptor in anticipation of an incoming frame. (The size of the incoming frame is unknown). Before the RxDMA closes a descriptor, it will attempt to acquire the next descriptor even if no frames are received.

### RK3328 TRM-Part1

In a single descriptor (receive) system, the subsystem will generate a descriptor error if the receive buffer is unable to accommodate the incoming frame and the next descriptor is not owned by the DMA. Thus, the Host is forced to increase either its descriptor pool or the buffer size. Otherwise, the subsystem starts dropping all incoming frames.

## **Receive Descriptor 0 (RDES0)**

RDES0 contains the received frame status, the frame length, and the descriptor ownership information.

| I     | Table 22-4 Receive Descriptor 0                                                                           |
|-------|-----------------------------------------------------------------------------------------------------------|
| Bit   | Description                                                                                               |
| 31    | OWN: Own Bit                                                                                              |
|       | When set, this bit indicates that the descriptor is owned by the DMA of the GMAC                          |
|       | Subsystem. When this bit is reset, this bit indicates that the descriptor is owned                        |
|       | by the Host. The DMA clears this bit either when it completes the frame reception                         |
|       | or when the buffers that are associated with this descriptor are full.                                    |
| 30    | AFM: Destination Address Filter Fail                                                                      |
|       | When set, this bit indicates a frame that failed in the DA Filter in the GMAC Core.                       |
| 29:16 | FL: Frame Length                                                                                          |
|       | These bits indicate the byte length of the received frame that was transferred to                         |
|       | host memory (including CRC). This field is valid when Last Descriptor (RDES0[8])                          |
|       | is set and either the Descriptor Error (RDES0[14]) or Overflow Error bits are                             |
|       | reset. The frame length also includes the two bytes appended to the Ethernet                              |
|       | frame when IP checksum calculation (Type 1) is enabled and the received frame is not a MAC control frame. |
|       | This field is valid when Last Descriptor (RDES0[8]) is set. When the Last                                 |
|       | Descriptor and Error Summary bits are not set, this field indicates the                                   |
|       | accumulated number of bytes that have been transferred for the current frame.                             |
| 15    | ES: Error Summary                                                                                         |
|       | Indicates the logical OR of the following bits:                                                           |
|       | RDES0[0]: Payload Checksum Error                                                                          |
|       | RDES0[1]: CRC Error                                                                                       |
|       | RDES0[3]: Receive Error                                                                                   |
|       | RDES0[4]: Watchdog Timeout                                                                                |
|       | RDES0[6]: Late Collision                                                                                  |
|       | RDES0[7]: IPC Checksum                                                                                    |
|       | RDES0[11]: Overflow Error                                                                                 |
|       | RDES0[14]: Descriptor Error                                                                               |
|       | This field is valid only when the Last Descriptor (RDES0[8]) is set.                                      |
| 14    | DE: Descriptor Error                                                                                      |
|       | When set, this bit indicates a frame truncation caused by a frame that does not                           |
|       | fit within the current descriptor buffers, and that the DMA does not own the Next                         |
|       | Descriptor. The frame is truncated. This field is valid only when the Last                                |
|       | Descriptor (RDES0[8]) is set                                                                              |
| 13    | SAF: Source Address Filter Fail                                                                           |
|       | When set, this bit indicates that the SA field of frame failed the SA Filter in the                       |
|       | GMAC Core.                                                                                                |

| Bit | Description                                                                                                        |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 12  | LE: Length Error                                                                                                   |
|     | When set, this bit indicates that the actual length of the frame received and that                                 |
|     | the Length/ Type field does not match. This bit is valid only when the Frame Type                                  |
|     | (RDES0[5]) bit is reset. Length error status is not valid when CRC error is                                        |
|     | present.                                                                                                           |
| 11  | OE: Overflow Error                                                                                                 |
|     | When set, this bit indicates that the received frame was damaged due to buffer                                     |
|     | overflow.                                                                                                          |
| 10  | VLAN: VLAN Tag                                                                                                     |
|     | When set, this bit indicates that the frame pointed to by this descriptor is a VLAN                                |
|     | frame tagged by the GMAC Core.                                                                                     |
| 9   | FS: First Descriptor                                                                                               |
|     | When set, this bit indicates that this descriptor contains the first buffer of the                                 |
|     | frame. If the size of the first buffer is 0, the second buffer contains the beginning                              |
|     | of the frame. If the size of the second buffer is also 0, the next Descriptor contains the beginning of the frame. |
| 8   | LS: Last Descriptor                                                                                                |
| Ū   | When set, this bit indicates that the buffers pointed to by this descriptor are the                                |
|     | last buffers of the frame.                                                                                         |
| 7   | IPC Checksum Error/Giant Frame                                                                                     |
|     | When IP Checksum Engine is enabled, this bit, when set, indicates that the 16-bit                                  |
|     | IPv4 Header checksum calculated by the core did not match the received                                             |
|     | checksum bytes. The Error Summary bit[15] is NOT set when this bit is set in this                                  |
|     | mode.                                                                                                              |
| 6   | LC: Late Collision                                                                                                 |
|     | When set, this bit indicates that a late collision has occurred while receiving the                                |
|     | frame in Half-Duplex mode.                                                                                         |
| 5   | FT: Frame Type                                                                                                     |
|     | When set, this bit indicates that the Receive Frame is an Ethernet-type frame                                      |
|     | (the LT field is greater than or equal to 16'h0600). When this bit is reset, it                                    |
|     | indicates that the received frame is an IEEE802.3 frame. This bit is not valid for                                 |
| 4   | Runt frames less than 14 bytes.<br>RWT: Receive Watchdog Timeout                                                   |
| 4   | When set, this bit indicates that the Receive Watchdog Timer has expired while                                     |
|     | receiving the current frame and the current frame is truncated after the                                           |
|     | Watchdog Timeout.                                                                                                  |
| 3   | RE: Receive Error                                                                                                  |
|     | When set, this bit indicates that the gmii_rxer_i signal is asserted while                                         |
|     | gmii_rxdv_i is asserted during frame reception. This error also includes carrier                                   |
|     | extension error in GMII and Half-duplex mode. Error can be of less/no extension,                                   |
|     | or error (rxd $\neq$ 0f) during extension.                                                                         |
| 2   | DE: Dribble Bit Error                                                                                              |
|     | When set, this bit indicates that the received frame has a non-integer multiple of                                 |
|     | bytes (odd nibbles). This bit is valid only in MII Mode.                                                           |
| 1   | CE: CRC Error                                                                                                      |

| Bit | Description                                                                        |  |  |
|-----|------------------------------------------------------------------------------------|--|--|
|     | When set, this bit indicates that a Cyclic Redundancy Check (CRC) Error occurred   |  |  |
|     | on the received frame. This field is valid only when the Last Descriptor           |  |  |
|     | (RDES0[8]) is set.                                                                 |  |  |
| 0   | Rx MAC Address/Payload Checksum Error                                              |  |  |
|     | When set, this bit indicates that the Rx MAC Address registers value (1 to 15)     |  |  |
|     | matched the frame's DA field. When reset, this bit indicates that the Rx MAC       |  |  |
|     | Address Register 0 value matched the DA field.                                     |  |  |
|     | If Full Checksum Offload Engine is enabled, this bit, when set, indicates the TCP, |  |  |
|     | UDP, or ICMP checksum the core calculated does not match the received              |  |  |
|     | encapsulated TCP, UDP, or ICMP segment's Checksum field. This bit is also set      |  |  |
|     | when the received number of payload bytes does not match the value indicated       |  |  |
|     | in the Length field of the encapsulated IPv4 or IPv6 datagram in the received      |  |  |
|     | Ethernet frame.                                                                    |  |  |

## **Receive Descriptor 1 (RDES1)**

RDES1 contains the buffer sizes and other bits that control the descriptor chain/ring.

| Bit   | Description                                                                            |  |
|-------|----------------------------------------------------------------------------------------|--|
| 31    | Disable Interrupt on Completion                                                        |  |
|       | When set, this bit will prevent the setting of the RI (CSR5[6]) bit of the             |  |
|       | GMAC_STATUS Register for the received frame that ends in the buffer pointed to         |  |
|       | by this descriptor. This, in turn, will disable the assertion of the interrupt to Host |  |
|       | due to RI for that frame.                                                              |  |
| 30:26 | Reserved.                                                                              |  |
| 25    | RER: Receive End of Ring                                                               |  |
|       | When set, this bit indicates that the descriptor list reached its final descriptor.    |  |
|       | The DMA returns to the base address of the list, creating a Descriptor Ring.           |  |
| 24    | RCH: Second Address Chained                                                            |  |
|       | When set, this bit indicates that the second address in the descriptor is the Next     |  |
|       | Descriptor address rather than the second buffer address. When RDES1[24] is            |  |
|       | set, RBS2 (RDES1[21-11]) is a "don't care" value.                                      |  |
|       | RDES1[25] takes precedence over RDES1[24].                                             |  |
| 23:22 | Reserved.                                                                              |  |
| 21:11 | RBS2: Receive Buffer 2 Size                                                            |  |
|       | These bits indicate the second data buffer size in bytes. The buffer size must be a    |  |
|       | multiple of 8 depending upon the bus widths (64), even if the value of RDES3           |  |
|       | (buffer2 address pointer) is not aligned to bus width. In the case where the           |  |
|       | buffer size is not a multiple of 8, the resulting behavior is undefined. This field is |  |
|       | not valid if RDES1[24] is set.                                                         |  |
| 10:0  | RBS1: Receive Buffer 1 Size                                                            |  |
|       | Indicates the first data buffer size in bytes. The buffer size must be a multiple of   |  |
|       | 8 depending upon the bus widths (64), even if the value of RDES2 (buffer1              |  |
|       | address pointer) is not aligned. In the case where the buffer size is not a multiple   |  |
|       | of 8, the resulting behavior is undefined. If this field is 0, the DMA ignores this    |  |

Table 22-5 Receive Descriptor 1

T

buffer and uses Buffer 2 or next descriptor depending on the value of RCH (Bit 24).

## **Receive Descriptor 2 (RDES2)**

RDES2 contains the address pointer to the first data buffer in the descriptor.

| Table 22-6 Receive Descriptor 2 |  |
|---------------------------------|--|
|                                 |  |

| Bit  | Description                                                                           |
|------|---------------------------------------------------------------------------------------|
| 31:0 | Buffer 1 Address Pointer                                                              |
|      | These bits indicate the physical address of Buffer 1. There are no limitations on the |
|      | buffer address alignment except for the following condition: The DMA uses the         |
|      | configured value for its address generation when the RDES2 value is used to store     |
|      | the start of frame. Note that the DMA performs a write operation with the             |
|      | RDES2[2:0] bits as 0 during the transfer of the start of frame but the frame data     |
|      | is shifted as per the actual Buffer address pointer. The DMA ignores RDES2[2:0]       |
|      | (corresponding to bus width of 64) if the address pointer is to a buffer where the    |
|      | middle or last part of the frame is stored.                                           |

### **Receive Descriptor 3 (RDES3)**

RDES3 contains the address pointer either to the second data buffer in the descriptor or to the next descriptor.

| Bit  | Description                                                                       |
|------|-----------------------------------------------------------------------------------|
| 31:0 | Buffer 2 Address Pointer (Next Descriptor Address)                                |
|      | These bits indicate the physical address of Buffer 2 when a descriptor ring       |
|      | structure is used. If the Second Address Chained (RDES1[24]) bit is set, this     |
|      | address contains the pointer to the physical memory where the                     |
|      | Next Descriptor is present.                                                       |
|      | If RDES1[24] is set, the buffer (Next Descriptor) address pointer must be bus     |
|      | width-aligned (RDES3[2:0] = 0, corresponding to a bus width of 64. LSBs are       |
|      | ignored internally.) However, when                                                |
|      | RDES1[24] is reset, there are no limitations on the RDES3 value, except for the   |
|      | following condition: The DMA uses the configured value for its buffer address     |
|      | generation when the RDES3 value is used to store the start of frame. The DMA      |
|      | ignores RDES3[2:0] (corresponding to a bus width of 64) if the address pointer is |
|      | to a buffer where the middle or last part of the frame is stored.                 |

## 22.6.3 Transmit Descriptor

The descriptor addresses must be aligned to the bus width used (64). Each descriptor is provided with two buffers, two byte-count buffers, and two address pointers, which enable the adapter port to be compatible with various types of memory-management schemes.

#### Transmit Descriptor 0 (TDES0)

TDES0 contains the transmitted frame status and the descriptor ownership information.

| Table 22-8 Transmit Descriptor 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 31                               | OWN: Own Bit<br>When set, this bit indicates that the descriptor is owned by the DMA. When this<br>bit is reset, this bit indicates that the descriptor is owned by the Host. The DMA<br>clears this bit either when it completes the frame transmission or when the<br>buffers allocated in the descriptor are empty. The ownership bit of the First<br>Descriptor of the frame should be set after all subsequent descriptors belonging<br>to the same frame have been set. This avoids a possible race condition between<br>fetching a descriptor and the driver setting an ownership bit.                                                                                                                                   |  |
| 30:17                            | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 16                               | IHE: IP Header Error<br>When set, this bit indicates that the Checksum Offload engine detected an IP<br>header error and consequently did not modify the transmitted frame for any<br>checksum insertion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 15                               | ES: Error Summary<br>Indicates the logical OR of the following bits:<br>• TDES0[14]: Jabber Timeout<br>• TDES0[13]: Frame Flush<br>• TDES0[11]: Loss of Carrier<br>• TDES0[10]: No Carrier<br>• TDES0[9]: Late Collision<br>• TDES0[8]: Excessive Collision<br>• TDES0[2]: Excessive Deferral<br>• TDES0[1]: Underflow Error                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 14                               | JT: Jabber Timeout<br>When set, this bit indicates the GMAC transmitter has experienced a jabber time-<br>out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 13                               | FF: Frame Flushed<br>When set, this bit indicates that the DMA/MTL flushed the frame due to a SW<br>flush command given by the CPU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 12                               | PCE: Payload Checksum Error<br>This bit, when set, indicates that the Checksum Offload engine had a failure and<br>did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload.<br>This failure can be either due to insufficient bytes, as indicated by the IP Header's<br>Payload Length field, or the MTL starting to forward the frame to the MAC<br>transmitter in Store-and-Forward mode without the checksum having been<br>calculated yet. This second error condition only occurs when the Transmit FIFO<br>depth is less than the length of the Ethernet frame being transmitted: to avoid<br>deadlock, the MTL starts forwarding the frame when the FIFO is full, even in<br>Store-and-Forward mode. |  |
| 11                               | LC: Loss of Carrier<br>When set, this bit indicates that Loss of Carrier occurred during frame<br>transmission. This is valid only for the frames transmitted without collision and<br>when the GMAC operates in Half-Duplex Mode.<br>NC: No Carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 10                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

| Bit | Description                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.                                                                                                                                                                                                                                                                                                                  |
| 9   | LC: Late Collision<br>When set, this bit indicates that frame transmission was aborted due to a<br>collision occurring after the collision window (64 byte times including Preamble in<br>RMII Mode and 512 byte times including Preamble and Carrier Extension in<br>RGMII Mode). Not valid if Underflow Error is set.                                                                                                        |
| 8   | EC: Excessive Collision<br>When set, this bit indicates that the transmission was aborted after 16 successive<br>collisions while attempting to transmit the current frame. If the DR (Disable<br>Retry) bit in the GMAC Configuration Register is set, this bit is set after the first<br>collision and the transmission of the frame is aborted.                                                                             |
| 7   | VF: VLAN Frame<br>When set, this bit indicates that the transmitted frame was a VLAN-type frame.                                                                                                                                                                                                                                                                                                                               |
| 6:3 | CC: Collision Count<br>This 4-bit counter value indicates the number of collisions occurring before the<br>frame was transmitted. The count is not valid when the Excessive Collisions bit<br>(TDES0[8]) is set.                                                                                                                                                                                                               |
| 2   | ED: Excessive Deferral<br>When set, this bit indicates that the transmission has ended because of excessive<br>deferral of over 24,288 bit times (155,680 bits times in 1000-Mbps mode) if the<br>Deferral Check (DC) bit is set high in the GMAC Control Register.                                                                                                                                                            |
| 1   | UF: Underflow Error<br>When set, this bit indicates that the GMAC aborted the frame because data<br>arrived late from the Host memory. Underflow Error indicates that the DMA<br>encountered an empty Transmit Buffer while transmitting the frame. The<br>transmission process enters the suspended state and sets both Transmit<br>Underflow (Register GMAC_STATUS[5]) and Transmit Interrupt (Register<br>GMAC_STATUS [0]). |
| 0   | DB: Deferred Bit<br>When set, this bit indicates that the GMAC defers before transmission because of<br>the presence of carrier. This bit is valid only in Half-Duplex mode.                                                                                                                                                                                                                                                   |

## Transmit Descriptor 1 (TDES1)

TDES1 contains the buffer sizes and other bits which control the descriptor chain/ring and the frame being transferred.

| Bit | Description                                                                        |
|-----|------------------------------------------------------------------------------------|
| 31  | IC: Interrupt on Completion                                                        |
|     | When set, this bit sets Transmit Interrupt (Register 5[0]) after the present frame |
|     | has been transmitted.                                                              |
| 30  | LS: Last Segment                                                                   |
|     | When set, this bit indicates that the buffer contains the last segment of the      |
|     | frame.                                                                             |
| 29  | FS: First Segment                                                                  |

Table 22-9 Transmit Descriptor 1

| Bit   | Description                                                                                                                                                       |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31    | IC: Interrupt on Completion                                                                                                                                       |  |
|       | When set, this bit sets Transmit Interrupt (Register 5[0]) after the present frame                                                                                |  |
|       | has been transmitted.                                                                                                                                             |  |
|       | When set, this bit indicates that the buffer contains the first segment of a frame.                                                                               |  |
| 28:27 | CIC: Checksum Insertion Control                                                                                                                                   |  |
|       | These bits control the insertion of checksums in Ethernet frames that encapsulate                                                                                 |  |
|       | TCP, UDP, or ICMP over IPv4 or IPv6 as described below.                                                                                                           |  |
|       | <ul> <li>2'b00: Do nothing. Checksum Engine is bypassed</li> </ul>                                                                                                |  |
|       | • 2'b01: Insert IPv4 header checksum. Use this value to insert IPv4 header                                                                                        |  |
|       | checksum when the frame encapsulates an IPv4 datagram.                                                                                                            |  |
|       | • 2'b10: Insert TCP/UDP/ICMP checksum. The checksum is calculated over the                                                                                        |  |
|       | TCP, UDP, or ICMP segment only and the TCP, UDP, or ICMP pseudo-header                                                                                            |  |
|       | checksum is assumed to be present in the corresponding input frame's Checksum                                                                                     |  |
|       | field. An IPv4 header checksum is also inserted if the encapsulated datagram                                                                                      |  |
|       | conforms to IPv4.                                                                                                                                                 |  |
|       | • 2'b11: Insert a TCP/UDP/ICMP checksum that is fully calculated in this engine.                                                                                  |  |
|       | In other words, the TCP, UDP, or ICMP pseudo-header is included in the checksum                                                                                   |  |
|       | calculation, and the input frame's corresponding Checksum field has an all-zero value. An IPv4 Header checksum is also inserted if the encapsulated datagram      |  |
|       | conforms to IPv4.                                                                                                                                                 |  |
|       | The Checksum engine detects whether the TCP, UDP, or ICMP segment is                                                                                              |  |
|       | encapsulated in IPv4 or IPv6 and processes its data accordingly.                                                                                                  |  |
| 26    | DC: Disable CRC                                                                                                                                                   |  |
|       | When set, the GMAC does not append the Cyclic Redundancy Check (CRC) to the                                                                                       |  |
|       | end of the transmitted frame. This is valid only when the first segment                                                                                           |  |
|       | (TDES1[29]).                                                                                                                                                      |  |
| 25    | TER: Transmit End of Ring                                                                                                                                         |  |
|       | When set, this bit indicates that the descriptor list reached its final descriptor.                                                                               |  |
|       | The returns to the base address of the list, creating a descriptor ring.                                                                                          |  |
| 24    | TCH: Second Address Chained                                                                                                                                       |  |
|       | When set, this bit indicates that the second address in the descriptor is the Next                                                                                |  |
|       | Descriptor address rather than the second buffer address. When TDES1[24] is                                                                                       |  |
|       | set, TBS2 (TDES1[21–11]) are "don't care" values.                                                                                                                 |  |
|       | TDES1[25] takes precedence over TDES1[24].                                                                                                                        |  |
| 23    | DP: Disable Padding                                                                                                                                               |  |
|       | When set, the GMAC does not automatically add padding to a frame shorter than 64 bytes. When this bit is reset, the DMA automatically adds padding and CPC to     |  |
|       | 64 bytes. When this bit is reset, the DMA automatically adds padding and CRC to a frame shorter than 64 bytes and the CRC field is added despite the state of the |  |
|       | DC (TDES1[26]) bit. This is valid only when the first segment (TDES1[29]) is set.                                                                                 |  |
| 22    | Reserved.                                                                                                                                                         |  |
| 21:11 | TBS2: Transmit Buffer 2 Size                                                                                                                                      |  |
|       | These bits indicate the Second Data Buffer in bytes. This field is not valid if                                                                                   |  |
|       | TDES1[24] is set.                                                                                                                                                 |  |
| 10:0  | TBS1: Transmit Buffer 1 Size                                                                                                                                      |  |
|       |                                                                                                                                                                   |  |

| Bit | Description                                                                        |  |
|-----|------------------------------------------------------------------------------------|--|
| 31  | IC: Interrupt on Completion                                                        |  |
|     | When set, this bit sets Transmit Interrupt (Register 5[0]) after the present frame |  |
|     | has been transmitted.                                                              |  |
|     | These bits indicate the First Data Buffer byte size. If this field is 0, the DMA   |  |
|     | ignores this buffer and uses Buffer 2 or next descriptor depending on the value of |  |
|     | TCH (Bit 24).                                                                      |  |

## Transmit Descriptor 2 (TDES2)

TDES2 contains the address pointer to the first buffer of the descriptor.

| Table 22-10 | Transmit Descriptor 2 |
|-------------|-----------------------|
|             |                       |

| Bit  | Description                                                                         |
|------|-------------------------------------------------------------------------------------|
| 31:0 | Buffer 1 Address Pointer                                                            |
|      | These bits indicate the physical address of Buffer 1. There is no limitation on the |
|      | buffer address alignment.                                                           |

## Transmit Descriptor 3 (TDES3)

TDES3 contains the address pointer either to the second buffer of the descriptor or the next descriptor.

Table 22-11 Transmit Descriptor 3

| Bit  | Description                                                                          |
|------|--------------------------------------------------------------------------------------|
| 31:0 | Buffer 2 Address Pointer (Next Descriptor Address)                                   |
|      | Indicates the physical address of Buffer 2 when a descriptor ring structure is used. |
|      | If the Second Address Chained (TDES1[24]) bit is set, this address contains the      |
|      | pointer to the physical memory where the Next                                        |
|      | Descriptor is present. The buffer address pointer must be aligned to the bus width   |
|      | only when TDES1[24] is set. (LSBs are ignored internally.)                           |

## 22.6.4 Programming Guide

## **DMA Initialization – Descriptors**

The following operations must be performed to initialize the DMA.

1. Provide a software reset. This will reset all of the GMAC internal registers and logic. (GMAC\_OP\_MODE[0]).

2. Wait for the completion of the reset process (poll GMAC\_OP\_MODE[0], which is only cleared after the reset operation is completed).

3. Program the following fields to initialize the Bus Mode Register by setting values in register GMAC\_BUS\_MODE

- a. Mixed Burst and AAL
- b. Fixed burst or undefined burst
- c. Burst length values and burst mode values.
- d. Descriptor Length (only valid if Ring Mode is used)
- e. Tx and Rx DMA Arbitration scheme

4. Program the AXI Interface options in the register GMAC\_BUS\_MODE

a. If fixed burst-length is enabled, then select the maximum burst-length possible on the AXI bus (Bits[7:1])

### RK3328 TRM-Part1

5. A proper descriptor chain for transmit and receive must be created. It should also ensure that the receive descriptors are owned by DMA (bit 31 of descriptor should be set). When OSF mode is used, at least two descriptors are required.

6. Software should create three or more different transmit or receive descriptors in the chain before reusing any of the descriptors.

7. Initialize receive and transmit descriptor list address with the base address of transmit and receive descriptor (register GMAC\_RX\_DESC\_LIST\_ADDR and

GMAC\_TX\_DESC\_LIST\_ADDR).

8. Program the following fields to initialize the mode of operation by setting values in register GMAC\_OP\_MODE

a. Receive and Transmit Store And Forward

- b. Receive and Transmit Threshold Control (RTC and TTC)
- c. Hardware Flow Control enable

d. Flow Control Activation and De-activation thresholds for MTL Receive and Transmit FIFO (RFA and RFD)

e. Error Frame and undersized good frame forwarding enable

f. OSF Mode

9. Clear the interrupt requests, by writing to those bits of the status register (interrupt bits only) which are set. For example, by writing 1 into bit 16 - normal interrupt summary will clear this bit (register GMAC\_STATUS).

10. Enable the interrupts by programming the interrupt enable register GMAC\_INT\_ENA. 11. Start the Receive and Transmit DMA by setting SR (bit 1) and ST (bit 13) of the control register GMAC\_OP\_MODE.

## **MAC Initialization**

The following MAC Initialization operations can be performed after the DMA initialization sequence. If the MAC Initialization is done before the DMA is set-up, then enable the MAC receiver (last step below) only after the DMA is active. Otherwise, received frames will fill the RxFIFO and overflow.

1. Program the register GMAC\_GMII\_ADDR for controlling the management cycles for external PHY, for example, Physical Layer Address PA (bits 15-11). Also set bit 0 (GMII Busy) for writing into PHY and reading from PHY.

2. Read the 16-bit data of (GMAC\_GMII\_DATA) from the PHY for link up, speed of operation, and mode of operation, by specifying the appropriate address value in registerGMAC\_GMII\_ADDR (bits 15-11).

3. Provide the MAC address registers (GMAC\_MAC\_ADDR0\_HI and GMAC\_MAC\_ADDR0\_LO).

4. If Hash filtering is enabled in your configuration, program the Hash filter register (GMAC\_HASH\_TAB\_HI and GMAC\_HASH\_TAB\_LO).

5. Program the following fields to set the appropriate filters for the incoming frames in register GMAC\_MAC\_FRM\_FILT

a. Receive All

- b. Promiscuous mode
- c. Hash or Perfect Filter
- d. Unicast, Multicast, broad cast and control frames filter settings etc.
- 6. Program the following fields for proper flow control in register GMAC\_FLOW\_CTRL.
  - a. Pause time and other pause frame control bits

- b. Receive and Transmit Flow control bits
- c. Flow Control Busy/Backpressure Activate

7. Program the Interrupt Mask register bits, as required, and if applicable, for your configuration.

8. Program the appropriate fields in register GMAC\_MAC\_CONF for example, Inter-frame gap while transmission, jabber disable, etc. Based on the Auto-negotiation you can set the Duplex mode (bit 11), port select (bit 15), etc.

9. Set the bits Transmit enable (TE bit-3) and Receive Enable (RE bit-2) in register GMAC\_MAC\_CONF.

## Normal Receive and Transmit Operation

For normal operation, the following steps can be followed.

- For normal transmit and receive interrupts, read the interrupt status. Then poll the descriptors, reading the status of the descriptor owned by the Host (either transmit or receive).
- On completion of the above step, set appropriate values for the descriptors, ensuring that transmit and receive descriptors are owned by the DMA to resume the transmission and reception of data.
- If the descriptors were not owned by the DMA (or no descriptor is available), the DMA will go into SUSPEND state. The transmission or reception can be resumed by freeing the descriptors and issuing a poll demand by writing 0 into the Tx/Rx poll demand register (GMAC\_TX\_POLL\_DEMAND and GMAC\_RX\_POLL\_DEMAND).
- The values of the current host transmitter or receiver descriptor address pointer can be read for the debug process (GMAC\_CUR\_HOST\_TX\_DESC and GMAC\_CUR\_HOST\_RX\_DESC).
- The values of the current host transmit buffer address pointer and receive buffer address pointer can be read for the debug process (GMAC\_CUR\_HOST\_TX\_Buf\_ADDR and GMAC\_CUR\_HOST\_RX\_BUF\_ADDR).

## Stop and Start Operation

When the transmission is required to be paused for some time then the following steps can be followed.

1. Disable the Transmit DMA (if applicable), by clearing ST (bit 13) of the control register GMAC\_OP\_MODE.

2. Wait for any previous frame transmissions to complete. This can be checked by reading the appropriate bits of MAC Debug register.

3. Disable the MAC transmitter and MAC receiver by clearing the bits Transmit enable (TE bit-3) and Receive Enable (RE bit-2) in register GMAC\_MAC\_CONF.

4. Disable the Receive DMA (if applicable), after making sure the data in the RX FIFO is transferred to the system memory (by reading the register GMAC\_DEBUG).

5. Make sure both the TX FIFO and RX FIFO are empty.

6. To re-start the operation, start the DMAs first, before enabling the MAC Transmitter and Receiver.

## 22.6.5 Clock Architecture

In RMII mode, reference clock and TX/RX clock can be from CRU or external OSC as following figure.

The mux select rmii\_speed is GRF\_SOC\_CON1[11].

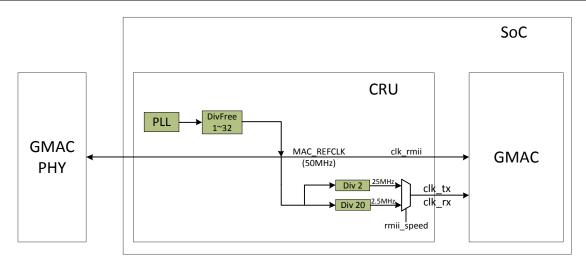



Fig. 22-12 RMII clock architecture when clock source from CRU

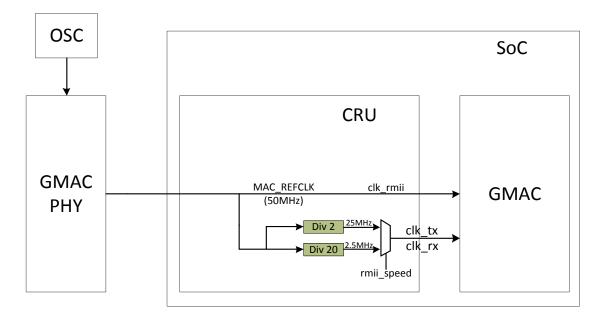



Fig. 22-13 RMII clock architecture when clock source from external OSC  $\,$ 

In RGMII mode, clock architecture only supports that TX clock source is from CRU as following figure.

In order to dynamically adjust the timing between TX/RX clocks with data, deleyline is integrated in TX and RX clock path. Register GRF\_SOC\_CON3[15:14] can enable the deleylines, and GRF\_SOC\_CON3[13:0] is used to determine the delay length. There are 100 deley elements in each delayline.

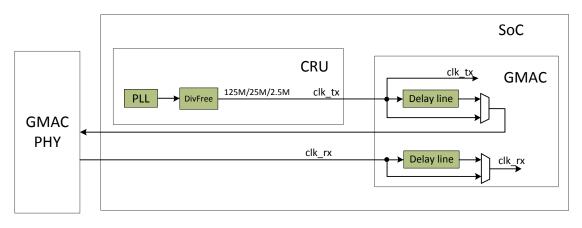



Fig. 22-14 RGMII clock architecture when clock source from CRU

## 22.6.6 Remote Wake-Up Frame Filter Register

The register wkupfmfilter\_reg, address (028H), loads the Wake-up Frame Filter register. To load values in a Wake-up Frame Filter register, the entire register (wkupfmfilter\_reg) must be written. The wkupfmfilter\_reg register is loaded by sequentially loading the eight register values in address (028) for wkupfmfilter\_reg0, wkupfmfilter\_reg1, ..., wkupfmfilter\_reg7, respectively. Wkupfmfilter\_reg is read in the same way. The internal counter to access the appropriate wkupfmfilter\_reg is incremented when lane3 (or lane 0 in big-endian) is accessed by the CPU. This should be kept in mind if you are accessing these registers in byte or half-word mode.

| wkupfmfilter_reg0 | Filter 0 Byte Mask                |                     |                 |                     |                   |                     |                 |                     |
|-------------------|-----------------------------------|---------------------|-----------------|---------------------|-------------------|---------------------|-----------------|---------------------|
| wkupfmfilter_reg1 | pfmfilter_reg1 Filter 1 Byte Mask |                     |                 |                     |                   |                     |                 |                     |
| wkupfmfilter_reg2 | Filter 2 Byte Mask                |                     |                 |                     |                   |                     |                 |                     |
| wkupfmfilter_reg3 |                                   | Filter 3 Byte Mask  |                 |                     |                   |                     |                 |                     |
| wkupfmfilter_reg4 | RSVD                              | Filter 3<br>Command | RSVD            | Filter 2<br>Command | RSVD              | Filter 1<br>Command | RSVD            | Filter 0<br>Command |
| wkupfmfilter_reg5 | Filter 3 Offset                   |                     | Filter 2 Offset |                     | Filter 1 Offset   |                     | Filter 0 Offset |                     |
| wkupfmfilter_reg6 | Filter 1 CRC - 16                 |                     |                 | Filter 0 CRC - 16   |                   |                     |                 |                     |
| wkupfmfilter_reg7 | Filter 3 CRC - 16                 |                     |                 |                     | Filter 2 CRC - 16 |                     |                 |                     |

Fig. 22-15 Wake-Up Frame Filter Register

## Filter i Byte Mask

This register defines which bytes of the frame are examined by filter i (0, 1, 2, and 3) in order to determine whether or not the frame is a wake-up frame. The MSB (thirty-first bit) must be zero. Bit j [30:0] is the Byte Mask. If bit j (byte number) of the Byte Mask is set, then Filter i Offset + j of the incoming frame is processed by the CRC block; otherwise Filter i Offset + j is ignored.

## Filter i Command

This 4-bit command controls the filter i operation. Bit 3 specifies the address type, defining the pattern's destination address type. When the bit is set, the pattern applies to only multicast frames; when the bit is reset, the pattern applies only to unicast frame. Bit 2 and Bit 1 are reserved. Bit 0 is the enable for filter i; if Bit 0 is not set, filter i is disabled. *Filter i Offset* 

## RK3328 TRM-Part1

This register defines the offset (within the frame) from which the frames are examined by filter i. This 8-bit pattern-offset is the offset for the filter i first byte to examined. The minimum allowed is 12, which refers to the 13th byte of the frame (offset value 0 refers to the first byte of the frame).

## Filter i CRC-16

This register contains the CRC\_16 value calculated from the pattern, as well as the byte mask programmed to the wake-up filter register block.

## 22.6.7 System Consideration During Power-Down

GMAC neither gates nor stops clocks when Power-Down mode is enabled. Power saving by clock gating must be done outside the core by the CRU. The receive data path must be clocked with clk\_rx\_i during Power-Down mode, because it is involved in magic

packet/wake-on-LAN frame detection. However, the transmit path and the APB path clocks can be gated off during Power-Down mode.

The PMT interrupt is asserted when a valid wake-up frame is received. This interrupt is generated in the clk\_rx domain.

The recommended power-down and wake-up sequence is as follows.

1. Disable the Transmit DMA (if applicable) and wait for any previous frame transmissions to complete. These transmissions can be detected when Transmit Interrupt (TI - Register GMAC\_STATUS[0]) is received.

2. Disable the MAC transmitter and MAC receiver by clearing the appropriate bits in the MAC Configuration register.

3. Wait until the Receive DMA empties all the frames from the Rx FIFO (a software timer may be required).

4. Enable Power-Down mode by appropriately configuring the PMT registers.

5. Enable the MAC Receiver and enter Power-Down mode.

6. Gate the APB and transmit clock inputs to the core (and other relevant clocks in the system) to reduce power and enter Sleep mode.

7. On receiving a valid wake-up frame, the GMAC asserts the PMT interrupt signal and exits Power-Down mode.

8. On receiving the interrupt, the system must enable the APB and transmit clock inputs to the core.

9. Read the register GMAC\_PMT\_CTRL\_STA to clear the interrupt, then enable the other modules in the system and resume normal operation.

## 22.6.8 GRF Register Summary

| GMAC2IO            |                                 |  |  |  |  |
|--------------------|---------------------------------|--|--|--|--|
| GRF Register       | Register Description            |  |  |  |  |
| GRF_MAC_CON0[6:0]  | RGMII TX clock delayline value  |  |  |  |  |
| GRF_MAC_CON0[13:7] | RGMII RX clock delayline value  |  |  |  |  |
|                    | RGMII TX clock delayline enable |  |  |  |  |
| GRF_MAC_CON1[0]    | 1'b1: enable                    |  |  |  |  |
|                    | 1'b0: disable                   |  |  |  |  |
|                    | RGMII RX clock delayline enable |  |  |  |  |
| GRF_MAC_CON1[1]    | 1'b1: enable                    |  |  |  |  |
|                    | 1'b0: disable                   |  |  |  |  |

|                     | CMACanaad                                                |
|---------------------|----------------------------------------------------------|
|                     | GMACspeed                                                |
| GRF_MAC_CON1[2]     | 1'b1: 100-Mbps                                           |
|                     | 1'b0: 10-Mbps                                            |
|                     | GMAC transmit flow control                               |
|                     | When set high, instructs the GMAC to transmit PAUSE      |
| GRF_MAC_CON1[3]     | Control frames in Full-duplex mode. In Half-duplex mode, |
|                     | the GMAC enables the Back-pressure function until this   |
|                     | signal is made low again                                 |
|                     | PHY interface select                                     |
| GRF_MAC_CON1[6:4]   | 3'b001: RGMII                                            |
|                     | 3'b100: RMII                                             |
|                     | All others: Reserved                                     |
|                     | RMII clock selection                                     |
| GRF_MAC_CON1[7]     | 1'b1: 25MHz                                              |
|                     | 1'b0: 2.5MHz                                             |
|                     | RMII mode selection                                      |
| GRF_MAC_CON1[9]     | 1'b1: RMII mode                                          |
|                     | 1'b0: Reserved                                           |
|                     | GMAC clock source selection                              |
| GRF_MAC_CON1[10]    | 1'b1:clock from external OSC                             |
|                     | 1'b0:clock from CRU                                      |
|                     | RGMII clock selection                                    |
| GRF_MAC_CON1[12:11] | 2'b00: 125MHz                                            |
|                     | 2'b11: 25MHz                                             |
|                     | 2'b10: 2.5MHz                                            |
|                     | GMAC IO selection                                        |
| GRF_CON_IOMUX[2]    | 1'b1:select M1                                           |
|                     | 1'b0:select M0                                           |
|                     | GMAC M1 channel select                                   |
|                     | 1'b1:M1's outputs come from M0's pad when set            |
| GRF_CON_IOMUX[10]   | GRF_CON_IOMUX[2] high                                    |
|                     | 1'b0:GMAC controller connect M1 directly when set        |
|                     | GRF_CON_IOMUX[2] high<br>GMAC2PHY                        |
| CDE Dogistor        |                                                          |
| GRF Register        | Register Description                                     |
|                     | GMACspeed<br>1'b1: 100-Mbps                              |
| GRF_MAC_CON2[2]     | 1'b0: 10-Mbps                                            |
|                     | GMAC transmit flow control                               |
| GRF_MAC_CON2[3]     | When set high, instructs the GMAC to transmit PAUSE      |
|                     | Control frames in Full-duplex mode. In Half-duplex mode, |
|                     | the GMAC enables the Back-pressure function until this   |
|                     | signal is made low again                                 |
|                     | PHY interface select                                     |
|                     | 3'b001: RGMII                                            |
| GRF_MAC_CON2[6:4]   |                                                          |
|                     | 3'b100: RMII                                             |
|                     | All others: Reserved                                     |

|                  | RMII clock selection         |
|------------------|------------------------------|
| GRF_MAC_CON2[7]  | 1'b1: 25MHz                  |
|                  | 1'b0: 2.5MHz                 |
|                  | RMII mode selection          |
| GRF_MAC_CON2[9]  | 1'b1: RMII mode              |
|                  | 1'b0: Reserved               |
|                  | GMAC clock source selection  |
| GRF_MAC_CON2[10] | 1'b1:clock from external OSC |
|                  | 1'b0:clock from CRU          |

## 22.6.9 GMAC2IO Channel Description

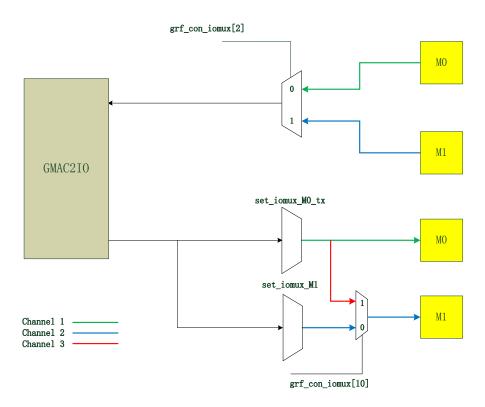



Fig. 22-16 gmac2io channel architecture

There are 3 different channels between GMAC controller and IO. The set\_iomux\_M0 and set\_iomux\_M1 in the upper figure means a series of IOMUX settings in table 1-1,1-2,1-3 and 1-4.

1. setting GRF\_CON\_IOMUX[2] low , GRF\_CON\_IOMUX[10] low and set\_iomux\_M0;

2. setting GRF\_CON\_IOMUX[2] high, GRF\_CON\_IOMUX[10] low and set\_iomux\_M1;

3. setting GRF\_CON\_IOMUX[2] high, GRF\_CON\_IOMUX[10] high , set\_iomux\_M1 and set\_iomux\_M0\_tx;

# **Chapter 23 Pulse Density Modulation Interface Controller**

# 23.1 Overview

The Pulse Density Modulation Interface Controller (PDMC) is a PDM interface controller and decoder that support PDM format. It integrates a clock generator driving the PDM microphone and embeds filters which decimate the incoming bit stream to obtain most common audio rates.

PDMC supports the following features:

- Support one internal 32-bit wide and 128-location deep FIFOs for receiving audio data
- Support receive FIFO full, overflow interrupt and all interrupts can be masked
- Support configurable water level of receive FIFO full interrupt
- Support combined interrupt output
- Support AHB bus slave interface
- Support DMA handshaking interface and configurable DMA water level
- Support PDM master receive mode
- Support 4 paths. Each path is composed of two digital microphone channels, the PDMC can be used with four stereo or eight mono microphones. Each path is enabled or disabled independently
- Support 16 ~24 bit sample resolution
- Support sample rate:

8khz,16khz,32kHz,64kHz,128khz,11.025khz,22.05khz,44.1khz,88.2khz,176.4khz,12kh z,24khz,48khz,96khz,192khz

- Support two 16-bit audio data store together in one 32-bit wide location
- Support programmable data sampling sensibility (rising or falling edge)

# 23.2 Block Diagram

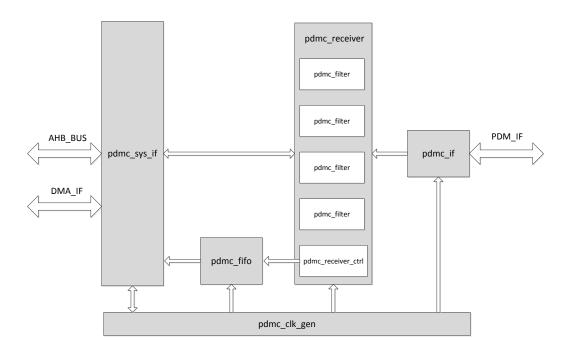



Fig.23-1 PDMC Block Diagram

## System Interface

The system interface implements the APB slave operation. It contains not only control registers of receiver inside but also interrupt and DMA handshaking interface.

### **Clock Generator**

The Clock Generator implements clock generation function. The input source clock to the module is MCLK, and by the divider of the module, the clock generator generates CLK\_PDM to receiver.

#### Receiver

The receiver can act as a decimation filter of PDM. And export PCM format data.

#### **Receive FIFO**

The Receive FIFO is the buffer to store received audio data. The size of the FIFO is 32bits x 128.

#### **PDM** interface

The PDM interface implements PDM bit streams receive operation.

# **23.3 Function Description**

### 23.3.1 AHB Interface

There is an AHB slave interface in PDMC. It is responsible for accessing registers and internal memories. The addresses of these registers and memories are listed in 29.4.1.

## 23.3.2 PDM Interface

The PDM interface is a 5-wire interface. The PDMC module can support up to four external stereo and eight digital microphones.

Fig.1-2 and Fig.1-3 show two cases of use of the PDMC, but all configurations are possible with stereo and mono digital microphones.

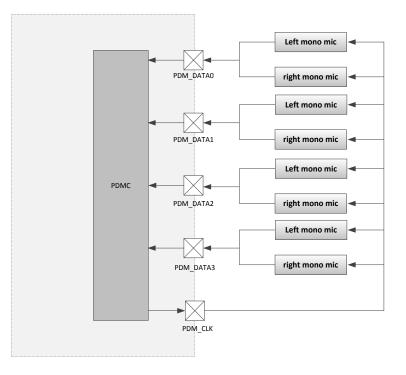



Fig.23-2 PDMC with Eight Mono MIC

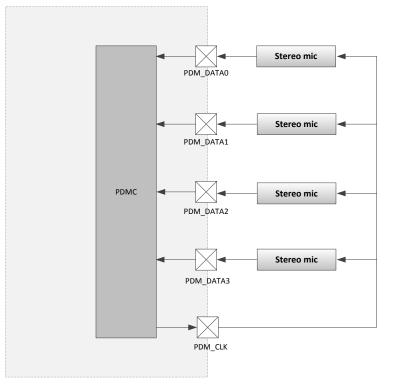



Fig.23-3 PDMC with Four Stereo MIC

The PDM interface consists of a serial-data shift clock output (PDM\_CLK) and a serial data input (PDM\_DATA). The clock is fanned out to both digital mics, and both digital mics' data (left channel and right channel) outputs share a single signal line. To share a single line, the digital mics tristate their output during one phase of the clock(high or low part of cycle, depending on how they are configured via their L/R input).

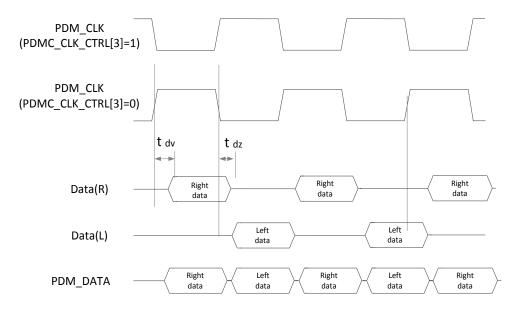



Fig.23-4 PDMC interface diagram with external MIC

# 23.3.3 Digital Filter

The external PDMIC generates a PDM stream of bits and transfers it in one period or one half-period of the clock provided by the PDMC. The aim of the PDMC is to process data from the PDM interface, decimate and filter the data, and store the processed data in the FIFO.

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

### RK3328 TRM-Part1

The four paths are identical. Each path is composed of a left and a right channel. The PDM interface delivers eight parallel data of 1bit. Each bit goes to a filter. The aim of the filter is to limit the noise and export PCM format audio data.

# 23.3.4 Clock Configuration

MCLK is the source clock signal. PDM\_CLK is the output clocks generated in the PDMC and is fed to the external microphones. They are also the internal clock of the external microphones. User must take care about the value of PDM\_CLK when selecting the source clock (MCLK).

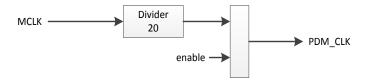



Fig.23-5 PDMC Clock Structure

#### Table 23-1 Relation between MCLK, ASP\_CLK and sample rate

| MCLK      | PDM_CLK   | Sample rate                                 |
|-----------|-----------|---------------------------------------------|
| 61.44Mhz  | 3.072Mhz  | 12khz,24khz,48khz,96khz,192khz              |
| 56.448Mhz | 2.8224Mhz | 11.025khz,22.05khz,44.1khz,88.2khz,176.4khz |
| 40.96Mhz  | 2.048Mhz  | 8khz,16khz,32kHz,64kHz,128khz               |

# 23.4 Register Description

## 23.4.1 Registers Summary

| Name           | Offset  | Size | Reset<br>Value | Description                            |
|----------------|---------|------|----------------|----------------------------------------|
| PDMC_SYSCONFIG | 0x00000 | w    | 0x00000000     | PDMC system config<br>register         |
| PDMC_CTRL0     | 0x00004 | W    | 0x780003f7     | PDMC control register 0                |
| PDMC_CTRL1     | 0x00008 | W    | 0x000000ff     | PDMC control register 1                |
| PDMC_CLK_CTRL  | 0x0000c | w    | 0x00000000     | PDMC clock control<br>register         |
| PDMC_HPF_CTRL  | 0x00010 | w    | 0x00000000     | PDMC high pass filter control register |
| PDMC_FIFO_CTRL | 0x00014 | w    | 0x00000000     | PDMC FIFO control<br>register          |
| PDMC_DMA_CTRL  | 0x00018 | w    | 0x0000001f     | PDMC DMA control<br>register           |
| PDMC_INT_EN    | 0x0001c | w    | 0x00000000     | PDMC interrupt enable register         |

| Name                     | Offset          | Size | Reset<br>Value | Description                               |
|--------------------------|-----------------|------|----------------|-------------------------------------------|
| PDMC_INT_CLR             | 0x00020         | W    | 0x00000000     | PDMC interrupt clear<br>register          |
| PDMC_INT_ST              | 0x00024         | W    | 0x00000000     | PDMC interrupt status<br>register         |
| PDMC_RXFIFO_DATA<br>_REG | 0x00030         | W    | 0x00000000     | PDMC receive FIFO data<br>register        |
| PDMC_DATA0R_REG          | 0x00034         | w    | 0x00000000     | PDMC path0 right<br>channel data register |
| PDMC_DATA0L_REG          | 0x00038         | W    | 0×00000000     | PDMC path0 left channel data register     |
| PDMC_DATA1R_REG          | 0x0003c         | w    | 0×00000000     | PDMC path1 right channel data register    |
| PDMC_DATA1L_REG          | 0x00040         | W    | 0×00000000     | PDMC path1 left channel data register     |
| PDMC_DATA2R_REG          | 0x00044         | w    | 0x00000000     | PDMC path2 right<br>channel data register |
| PDMC_DATA2L_REG          | 0x00048         | w    | 0x0000000      | PDMC path2 left channel data register     |
| PDMC_DATA3R_REG          | 0x0004c         | w    | 0x00000000     | PDMC path3 right<br>channel data register |
| PDMC_DATA3L_REG          | 0x00050         | w    | 0x00000000     | PDMC path3 left channel data register     |
| PDMC_DATA_VALID          | 0x00054         | W    | 0x0000000      | path data valid register                  |
| PDMC_VERSION             | 0x00058         | W    | 0x59313030     | PDMC version register                     |
| PDMC_RXDR                | 0x400~0<br>x7fc | w    | 0x00000000     | Receive FIFO data<br>register             |

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

# 23.4.2 Detail Register Description

## PDMC\_SYSCONFIG

Address: Operational Base + offset (0x00000)

PDMC system config register

| Bit  | Attr     | Reset Value | Description           |
|------|----------|-------------|-----------------------|
| 31:3 | RO       | 0x0         | reserved              |
|      | 2 RW 0x0 |             | rx_start              |
|      |          |             | RX transfer start bit |
| 2    |          |             | RX Transfer start bit |
| 2    |          | UXU         | 0:stop RX transfer.   |
|      |          |             | 1:start RX transfer   |
|      |          |             |                       |

| Bit | Attr   | Reset Value | Description                             |
|-----|--------|-------------|-----------------------------------------|
| 1   | RO     | 0x0         | reserved                                |
|     |        |             | rx_clr                                  |
|     |        |             | PDMC RX logic clear                     |
|     | RW 0x0 |             | PDMC RX logic clear;                    |
| 0   |        | 0.20        | This is a self cleard bit. High active. |
| 0   | RVV    | 0x0         | Write 0x1: clear RX logic               |
|     |        |             | Write 0x0: no action                    |
|     |        |             | Read 0x1: clear ongoing                 |
|     |        |             | Read 0x0: clear done                    |

# PDMC\_CTRL0

Address: Operational Base + offset (0x00004)

PDMC control register 0

| Bit | Attr  | Reset Value | Description             |
|-----|-------|-------------|-------------------------|
|     |       |             | mode_sel                |
| 31  | RW    | 0x0         | Working mode selection: |
| 51  | L M   | 0.00        | 0: PDM mode;            |
|     |       |             | 1: reserved;            |
|     |       |             | path3_en                |
| 30  | RW    | 0x1         | Path 3 enable;          |
| 30  | L M   | 0.01        | 1'b1: enable            |
|     |       |             | 1'b0: disable           |
|     |       | 0x1         | path2_en                |
| 29  | RW    |             | Path 2 enable;          |
| 29  |       |             | 1'b1: enable            |
|     |       |             | 1'b0: disable           |
|     |       |             | path1_en                |
| 28  | RW    | V 0×1       | Path 1 enable;          |
| 20  |       |             | 1'b1: enable            |
|     |       |             | 1'b0: disable           |
|     | 27 RW | 2W 0×1      | path0_en                |
| 27  |       |             | Path 0 enable;          |
| 21  |       |             | 1'b1: enable            |
|     |       |             | 1'b0: disable           |

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                           |
|-------|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26    | RW   | 0×0         | hwt_en<br>HWT<br>Halfword word transform<br>Only valid when VDW select 16bit data.<br>0:32 bit data valid to AHB/APB bus. Low 16<br>bit for left channel and high 16 bit for right<br>channel.<br>1:low 16bit data valid to AHB/APB bus, high<br>16 bit data invalid. |
| 25    | RW   | 0x0         | Reserved                                                                                                                                                                                                                                                              |
| 24    | RW   | 0x0         | Reserved                                                                                                                                                                                                                                                              |
| 23    | RW   | 0x0         | Reserved                                                                                                                                                                                                                                                              |
| 22    | RW   | 0x0         | Reserved                                                                                                                                                                                                                                                              |
| 21:19 | RW   | 0x0         | Reserved                                                                                                                                                                                                                                                              |
| 18    | RW   | 0x0         | Reserved                                                                                                                                                                                                                                                              |
| 17    | RW   | 0x0         | Reserved                                                                                                                                                                                                                                                              |
| 16    | RW   | 0x0         | Reserved                                                                                                                                                                                                                                                              |
| 15:13 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                              |
| 12:10 | RW   | 0x0         | Reserved                                                                                                                                                                                                                                                              |
| 9:5   | RW   | 0x1f        | Reserved                                                                                                                                                                                                                                                              |
| 4:0   | RW   | 0x17        | data_vld_width<br>(Can be written only when SYSCONFIG[2] is<br>0.)<br>Valid Data width<br>0~14:reserved<br>15:16bit<br>16:17bit<br>17:18bit<br>18:19bit<br><br>n:(n+1)bit<br><br>23:24bit                                                                             |

## PDMC\_CTRL1

Address: Operational Base + offset (0x00008)

PDMC control register 1

| Bit  | Attr | Reset Value | Description |
|------|------|-------------|-------------|
| 31:9 | RO   | 0x0         | reserved    |
| 8:0  | RW   | 0x0ff       | Reserved    |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

## PDMC\_CLK\_CTRL

Address: Operational Base + offset (0x0000c)

PDMC clock control register

| Bit  | Attr | Reset Value | Description                               |
|------|------|-------------|-------------------------------------------|
| 31:7 | RO   | 0x0         | reserved                                  |
| 6    | RW   | 0x0         | Reserved                                  |
|      |      |             | pdm_clk_en                                |
|      |      |             | Pdm clk enable.working at PDM mode        |
| 5    | RW   | 0×0         | (Can be written only when SYSCONFIG[2] is |
| 5    |      | 0.00        | 0.)                                       |
|      |      |             | 0:pdm clk disable                         |
|      |      |             | 1:pdm clk enable                          |
| 4    | RO   | 0x0         | reserved                                  |
|      |      |             | clk_polar                                 |
|      |      | 0×0         | PDM_CLK polarity selection                |
| 3    | RW   |             | (Can be written only when SYSCONFIG[2] is |
| 5    |      | 0,0         | 0.)                                       |
|      |      |             | 0: no inverted                            |
|      |      |             | 1: inverted                               |
|      |      |             | pdm_ds_ratio                              |
|      |      |             | DS_RATIO,working at PDM mode              |
|      |      |             | (Can be written only when SYSCONFIG[2] is |
|      |      |             | 0.)                                       |
| 2:0  | RW   | 0x0         | 3'b000: sample rate 192k/176.5k/128k      |
|      |      |             | 3'b001: sample rate 96kk/88.2k/64k        |
|      |      |             | 3'b010: sample rate 48kk/44.1k/32k        |
|      |      |             | 3'b011: sample rate 24kk/22.05k/16k       |
|      |      |             | 3'b100: sample rate 12kk/11.025k/8k       |

#### PDMC\_HPF\_CTRL

Address: Operational Base + offset (0x00010)

PDMC high pass filter control register

| Bit  | Attr | Reset Value | Description |
|------|------|-------------|-------------|
| 31:4 | RO   | 0x0         | reserved    |

| Bit | Attr | Reset Value | Description                                 |
|-----|------|-------------|---------------------------------------------|
|     |      |             | hpfle                                       |
|     |      |             | HPFLE                                       |
|     |      |             | high pass filter enable for left channel    |
| 3   | RW   | 0x0         | 1'b0: high pass filter for right channel is |
|     |      |             | diabled.                                    |
|     |      |             | 1'b1: high pass filter for right channel is |
|     |      |             | enabled.                                    |
|     |      |             | hpfre                                       |
|     |      |             | HPFRE                                       |
|     |      |             | high pass filter enable for right channel   |
| 2   | RW   | 0x0         | 1'b0: high pass filter for right channel is |
|     |      |             | diabled.                                    |
|     |      |             | 1'b1: high pass filter for right channel is |
|     |      |             | enabled.                                    |
|     |      | 0x0         | hpf_cf                                      |
|     |      |             | HPF_CF                                      |
|     |      |             | high pass filter configure register         |
| 1:0 | RW   |             | high pass filter configure register         |
|     |      |             | 2'b00: 3.79Hz                               |
|     |      |             | 2'b01: 60Hz                                 |
|     |      |             | 2'b10: 243Hz                                |
|     |      |             | 2'b11: 493Hz                                |

### PDMC\_FIFO\_CTRL

Address: Operational Base + offset (0x00014)

PDMC fifo control register

| Bit   | Attr | Reset Value | Description                                  |
|-------|------|-------------|----------------------------------------------|
| 31:15 | RO   | 0x0         | reserved                                     |
|       |      |             | rft                                          |
|       |      |             | Receive FIFO Threshold                       |
| 14:8  | RW   | 0×00        | When the number of receive FIFO entries is   |
| 14.0  | K VV | 0x00        | more than or equal to this threshold plus 1, |
|       |      |             | the receive FIFO threshold interrupt is      |
|       |      |             | triggered.                                   |
|       |      |             | rfl                                          |
|       |      |             | RFL                                          |
| 7:0   | RO   | 0x00        | Receive FIFO Level                           |
|       |      |             | Contains the number of valid data entries in |
|       |      |             | the receive FIFO.                            |

#### PDMC\_DMA\_CTRL

Address: Operational Base + offset (0x00018)

PDMC dma control register

| Bit  | Attr  | Reset Value | Description                                  |
|------|-------|-------------|----------------------------------------------|
| 31:9 | RO    | 0x0         | reserved                                     |
|      |       |             | rde                                          |
| 8    | RW    | 0x0         | Receive DMA Enable                           |
| 0    | K V V | 0.00        | 0 : Receive DMA disabled                     |
|      |       |             | 1 : Receive DMA enabled                      |
| 7    | RO    | 0x0         | reserved                                     |
|      | RW    | 0x1f        | rdl                                          |
|      |       |             | Receive Data Level                           |
|      |       |             | This bit field controls the level at which a |
| 6:0  |       |             | DMA request is made by the receive logic.    |
| 0.0  |       |             | The watermark level = DMARDL+1; that is,     |
|      |       |             | dma_rx_req is generated when the number      |
|      |       |             | of valid data entries in the receive FIFO is |
|      |       |             | equal to or above this field value $+ 1$ .   |

#### PDMC\_INT\_EN

Address: Operational Base + offset (0x0001c)

PDMC interrupt enable register

| Bit  | Attr | Reset Value | Description                   |
|------|------|-------------|-------------------------------|
| 31:2 | RO   | 0x0         | reserved                      |
|      |      |             | rxoie                         |
| 1    |      | 0.40        | RX overflow interrupt enable  |
| L .  | RW   | 0x0         | 0:disable                     |
|      |      |             | 1:enable                      |
| 0    |      | 0×0         | rxtie                         |
|      |      |             | RX threshold interrupt enable |
| 0    | RW   |             | 0:disable                     |
|      |      |             | 1:enable                      |

### PDMC\_INT\_CLR

Address: Operational Base + offset (0x00020)

PDMC interrupt clear register

| Bit  | Attr | Reset Value | Description                                                       |
|------|------|-------------|-------------------------------------------------------------------|
| 31:2 | RO   | 0x0         | reserved                                                          |
| 1    | W1C  | 0×0         | rxoic<br>RX overflow interrupt clear, high active, auto<br>clear. |
| 0    | RO   | 0x0         | reserved                                                          |

## PDMC\_INT\_ST

Address: Operational Base + offset (0x00024)

PDMC interrupt status register

| Bit  | Attr | Reset Value | Description           |
|------|------|-------------|-----------------------|
| 31:2 | RO   | 0x0         | reserved              |
|      |      |             | rxoi                  |
| 1    | DO   | 0x0         | RX overflow interrupt |
|      | RO   |             | 0:inactive            |
|      |      |             | 1:active              |
| 0    | RO   | 0×0         | rxfi                  |
|      |      |             | RX full interrupt     |
|      |      |             | 0:inactive            |
|      |      |             | 1:active              |

## PDMC\_RXFIFO\_DATA\_REG

Address: Operational Base + offset (0x00030)

PDMC receive fifo data register

| Bit  | Attr | <b>Reset Value</b> | Description                                                                                                 |
|------|------|--------------------|-------------------------------------------------------------------------------------------------------------|
| 31:0 | RO   | 0×00000000         | rxdr<br>Receive FIFO shadow Register<br>When the register is read, data in the receive<br>FIFO is accessed. |

## PDMC\_DATAOR\_REG

Address: Operational Base + offset (0x00034)

PDMC path0 right channel data register

| Bit    | Attr | <b>Reset Value</b> | Description                                |
|--------|------|--------------------|--------------------------------------------|
| 31:0 F | RO   | 0x00000000         | data0r<br>Data of the path 0 right channel |

### PDMC\_DATAOL\_REG

Address: Operational Base + offset (0x00038)

PDMC path0 leght channel data register

| Bit  | Attr | Reset Value | Description                               |
|------|------|-------------|-------------------------------------------|
| 31:0 | RO   | 0×00000000  | data0l<br>Data of the path 0 left channel |

### PDMC\_DATA1R\_REG

Address: Operational Base + offset (0x0003c)

PDMC path1 right channel data register

| Bit  | Attr | Reset Value | Description                      |
|------|------|-------------|----------------------------------|
| 31:1 | RO   | 0x0         | reserved                         |
| 0    |      | 0.40        | data1r                           |
| U    | RO   | 0x0         | Data of the path 1 right channel |

### PDMC\_DATA1L\_REG

Address: Operational Base + offset (0x00040)

PDMC path1 left channel data register

| Bit  | Attr | Reset Value | Description                     |
|------|------|-------------|---------------------------------|
| 31:0 | RO   | 0x00000000  | data1l                          |
| 51.0 | ĸŪ   | 0200000000  | Data of the path 1 left channel |

## PDMC\_DATA2R\_REG

Address: Operational Base + offset (0x00044)

PDMC path2 right channel data register

| Bit  | Attr | Reset Value | Description                                |
|------|------|-------------|--------------------------------------------|
| 31:0 | RO   | 0x00000000  | data2r<br>Data of the path 2 right channel |

### PDMC\_DATA2L\_REG

Address: Operational Base + offset (0x00048)

PDMC path2 left channel data register

| Bit  | Attr | Reset Value | Description                               |
|------|------|-------------|-------------------------------------------|
| 31:0 | RO   | 0×00000000  | data2l<br>Data of the path 2 left channel |

### PDMC\_DATA3R\_REG

Address: Operational Base + offset (0x0004c)

PDMC path3 right channel data register

| Bit  | Attr | Reset Value | Description                      |
|------|------|-------------|----------------------------------|
| 31:0 | RO   | 0x00000000  | data3r                           |
| 51.0 | ĸŬ   | 000000000   | Data of the path 3 right channel |

## PDMC\_DATA3L\_REG

Address: Operational Base + offset (0x00050)

PDMC path3 left channel data register

| Bit  | Attr | Reset Value | Description                               |
|------|------|-------------|-------------------------------------------|
| 31:0 | RO   | 0x00000000  | data3l<br>Data of the path 3 left channel |

## PDMC\_DATA\_VALID

Address: Operational Base + offset (0x00054)

path data valid register

| Bit  | Attr | <b>Reset Value</b> | Description |
|------|------|--------------------|-------------|
| 31:4 | RO   | 0x0                | reserved    |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

| Bit | Attr | Reset Value | Description                                                                                                 |
|-----|------|-------------|-------------------------------------------------------------------------------------------------------------|
| 3   | RC   | 0×0         | path0_vld<br>0: DATA0R_REG, DATA0L_REG value is<br>invalid;<br>1: DATA0R_REG, DATA0L_REG value is<br>valid; |
| 2   | RC   | 0x0         | path1_vld<br>0: DATA1R_REG, DATA1L_REG value is<br>invalid;<br>1: DAT1R_REG, DATA1L_REG value is valid;     |
| 1   | RC   | 0×0         | path2_vld<br>0: DATA2R_REG, DATA2L_REG value is<br>invalid;<br>1: DATA2R_REG, DATA2L_REG value is<br>valid; |
| 0   | RC   | 0×0         | path3_vld<br>0: DATA3R_REG, DATA3L_REG value is<br>invalid;<br>1: DATA3R_REG, DATA3L_REG value is<br>valid; |

## PDMC\_VERSION

Address: Operational Base + offset (0x00058)

PDMC version register

| Bit  | Attr | r Reset Value Description |                         |
|------|------|---------------------------|-------------------------|
| 31:0 | RO   | 0x59313030                | version<br>PDMC version |

# **23.5 Interface Description**

Table 23-2 PDMC Interface Description

| Module Pin  | Direction | Pad Name                | IOMUX Setting       |
|-------------|-----------|-------------------------|---------------------|
| O_pdm_clk   | 0         | IO_I2S1sclk_PDMclkm0_T  | PDMclkm0:           |
|             |           | SPd7m1_CIFdata7m1_GPI   | GPIO2CL_IO[7:6]=2   |
|             |           | O2C2vccio5/IO_I2Ssclkm0 | PDMclkm1:           |
|             |           | _GMACrxdvm1_PDMclkm1    | GPIO1C_IO[13:12]=3  |
|             |           | _GPIO1C6vccio4          |                     |
| O_pdm_fsync | 0         | IO_I2S1sdo_PDMfsyncm0_  | PDMfsyncm0:         |
|             |           | GPIO2C7vccio5           | GPIO2CH_IO[15:14]=2 |
|             |           | /IO_SDMMC1detn_GMACm    | PDMfsyncm1:         |
|             |           | diom1_PDMfsyncm1_GPIO   | GPIO1C_IO[7:6]=3    |
|             |           | 1C3vccio4               |                     |

| I_pdm_data0 | Ι | IO_I2S1sdi_PDMsdi0m0_C  | PDMsdi0m0:          |
|-------------|---|-------------------------|---------------------|
|             |   | ARDclkm1_GPIO2C3vccio5  | GPIO2CL_IO[10:9]=2  |
|             |   | /IO_I2S2lrcktxm0_GMACmd | PDMsdi0m1:          |
|             |   | cm1_PDMsdi0m1_GPIO1C7v  | GPIO1C_IO[1:0]=3    |
|             |   | ccio4                   |                     |
| I_pdm_data1 | Ι | IO_I2S1sdio1_PDMsdi1m0  | PDMsdi1m0:          |
|             |   | _CARDrstm1_GPIO2C4vcci  | GPIO2CL_IO[13:12]=2 |
|             |   | 05                      | PDMsdi1m1:          |
|             |   | /IO_I2S2sdim0_GMACrxer  | GPIO1D_IO[1:0]=3    |
|             |   | m1_PDMsdi1m1_GPIO1D0    |                     |
|             |   | vccio4                  |                     |
| I_pdm_data2 | Ι | IO_I2S1sdio2_PDMsdi2m0  | PDMsdi2m0:          |
|             |   | _CARDdetm1_GPIO2C5vcci  | GPIO2CH_IO[1:0]=2   |
|             |   | 05                      | PDMsdi2m1:          |
|             |   | /IO_I2S2sdom0_GMACtxe   | GPIO1D_IO[3:2]=3    |
|             |   | nm1_PDMsdi2m1_GPIO1D    |                     |
|             |   | 1vccio4                 |                     |
| I_pdm_data3 | Ι | IO_I2S1sdio3_PDMsdi3m0  | PDMsdi3m0:          |
|             |   | _CARDiom1_GPIO2C6vccio  | GPIO2CH_IO[4:3]=2   |
|             |   | 5                       | PDMsdi3m1:          |
|             |   | /IO_I2S2lrckrxm0_CLKout | GPIO1D_IO[5:4]=3    |
|             |   | _gmacm2_PDMsdi3m1_GP    |                     |
|             |   | IO1D2vccio4             |                     |
|             | 1 |                         |                     |

*Notes: I=input, O=output, I/O=input/output, bidirectional* 

Furthermore, different IOs are selected and connected to different flash interface, which is shown as follows.

# **23.6 Application Notes**

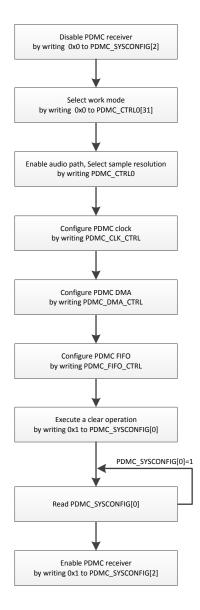



Table 23-3 PDMC operation flow

# Chapter 24 Smart Card Reader (SCR)

# 24.1 Overview

The Smart Card Reader (SCR) is a communication controller that transmits data between the superior system and the Smart Card. The controller can perform a complete smart card session, including card activation, card deactivation, cold/warm reset, Answer to Reset (ATR) response reception, data transfers, etc.

SCR supports the following features:

- Supports the ISO/IEC 7816-3:1997(E) and EMV2000 (4.0) specifications
- Performs functions needed for complete smart card sessions, including:
  - Card activation and deactivation
    - Cold/warm reset
    - Answer to Reset (ATR) response reception
    - Data transfers to and from the card
- Extensive interrupt support system
- Adjustable clock rate and bit (baud) rate
- Configurable automatic byte repetition
- Handles commonly used communication protocols:
  - T=0 for asynchronous half-duplex character transmission
    - T=1 for asynchronous half-duplex block transmission
- Automatic convention detection
- Configurable timing functions:
  - Smart card activation time
  - Smart card reset time
  - Guard time
  - Timeout timers
- Automatic operating voltage class selection
- Supports synchronous and any other non-ISO 7816 and non-EMV cards
- Advanced Peripheral Bus (APB) slave interface for easy integration with AMBA-based host systems Block Diagram

# 24.2 Block Diagram

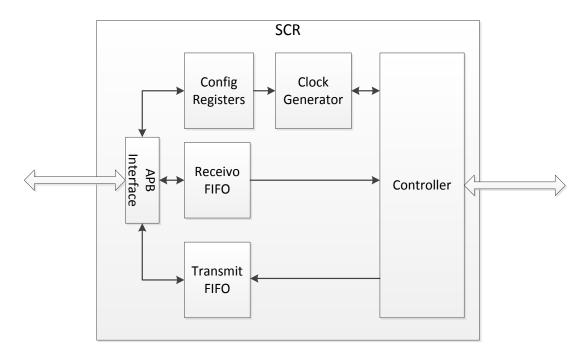



Fig. 24-1 SCR Block Diagram

The host processor gets access to PWM Register Block through the APB slave interface.

# 24.2.1 APB Interface

The host processor gets access to PWM Register Block through the APB slave interface.

# 24.2.2 Configuration Registers

The Configuration Registers block provides control over all functions of the Smart Card Reader

# 24.2.3 Controller

The Controller is the main block in the SCR core. This block controls receiving characters transmitted by the Smart Card, storing them in the RX FIFO, and transmitting them to the Smart Card. This block also performs card activation, deactivation, and cold and warm reset. After the card is reset, the Answer To Reset (ATR) sequence is received by the controller and stored in RX FIFO.

The parallel to serial conversion needed to transmit data from a Smart Card Reader to a Smart Card and the serial to parallel conversion needed to transmit data in the opposite direction is performed by the UART. The UART also performs the guard time, parity checking and character repeating functions.

# 24.2.4 Receive FIFO

The Receive FIFO is used to store the data received from the Smart Card until the data is read out by the superior system.

# 24.2.5 Transmit FIFO

The Transmit FIFO is used to store the data to be transmitted to the Smart Card.

# 24.2.6 Clock Generator

The Clock Generator generates the Smart Card Clock signal and the Baud Clock Impulse signal, used in timing the Smart Card Reader.)

# 24.3 Function Description

A Smart Card session consists of following stages:

- 1. Smart Card insertion
- 2. Activation of contacts and cold reset sequence
- 3. Answer To Reset sequence (ATR)
- 4. Execution of transaction
- 5. Deactivation of contacts
- 6. Smart Card removal

# 24.3.1 Smart Card Insertion

A Smart Card session starts with the insertion of the Smart Card. This event is signaled to the SCR using the SCDETECT input. The SCPRESENT bit is set and also the SCINS interrupt is asserted (if enabled).

When the external card detect switch is not used, the input pin SCDETECT must be tied to inactive state.

# 24.3.2 Automatic operating voltage class selection

There are three operating classes (1.8V - class C, 3V - class B and 5V - class A) defined in ISO/IEC 7816-3(2006) specification. Only 1.8V and 3.3V are supported by the SCR.

### RK3328 TRM-Part1

Before the activation of contacts, operating classes have to be enabled via bits VCC18, VCC33 in CTRL2 register. In case that no operating class is enabled, the controller performs activation for all two voltage classes (1.8V, 3V) in sequence.

When Smart Card Reader performs activation of contacts the lowest enabled voltage class is automatically applied first. When the first character start bit of ATR sequence is received, the selected voltage class is correct (even if the ATR is then received with errors). When the ATR sequence reception does not start, ATRFAIL interrupt is not activated, deactivation is performed and next higher enabled voltage class is applied. If the ATR sequence reception does not start and no other higher class is enabled was already applied the ATRFAIL interrupt is activated and the last applied voltage class remains active. After the automatic voltage class selection is finished the selected class can be read from bits VCC18, VCC33 in CTRL2 register. If the automatic voltage class selection fails, these bits remain untouched.

There is a delay applied between deactivation of contacts with lower voltage class and activation of contacts with higher voltage class. This delay should be at least 10 ms according to the ISO/IEC 7816-3 specification.

## 24.3.3 Activation of Contacts and Cold Reset Sequence

When the Smart Card is properly inserted and the ACT bit in CTRL2 register is asserted, the activation of contacts can be started. The duration of each part of the activation is the time Ta, which is equal to the ADEATIME register value. If no Vpp is necessary, the activation and deactivation part of Vpp can be omitted by clearing the AUTOADEAVPP bit in SCPADS register.

The Cold Reset sequence follows immediately after the activation. Time (Tc) is the duration of the Reset. The EMV specification recommends that this value should be between 40000 and 45000. The activation of contacts and cold reset sequence is shown inFig. 24-2.

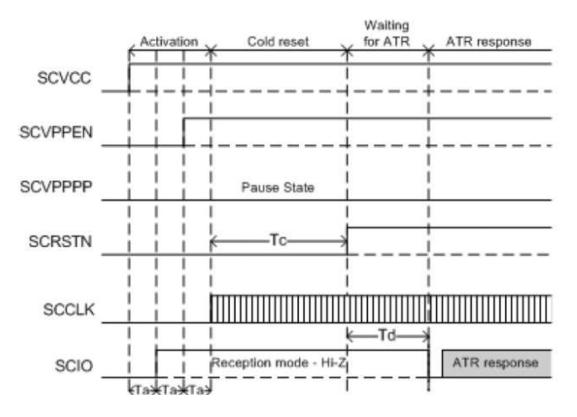



Fig. 24-2 Activation, Cold Reset and ATR

# 24.3.4 Execution of Transaction

All transfers between the Smart Card Reader and a Smart Card are under the control of the superior system. It controls the number of characters sent to the Smart Card and it knows the number of characters expected to be returned from the Smart Card.

## 24.3.5 Warm Reset

The Warm Reset sequence is initialized by setting the WRST bit in the CTRL2 register to `1'.Smart Card Reader drives the SCRSTN signal to `0' to perform the Warm Reset as shown in Fig. 24-3. After the SCRSTN assertion, the Warm Reset sequence then continues the same way as the Cold Reset sequence.

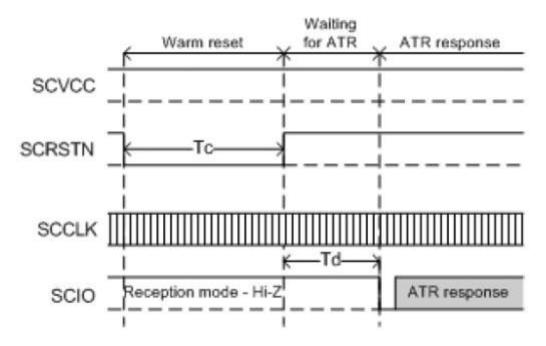



Fig. 24-3 Warm Reset and ATR

## 24.3.6 Deactivation of Contacts

After the smart card reader detects the removal of the smart card (SCREM interrupt) or the superior system initiates deactivation by setting the DEACT bit in the CTRL2 register to `1', the deactivation is performed immediately as shown in . The duration time (Ta), of each part of the deactivation sequence time is defined in the ADEATIME register.

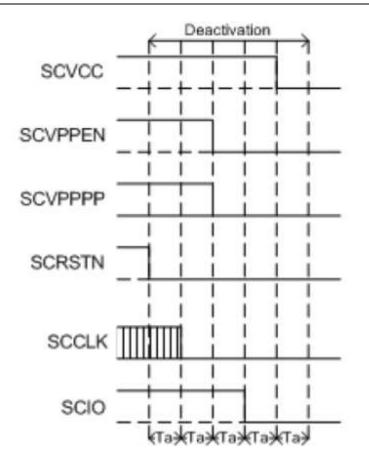



Fig. 24-4 Deactivation Sequence

# 24.4 Register Description

# 24.4.1 Registers Summary

| Name              | Offset | Size | Reset<br>Value | Description                    |
|-------------------|--------|------|----------------|--------------------------------|
| SCR_CTRL1         | 0x0000 | HW   | 0x0000         | Control Register 1             |
| SCR_CTRL2         | 0x0004 | HW   | 0x0000         | Control Register 2             |
| SCR_SCPADS        | 0x0008 | HW   | 0x0000         | Smart Card Pads Register       |
| SCR_INTEN1        | 0x000c | HW   | 0x0000         | Interrupt Enable Register 1    |
| SCR_INTSTAT1      | 0x0010 | HW   | 0x0000         | Interrupt Status Register 1    |
| SCR_FIFOCTRL      | 0x0014 | HW   | 0x0000         | FIFO Control Register          |
| SCR_LEGTXFICNT    | 0x0018 | В    | 0x00           | Legacy TX FIFO Counter         |
| SCR_LEGRXFICNT    | 0x0019 | В    | 0x00           | Legacy RX FIFO Counter         |
| SCR_RXFITH        | 0x001c | HW   | 0x0000         | RX FIFO Threshold              |
| SCR_REP           | 0x0020 | В    | 0x00           | Repeat                         |
| SCR_SCCDDIV       | 0x0024 | HW   | 0x0000         | Smart Card Clock Divisor       |
| SCR_BAUDDIV       | 0x0028 | HW   | 0x0000         | Baud Clock Divisor             |
| SCR_SCGUTIME      | 0x002c | В    | 0x00           | Smart Card Guard-time          |
| SCR_ADEATIME      | 0x0030 | HW   | 0x0000         | Activation / Deactivation Time |
| SCR_LOWRSTTIME    | 0x0034 | HW   | 0x0000         | Reset Duration                 |
| SCR_ATRSTARTLIMIT | 0x0038 | HW   | 0x0000         | ATR Start Limit                |
| SCR_C2CLIM        | 0x003c | HW   | 0x0000         | Two Characters Delay Limit     |
| SCR_INTEN2        | 0x0040 | HW   | 0x0000         | Interrupt Enable Register 2    |

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

### RK3328 TRM-Part1

| Name          | Offset | Size | Reset<br>Value | Description                 |
|---------------|--------|------|----------------|-----------------------------|
| SCR_INTSTAT2  | 0x0044 | HW   | 0x0000         | Interrupt Status Register 2 |
| SCR_TXFITH    | 0x0048 | HW   | 0x0000         | TX FIFO Threshold           |
| SCR_TXFIFOCNT | 0x004c | HW   | 0x0000         | TX FIFO Counter             |
| SCR_RXFIFOCNT | 0x0050 | HW   | 0x0000         | RX FIFO Counter             |
| SCR_BAUDTUNE  | 0x0054 | В    | 0x00           | Baud Tune Register          |
| SCR_FIFO      | 0x0200 | В    | 0x00           | FIFO                        |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

# 24.4.2 Detail Register Description

### SCR\_CTRL1

Address: Operational Base + offset (0x0000) Control Register 1

| Bit | Attr | <b>Reset Value</b> | Description                                                        |  |  |  |  |
|-----|------|--------------------|--------------------------------------------------------------------|--|--|--|--|
|     |      |                    | GINTEN                                                             |  |  |  |  |
| 15  | RW   | 0x0                | Global Interrupt Enable                                            |  |  |  |  |
|     |      |                    | When high, INTERRUPT output assertion is enabled.                  |  |  |  |  |
| 14  | RO   | 0x0                | reserved                                                           |  |  |  |  |
|     |      |                    | TCKEN                                                              |  |  |  |  |
|     |      |                    | TCK enable                                                         |  |  |  |  |
| 13  | RW   | 0x0                | When enabled all ATR bytes beginning from T0 are being XOR-ed.     |  |  |  |  |
| 13  |      | 0.00               | The result must be equal to TCK byte (when present). If the TCK    |  |  |  |  |
|     |      |                    | byte does not match the computed value the ATR is considered to    |  |  |  |  |
|     |      |                    | be malformed.                                                      |  |  |  |  |
|     |      |                    | ATRSTFLUSH                                                         |  |  |  |  |
| 12  | RW   | 0x0                | ATR Start Flush FIFO                                               |  |  |  |  |
|     |      |                    | When enabled, both FIFOs are flushed before the ATR is started.    |  |  |  |  |
|     |      |                    | T0T1                                                               |  |  |  |  |
|     |      |                    | T0/T1 Protocol                                                     |  |  |  |  |
|     |      |                    | Controls the using of $T=0$ or $T=1$ protocol. No character        |  |  |  |  |
|     |      |                    | repeating is used when $T=1$ protocol is selected.                 |  |  |  |  |
|     |      |                    | The Character Guard-time (minimum delay between the leading        |  |  |  |  |
| 11  | RW   | 0x0                | edges of two consecutive characters) is reduced to 11 ETU when     |  |  |  |  |
|     |      |                    | T=1 protocol is used and Guard-time value $N = 255$ .              |  |  |  |  |
|     |      |                    | The delay between the leading edge of the last received character  |  |  |  |  |
|     |      |                    | and the leading edge of the first character transmitted is 16 ETU  |  |  |  |  |
|     |      |                    | when T=0 protocol is used and 22 ETU when T=1 protocol is          |  |  |  |  |
|     |      |                    | used.                                                              |  |  |  |  |
|     |      |                    | TS2FIFO                                                            |  |  |  |  |
|     |      |                    | TS to FIFO                                                         |  |  |  |  |
| 10  | RW   | 0x0                | Enables to store the first ATR character TS in RX FIFO. During     |  |  |  |  |
|     |      |                    | ideal card session there is no necessity to store TS character, so |  |  |  |  |
|     |      |                    | it can be disabled                                                 |  |  |  |  |

| Bit | Attr | Reset Value | Description                                                         |
|-----|------|-------------|---------------------------------------------------------------------|
|     |      |             | RXEN                                                                |
|     |      |             | Receiving enable                                                    |
| 9   | RW   | 0x0         | When enabled the characters sent by the Smart Card are              |
|     |      |             | received by the UART and stored in RX FIFO. Receiving is            |
|     |      |             | internally disabled while a transmission is in progress.            |
|     |      |             | TXEN                                                                |
|     |      | 00          | Transmission enable                                                 |
| 8   | RW   | 0x0         | When enabled the characters are read from TX FIFO and               |
|     |      |             | transmitted through UART to the Smart Card                          |
|     |      |             | CLKSTOPVAL                                                          |
| 7   | RW   | 0x0         | Clock Stop Value                                                    |
|     |      |             | The value of the scclk output during the clock stop state.          |
|     |      |             | CLKSTOP                                                             |
|     |      |             | Clock Stop                                                          |
|     |      |             | Clock Stop. When this bit is asserted and the smart card I/O line   |
|     |      |             | is in 'Z' state, the SCR core stops driving of the smart card clock |
|     |      |             | signal after the CLKSTOPDELAY time expires. The smart card          |
|     |      |             | clock is restarted immediately after the CLKSTOP signal is de-      |
| 6   | RW   | 0x0         | asserted. New character transmission can be started by superior     |
|     |      |             | system after the CLKSTARTDELAY time expires. The expiration of      |
|     |      |             | both times is signaled by the CLKSTOPRUN bit in the Interrupt       |
|     |      |             | registers. Reading '1' from this bit signals that the clock is      |
|     |      |             | stopped or CLKSTARTDELAY time not expired yet. Reading '0'          |
|     |      |             | from this bit signals that the clock is not stopped.                |
|     |      |             |                                                                     |
| 5:3 | RO   | 0x0         | reserved                                                            |
|     |      |             | PECH2FIFO                                                           |
| 2   | RW   | 0x0         | Character With Wrong Parity to FIFO                                 |
| 2   |      | 0,0         | Enables storage of the characters received with wrong parity in     |
|     |      |             | RX FIFO.                                                            |
|     |      |             | INVORD                                                              |
| 1   | RW   | 0x0         | Inverse Bit Ordering                                                |
|     |      |             | When High, inverse bit ordering convention(MSB-LSB) is used.        |
|     |      |             | INVLEV                                                              |
| 0   | RW   | 0x0         | Inverse Bit Level                                                   |
|     |      |             | When high, inverse level convention is used(A= '1', Z='0');         |

## SCR\_CTRL2

Address: Operational Base + offset (0x0004)

Control Register 2

| Bit  | Attr | <b>Reset Value</b> | Description                          |
|------|------|--------------------|--------------------------------------|
|      |      |                    | Reserved3                            |
| 15:8 | RO   | 0x00               | Reserved                             |
|      |      |                    | Reserved bits are hard-wired to zero |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                            |
|-----|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | RW   | 0x0         | VCC50<br>Control 5V Smart Card Vcc<br>Control 5V Smart Card Vcc. Setting of this bit allows selection of<br>5V Vcc for Smart Card session (Class A). After the selection of<br>operating class is completed, this bit is in '1' if this class was<br>selected. Default value after reset is '0'.       |
| 6   | RW   | 0×0         | VCC33<br>Control 3V Smart Card Vcc<br>Setting of this bit allows selection of 3V Vcc for Smart Card<br>session (Class B). After the selection of operating class is<br>completed, this bit is in '1' if this class was selected. Default<br>value after reset is '0'.                                  |
| 5   | RW   | 0×0         | VCC18<br>Control 1.8V Smart Card Vcc<br>Control 1.8V Smart Card Vcc. Setting of this bit allows selection<br>of 1.8V Vcc for Smart Card session (Class C). After the selection<br>of operating class is completed, this bit is in '1' if this class was<br>selected. Default value after reset is '0'. |
| 4   | RW   | 0x0         | DEACT<br>Deactivation<br>Setting of this bit initializes the deactivation sequence. When the<br>deactivation is finished, the DEACT bit is automatically cleared.                                                                                                                                      |
| 3   | RW   | 0x0         | ACT<br>Activation<br>Setting of this bit initializes the activation sequence. When the<br>activation is finished, the ACT bit is automatically cleared.                                                                                                                                                |
| 2   |      | 0×0         | WARMRST<br>Warm Reset Command<br>Writing '1' to this bit initializes Warm Reset of the Smart Card.<br>This bit is always read as '0'.                                                                                                                                                                  |
| 1:0 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                               |

# SCR\_SCPADS

Address: Operational Base + offset (0x0008) Smart Card Pads Register

| Bit   | Attr | <b>Reset Value</b> | Description                                                       |
|-------|------|--------------------|-------------------------------------------------------------------|
| 15:10 | RO   | 0x0                | reserved                                                          |
|       |      |                    | SCPRESENT                                                         |
| 9     | RO   | 0x0                | Smart Card presented                                              |
| 9     |      |                    | This bit is set to '1' when the SCDETECT input is active at least |
|       |      |                    | for SCDETECTTIME                                                  |
|       | RW   | V 0×0              | DSCFCB                                                            |
| 8     |      |                    | Direct Smart Card Function Code Bit                               |
|       |      |                    | It provides direct access to SCFCB output                         |

| Bit | Attr | Reset Value | Description                                                         |
|-----|------|-------------|---------------------------------------------------------------------|
|     |      |             | DSCVPPPP                                                            |
| 7   | RW   | 0x0         | Direct Smart Card Vpp Pause/Prog                                    |
|     |      |             | It provides direct access to SCVPPPP output                         |
|     |      |             | DSCVPPEN                                                            |
| 6   | RW   | 0x0         | Direct Smart Card Vpp Enable                                        |
|     |      |             | It provides direct access to SCVPPEN output                         |
|     |      |             | AUTOADEAVPP                                                         |
| -   |      | 0.40        | Automatic Vpp Handling.                                             |
| 5   | RW   | 0x0         | When high, it enables automatic handling of DSCVPPEN and            |
|     |      |             | DSCVPPPP signals during activation and deactivation sequence.       |
|     |      |             | DSCVCC                                                              |
|     |      |             | Direct Smart Card Vcc                                               |
| 4   |      | 0x0         | Direct Smart Card Vcc. When DIRACCPADS = '1', the DSCVCC bit        |
| 4   | RW   |             | provides direct access to SCVCCx outputs. The appropriate           |
|     |      |             | SCVCC18, SCVCC33 and SCVCC50 outputs are driven according           |
|     |      |             | to state of bits VCC18, VCC33 and VCC50 in CTRL2 register.          |
|     |      |             | DSCRST                                                              |
| 2   |      | 0x0         | Direct Smart Card Reset                                             |
| 3   | RW   |             | When DIRACCPADS = '1', the DSCRST bit provides direct access        |
|     |      |             | to SCRST output                                                     |
|     |      |             | DSCCLK                                                              |
| 2   |      | W 0×0       | Direct Smart Card Clock                                             |
| 2   | RW   |             | When DIRACCPADS = '1', the DSCCLK bit provides direct access        |
|     |      |             | to SCCLK output                                                     |
|     |      |             | DSCIO                                                               |
| 1   |      | 0.40        | Direct Smart Card Input/Output                                      |
| 1   | RW   | 0x0         | When DIRACCPADS = '1', the DSCIO bit provides direct access to      |
|     |      |             | SCIO pad.                                                           |
|     |      |             | DIRACCPADS                                                          |
| 0   |      |             | Direct Access To Smart Card Pads                                    |
| 0   | RW   | W 0×0       | When high, it disables a serial interface functionality and enables |
|     |      |             | direct control of the smart card pads using following 4 bits.       |

### SCR\_INTEN1

Address: Operational Base + offset (0x000c) Interrupt Enable Register 1

| Bit | Attr | <b>Reset Value</b> | Description                                                   |
|-----|------|--------------------|---------------------------------------------------------------|
|     | RW   | 0x0                | SCDEACT                                                       |
| 15  |      |                    | Smart Card Deactivation Interrupt                             |
| 13  |      |                    | When enabled, this interrupt is asserted after the Smart Card |
|     |      |                    | deactivation sequence is complete.                            |

| Bit | Attr | <b>Reset Value</b> | Description                                                         |
|-----|------|--------------------|---------------------------------------------------------------------|
|     |      |                    | SCACT                                                               |
| 14  |      |                    | Smart Card Activation Interrupt.                                    |
| 14  | RW   | 0x0                | When enabled, this interrupt is asserted after the Smart Card       |
|     |      |                    | activation sequence is complete.                                    |
|     |      |                    | SCINS                                                               |
| 10  |      | 0.40               | Smart Card Inserted Interrupt                                       |
| 13  | RW   | 0x0                | When enabled, this interrupt is asserted after the smart card       |
|     |      |                    | insertion                                                           |
|     |      |                    | SCREM                                                               |
| 10  | DW   | 0.40               | Smart Card Removed Interrupt.                                       |
| 12  | RW   | 0x0                | When enabled, this interrupt is asserted after the smart card       |
|     |      |                    | removal.                                                            |
|     |      |                    | ATRDONE                                                             |
| 11  | DW   | 0.40               | ATR Done Interrupt                                                  |
| 11  | RW   | 0x0                | When enabled, this interrupt is asserted after the ATR sequence     |
|     |      |                    | is successfully completed.                                          |
|     |      |                    | ATRFAIL                                                             |
| 10  | RW   | 0×0                | ATR Fail Interrupt                                                  |
|     |      |                    | When enabled, this interrupt is asserted if the ATR sequence fails. |
|     |      | 0×0                | RXTHRESHOLD                                                         |
| 0   |      |                    | RX FIFO Threshold Interrupt                                         |
| 9   | RW   |                    | When enabled, this interrupt is asserted if the number of bytes in  |
|     |      |                    | RX FIFO is equal or exceeds the RX FIFO threshold.                  |
|     |      |                    | C2CFULL                                                             |
|     |      |                    | Two Consecutive Characters Limit Interrupt                          |
|     |      | 0×0                | When enabled, this interrupt is asserted if the time between two    |
|     | RW   |                    | consecutive characters, transmitted between the Smart Card and      |
| 8   |      |                    | the Reader in both directions, is equal the Two Characters Delay    |
|     |      |                    | Limit described below. The C2CFULL interrupt is internally          |
|     |      |                    | enabled from the ATR start to the deactivation or ATR restart       |
|     |      |                    | initialization. It is recommended to use this counter to detect     |
|     |      |                    | unresponsive Smart Cards.                                           |
|     |      |                    | RXPERR                                                              |
|     |      |                    | Reception Parity Error Interrupt                                    |
| 7   | RW   | 0x0                | When enabled, this interrupt is asserted after the character with   |
|     |      |                    | wrong parity was received when the number of repeated               |
|     |      |                    | receptions exceeds RXREPEAT value or T=1 protocol is used           |
|     |      |                    | TXPERR                                                              |
|     |      |                    | Transmission Parity Error Interrupt.                                |
| 6   | RW   | 0x0                | When enabled, this interrupt is asserted if the Smart Card signals  |
|     |      |                    | wrong character parity during the guard-time after the character    |
|     |      |                    | transmission was repeated TXREPEAT-times                            |

| Bit      | Attr  | Reset Value | Description                                                        |
|----------|-------|-------------|--------------------------------------------------------------------|
|          |       |             | RXDONE                                                             |
| 5        | RW    | 0x0         | Reception Done Interrupt                                           |
| J        | K VV  | 0.00        | When enabled, this interrupt is asserted after a character was     |
|          |       |             | received from the Smart Card.                                      |
|          |       |             | TXDONE                                                             |
| 4        | RW    | 0x0         | Transmission Done Interrupt                                        |
| 4        | K VV  | 0.00        | When enabled, this interrupt is asserted after one character was   |
|          |       |             | transmitted to the Smart Card.                                     |
|          |       |             | CLKSTOPRUN                                                         |
|          |       |             | Smart Card Clock Stop Interrupt                                    |
|          |       | 0×0         | When enabled, this interrupt is asserted in two cases:             |
| 3        | RW    |             | 1. When the smart card clock is stopped (after CLOCKSTOP           |
|          |       |             | assertion).                                                        |
|          |       |             | 2. When the new character transfer can be started (the smart       |
|          |       |             | card clock is fully running after CLOCKSTOP de-assertion).         |
|          |       | 0x0         | RXFIFULL                                                           |
| 2        | RW    |             | RX FIFO Full Interrupt                                             |
| 2        |       |             | When enabled, this interrupt is asserted if the RX FIFO is filled  |
|          |       |             | up.                                                                |
|          |       |             | TXFIEMPTY                                                          |
| 1        | RW    | 0×0         | TX FIFO Empty Interrupt.                                           |
| <b>–</b> |       |             | When enabled, this interrupt is asserted if the TX FIFO is emptied |
|          |       |             | out.                                                               |
|          |       |             | TXFIDONE                                                           |
| 0        | RW    | 0x0         | TX FIFO Done Interrupt                                             |
|          | IX VV | W UXU       | When enabled, this interrupt is asserted after all bytes from TX   |
|          |       |             | FIFO were transferred to the Smart Card                            |

# SCR\_INTSTAT1

Address: Operational Base + offset (0x0010)

Interrupt Status Register 1

| Bit | Attr | <b>Reset Value</b> | Description                                                   |
|-----|------|--------------------|---------------------------------------------------------------|
| 15  |      |                    | SCDEACT                                                       |
|     | RW   | 0x0                | Smart Card Deactivation Interrupt                             |
| 13  | L AN | 0.00               | When enabled, this interrupt is asserted after the Smart Card |
|     |      |                    | deactivation sequence is complete.                            |
|     | RW   | 0×0                | SCACT                                                         |
| 14  |      |                    | Smart Card Activation Interrupt.                              |
| 14  |      |                    | When enabled, this interrupt is asserted after the Smart Card |
|     |      |                    | activation sequence is complete.                              |
|     |      | W 0x0              | SCINS                                                         |
| 12  |      |                    | Smart Card Inserted Interrupt                                 |
| 13  | RW   |                    | When enabled, this interrupt is asserted after the smart card |
|     |      |                    | insertion                                                     |

| Bit | Attr | <b>Reset Value</b> | Description                                                         |
|-----|------|--------------------|---------------------------------------------------------------------|
|     |      |                    | SCREM                                                               |
| 10  |      | 0.40               | Smart Card Removed Interrupt.                                       |
| 12  | RW   | 0x0                | When enabled, this interrupt is asserted after the smart card       |
|     |      |                    | removal.                                                            |
|     |      |                    | ATRDONE                                                             |
| 11  | RW   | 0x0                | ATR Done Interrupt                                                  |
| 11  | r vv | 0.00               | When enabled, this interrupt is asserted after the ATR sequence     |
|     |      |                    | is successfully completed.                                          |
|     |      |                    | ATRFAIL                                                             |
| 10  | RW   | 0x0                | ATR Fail Interrupt                                                  |
|     |      |                    | When enabled, this interrupt is asserted if the ATR sequence fails. |
|     |      |                    | RXTHRESHOLD                                                         |
| 9   | RW   | 0x0                | RX FIFO Threshold Interrupt                                         |
|     |      | 0,0                | When enabled, this interrupt is asserted if the number of bytes in  |
|     |      |                    | RX FIFO is equal or exceeds the RX FIFO threshold.                  |
|     |      |                    | C2CFULL                                                             |
|     |      | 0×0                | Two Consecutive Characters Limit Interrupt                          |
|     |      |                    | When enabled, this interrupt is asserted if the time between two    |
|     |      |                    | consecutive characters, transmitted between the Smart Card and      |
| 8   | RW   |                    | the Reader in both directions, is equal the Two Characters Delay    |
|     |      |                    | Limit described below. The C2CFULL interrupt is internally          |
|     |      |                    | enabled from the ATR start to the deactivation or ATR restart       |
|     |      |                    | initialization. It is recommended to use this counter to detect     |
|     |      |                    | unresponsive Smart Cards.                                           |
|     |      |                    | RXPERR                                                              |
|     |      |                    | Reception Parity Error Interrupt                                    |
| 7   | RW   | 0x0                | When enabled, this interrupt is asserted after the character with   |
|     |      |                    | wrong parity was received when the number of repeated               |
|     |      |                    | receptions exceeds RXREPEAT value or T=1 protocol is used           |
|     |      |                    | TXPERR                                                              |
|     |      |                    | Transmission Parity Error Interrupt.                                |
| 6   | RW   | 0x0                | When enabled, this interrupt is asserted if the Smart Card signals  |
|     |      |                    | wrong character parity during the guard-time after the character    |
|     |      |                    | transmission was repeated TXREPEAT-times                            |
|     |      |                    | RXDONE                                                              |
| 5   | RW   | 0.20               | Reception Done Interrupt                                            |
|     | RVV  | 0x0                | When enabled, this interrupt is asserted after a character was      |
|     |      |                    | received from the Smart Card.                                       |
|     |      |                    | TXDONE                                                              |
| 1   |      | 0.20               | Transmission Done Interrupt                                         |
| 4   | RW   | 0x0                | When enabled, this interrupt is asserted after one character was    |
|     |      |                    | transmitted to the Smart Card.                                      |

| Bit | Attr | Reset Value | Description                                                          |
|-----|------|-------------|----------------------------------------------------------------------|
|     |      |             | CLKSTOPRUN                                                           |
|     |      |             | Smart Card Clock Stop Interrupt                                      |
|     |      |             | When enabled, this interrupt is asserted in two cases:               |
| 3   | RW   | 0x0         | 1. When the smart card clock is stopped (after CLOCKSTOP assertion). |
|     |      |             | 2. When the new character transfer can be started (the smart         |
|     |      |             | card clock is fully running after CLOCKSTOP de-assertion).           |
|     |      | 0x0         | RXFIFULL                                                             |
| 2   | RW   |             | RX FIFO Full Interrupt                                               |
| 2   | RVV  |             | When enabled, this interrupt is asserted if the RX FIFO is filled    |
|     |      |             | up.                                                                  |
|     |      | W 0×0       | TXFIEMPTY                                                            |
| 1   | RW   |             | TX FIFO Empty Interrupt.                                             |
| 1   |      |             | When enabled, this interrupt is asserted if the TX FIFO is emptied   |
|     |      |             | out.                                                                 |
|     |      | RW 0×0      | TXFIDONE                                                             |
| 0   | RW   |             | TX FIFO Done Interrupt                                               |
| ľ   |      |             | When enabled, this interrupt is asserted after all bytes from TX     |
|     |      |             | FIFO were transferred to the Smart Card                              |

## SCR\_FIFOCTRL

Address: Operational Base + offset (0x0014) FIFO Control Register

| Bit   | Attr | <b>Reset Value</b> | Description                                          |
|-------|------|--------------------|------------------------------------------------------|
| 15:11 | RO   | 0x0                | reserved                                             |
|       |      |                    | RXFIFLUSH                                            |
| 10    | WO   | 0x0                | Flush RX FIFO                                        |
|       |      |                    | RX FIFO is flushed, when '1' is written to this bit. |
|       |      |                    | RXFIFULL                                             |
| 9     | RO   | 0x0                | RX FIFO Full                                         |
|       |      |                    | RX FIFO Full                                         |
|       |      |                    | RXFIEMPTY                                            |
| 8     | RO   | 0x0                | RX FIFO Empty                                        |
|       |      |                    | RX FIFO Empty                                        |
| 7:3   | RO   | 0x0                | reserved                                             |
|       |      |                    | TXFIFLUSH                                            |
| 2     | WO   | 0x0                | Flush TX FIFO.                                       |
|       |      |                    | TX FIFO is flushed, when '1' is written to this bit. |
|       |      |                    | TXFIFULL                                             |
| 1     | RO   | 0x0                | TX FIFO Full                                         |
|       |      |                    | TX FIFO Full                                         |
|       |      |                    | TXFIEMPTY                                            |
| 0     | RO   | 0x0                | TX FIFO Empty.                                       |
|       |      |                    | TX FIFO Empty.                                       |

#### SCR\_LEGTXFICNT

Address: Operational Base + offset (0x0018) Legacy TX FIFO Counter

| Bit | Attr | <b>Reset Value</b> | Description                                                      |
|-----|------|--------------------|------------------------------------------------------------------|
|     |      |                    | LEGTXFICNT                                                       |
|     |      |                    | Legacy TX FIFO Counter                                           |
| 7:0 | RO   | 0x00               | It is equal to TX FIFO Counter up to value 255. All values above |
|     |      |                    | 255 are read as 255. It is recommended to use the 16-bit TX      |
|     |      |                    | FIFO Counter instead of this register.                           |

### SCR\_LEGRXFICNT

Address: Operational Base + offset (0x0019) Legacy RX FIFO Counter

| Bit | Attr | <b>Reset Value</b> | Description                                                      |
|-----|------|--------------------|------------------------------------------------------------------|
|     |      |                    | LEGRXFICNT                                                       |
|     |      |                    | Legacy RX FIFO Counter                                           |
| 7:0 | RO   | 0x00               | It is equal to RX FIFO Counter up to value 255. All values above |
|     |      |                    | 255 are read as 255. It is recommended to use the 16-bit RX      |
|     |      |                    | FIFO Counter instead of this register.                           |

### SCR\_RXFITH

Address: Operational Base + offset (0x001c) RX FIFO Threshold

| Bit  | Attr | <b>Reset Value</b> | Description                                                       |
|------|------|--------------------|-------------------------------------------------------------------|
| 15:0 |      | 0x0000             | RXFITH                                                            |
|      | RW   |                    | RX FIFO Threshold                                                 |
|      | RW   |                    | The interrupt is asserted when the number of bytes it receives is |
|      |      |                    | equal to, or exceeds the threshold                                |

### SCR\_REP

Address: Operational Base + offset (0x0020) Repeat

| Bit | Attr | <b>Reset Value</b> | Description                                                       |
|-----|------|--------------------|-------------------------------------------------------------------|
|     |      | 0×0                | RXREP                                                             |
|     | RW   |                    | RX Repeat                                                         |
| 7:4 |      |                    | This is a 4-bit, read/write register that specifies the number of |
| /.4 |      |                    | attempts to request character re-transmission after wrong parity  |
|     |      |                    | was detected. The re-transmission of the character is requested   |
|     |      |                    | using the 1 ETU long error signal during the guard-time           |

#### RK3328 TRM-Part1

| Bit | Attr | <b>Reset Value</b> | Description                                                       |
|-----|------|--------------------|-------------------------------------------------------------------|
|     |      |                    | TXREP                                                             |
|     |      |                    | TX Repeat                                                         |
| 3:0 | RW   | 0x0                | This is a 4-bit, read/write register that specifies the number of |
|     |      |                    | attempts to re-transmit the character after the Smart Card        |
|     |      |                    | signals the wrong parity during the guard-time.                   |

### SCR\_SCCDDIV

Address: Operational Base + offset (0x0024) Smart Card Clock Divisor

| Bit  | Attr | <b>Reset Value</b> | Description                                                          |
|------|------|--------------------|----------------------------------------------------------------------|
|      | RW   | 0x0000             | SCCDDIV                                                              |
| 15:0 |      |                    | Smart Card Clock Divisor                                             |
| 15.0 |      |                    | This is a 16-bit, read/write register that defines the divisor value |
|      |      |                    | used to generate the Smart Card Clock from the system clock.         |

### SCR\_BAUDDIV

Address: Operational Base + offset (0x0028)

Baud Clock Divisor

| Bit  | Attr | <b>Reset Value</b> | Description                                                        |
|------|------|--------------------|--------------------------------------------------------------------|
| 15.0 |      | 0x0000             | BAUDDIV                                                            |
|      | RW   |                    | Baud Clock Divisor                                                 |
| 15:0 |      |                    | This is a 16-bit, read/write register that defines a divisor value |
|      |      |                    | used to generate the Baud Clock impulses from the system clock     |

### SCR\_SCGUTIME

Address: Operational Base + offset (0x002c) Smart Card Guard-time

| Bit | Attr | <b>Reset Value</b> | Description                                                           |
|-----|------|--------------------|-----------------------------------------------------------------------|
|     |      | 0×00               | SCGUTI                                                                |
|     | RW   |                    | Smart Card Guard-time                                                 |
| 7:0 |      |                    | This is an 8-bit, read/write register that sets a delay at the end of |
| 7.0 |      |                    | each character transmitted from the Smart Card Reader to the          |
|     |      |                    | Smart Card. The value is in Elementary Time Units (ETU). The          |
|     |      |                    | parity error is besides signaled during the guardtime                 |

### SCR\_ADEATIME

Address: Operational Base + offset (0x0030) Activation / Deactivation Time

| Bit  | Attr | Reset Value | Description                                                       |
|------|------|-------------|-------------------------------------------------------------------|
| 15.0 |      | 0x00        | ADEATIME                                                          |
|      | RW   |             | Activation / Deactivation Time                                    |
| 15:8 |      |             | Sets the duration of each part of the activation and deactivation |
|      |      |             | sequence. The value is in Smart Card Clock Cycles.                |
|      | RW   | V 0×00      | Reserved                                                          |
| 7:0  |      |             | Reserved                                                          |
|      |      |             | Reserved bits are hard-wired to zero.                             |

## SCR\_LOWRSTTIME

Address: Operational Base + offset (0x0034)

Reset Duration

| Bit  | Attr | <b>Reset Value</b> | Description                                                       |
|------|------|--------------------|-------------------------------------------------------------------|
|      |      |                    | LOWRSTTIME                                                        |
|      |      |                    | Reset Duration                                                    |
| 15:8 | RW   | 0x00               | Sets the duration of the smart card reset sequence. This value is |
|      |      |                    | same for the cold and warm reset. The value is in terms of smart  |
|      |      |                    | card clock cycles.                                                |
|      |      |                    | Reserved                                                          |
| 7:0  | RW   | 0x00               | Reserved                                                          |
|      |      |                    | Bits (7:0) of this register are hard-wired to zero.               |

### SCR\_ATRSTARTLIMIT

Address: Operational Base + offset (0x0038) ATR Start Limit

| Bit  | Attr | <b>Reset Value</b> | Description                                                  |
|------|------|--------------------|--------------------------------------------------------------|
|      |      |                    | ATRSTARTLIMIT                                                |
|      |      |                    | ATR Start Limit                                              |
| 15:8 | RW   | 0x00               | Defines the maximum time between the rising edge of the      |
|      |      |                    | SCRSTN signal and the start of ATR response. The value is in |
|      |      |                    | terms of smart card clock cycles                             |
|      |      |                    | Reserved                                                     |
| 7:0  | RW   | 0x00               | Reserved                                                     |
|      |      |                    | Bits (7:0) of this register are hard-wired to zero           |

## SCR\_C2CLIM

Address: Operational Base + offset (0x003c) Two Characters Delay Limit

| Bit  | Attr | <b>Reset Value</b> | Description                                                      |
|------|------|--------------------|------------------------------------------------------------------|
|      |      |                    | C2CLIM                                                           |
|      |      |                    | Two Characters Delay Limit                                       |
| 15:0 | RW   | 0x0000             | This is a 16-bit, read/write register that sets the maximum time |
|      |      |                    | between the leading edges of two, consecutive characters. The    |
|      |      |                    | value is in ETUs.                                                |

### SCR\_INTEN2

Address: Operational Base + offset (0x0040) Interrupt Enable Register 2

| Bit  | Attr | <b>Reset Value</b> | Description                                                        |
|------|------|--------------------|--------------------------------------------------------------------|
| 15:2 | RO   | 0x0                | reserved                                                           |
|      |      |                    | TCKERR                                                             |
| 1    | RW   | 0×0                | TCK Error Interrupt.                                               |
| 1    | ĸw   |                    | When enabled, this interrupt is asserted if the TCK byte does not  |
|      |      |                    | match computed value.                                              |
|      |      | W 0x0              | TXTHRESHOLD                                                        |
| 0    |      |                    | TX FIFO Threshold Interrupt                                        |
| 0    | RW   |                    | When enabled, this interrupt is asserted if the number of bytes in |
|      |      |                    | TX FIFO is equal or less than the TX FIFO threshold.               |

## SCR\_INTSTAT2

Address: Operational Base + offset (0x0044) Interrupt Status Register 2

| Bit  | Attr | Reset Value | Description                                                        |
|------|------|-------------|--------------------------------------------------------------------|
| 15:2 | RO   | 0x0         | reserved                                                           |
| 1    | RW   | 0×0         | TCKERR                                                             |
|      |      |             | TCK Error Interrupt                                                |
|      |      |             | When enabled, this interrupt is asserted if the TCK byte does not  |
|      |      |             | match computed value.                                              |
| 0    | RW   | 0x0         | TXTHRESHOLD                                                        |
|      |      |             | TX FIFO Threshold Interrupt                                        |
|      |      |             | When enabled, this interrupt is asserted if the number of bytes in |
|      |      |             | TX FIFO is equal or less than the TX FIFO threshold.               |

## SCR\_TXFITH

Address: Operational Base + offset (0x0048) TX FIFO Threshold

| Bit  | Attr | <b>Reset Value</b> | Description                                                      |
|------|------|--------------------|------------------------------------------------------------------|
| 15:0 | RW   | 0x0000             | TXFITH                                                           |
|      |      |                    | TX FIFO Threshold                                                |
|      |      |                    | The interrupt is asserted when the number of bytes in TX FIFO is |
|      |      |                    | equal or less than the threshold                                 |

#### SCR\_TXFIFOCNT

Address: Operational Base + offset (0x004c) TX FIFO Counter

| Bit  | Attr | <b>Reset Value</b> | Description                                                      |
|------|------|--------------------|------------------------------------------------------------------|
| 15:0 | RO   | 0x0000             | TXFIFOCNT                                                        |
|      |      |                    | TX FIFO Counter                                                  |
|      |      |                    | This is a 16-bit, read-only register that provides the number of |
|      |      |                    | bytes stored in the RX FIFO                                      |

#### SCR\_RXFIFOCNT

Address: Operational Base + offset (0x0050)

**RX FIFO Counter** 

| Bit  | Attr | <b>Reset Value</b> | Description                                                      |
|------|------|--------------------|------------------------------------------------------------------|
| 15:0 | RO   | 0x0000             | RXFIFOCNT                                                        |
|      |      |                    | RX FIFO Counter                                                  |
|      |      |                    | This is a 16-bit, read-only register that provides the number of |
|      |      |                    | bytes stored in the RX FIFO.                                     |

#### SCR\_BAUDTUNE

Address: Operational Base + offset (0x0054)

Baud Tune Register

| Bit | Attr | <b>Reset Value</b> | Description                                                           |
|-----|------|--------------------|-----------------------------------------------------------------------|
| 7:4 | RO   | 0x0                | reserved                                                              |
|     | RW   | 0x0                | BAUDTUNE                                                              |
| 3:0 |      |                    | Baud Tune Register                                                    |
|     |      |                    | This is a 3-bit, read/write register that defines an additional value |
|     |      |                    | used to increase the accuracy of the Baud Clock impulses              |

#### SCR\_FIFO

Address: Operational Base + offset (0x0200) FIFO

| Bit | Attr | <b>Reset Value</b> | Description                                                       |
|-----|------|--------------------|-------------------------------------------------------------------|
|     |      |                    | FIFO                                                              |
|     |      |                    | FIFO                                                              |
|     |      |                    | This is an 8-bit, read/write register that provides access to the |
| 7:0 | RW   | 0x00               | receive and transmit FIFO buffers. The TX FIFO is accessed        |
|     |      |                    | during the APB write transfer. The RX FIFO is accessed during the |
|     |      |                    | APB read transfer. All read/write accesses at address range 200h- |
|     |      |                    | 3ffh are redirected to the FIFO.                                  |

# 24.5 Interface Description

| Module   | Direction | Pad Name                     | IOMUX Setting           |
|----------|-----------|------------------------------|-------------------------|
| Pin      |           |                              |                         |
| sc_clk   | 0         | IO_CARDclkm0_GPIO3B4vccio6   | GPIO3B_IOMUX[9:8]=01    |
|          |           |                              | GRF_CON_IOMUX[7]=0      |
|          |           | IO_I2S1sdi_PWMsdi0m0_CARDclk | GPIO2CL_IOMUX[11:9]=011 |
|          |           | m1_GPIO2C3vccio5             | GRF_CON_IOMUX[7]=1      |
| sc_rst   | 0         | IO_CARDrstm0_GPIO3B5vccio6   | GPIO3B_IOMUX[11:10]=01  |
|          |           |                              | GRF_CON_IOMUX[7]=0      |
|          |           | IO_I2S1sdio1_PDMsdi1m0_CARDr | GPIO2CL_IOMUX[14:12]=01 |
|          |           | stm1_GPIO2C4vccio5           | 1                       |
|          |           |                              | GRF_CON_IOMUX[7]=1      |
| sc_detec | Ι         | IO_CARDdetm0_GPIO3B6vccio6   | GPIO3B_IOMUX[13:12]=01  |
| t        |           |                              | GRF_CON_IOMUX[7]=0      |
|          |           | IO_I2S1sdio2_PDMsdi2m0_CARD  | GPIO2CH_IOMUX[2:0]=011  |
|          |           | detm1_GPIO2C5vccio5          | GRF_CON_IOMUX[7]=1      |
| sc_io    | Ι         | IO_CARDiom0_GPIO3B7vccio6    | GPIO3B_IOMUX[15:14]=01  |
|          |           |                              | GRF_CON_IOMUX[7]=0      |
|          |           | IO_I2S1sdio3_PDMsdi3m0_CARDi | GPIO2CH_IOMUX[5:3]=011  |
|          |           | om1_GPIO2C6vccio5            | GRF_CON_IOMUX[7]=1      |

Table 24-1 SCR Interface Description

Notes: I=input, O=output, I/O=input/output, bidirectional

# 24.6 Application Notes

## 24.6.1 BCHST/BCHLOC/BCHDE/SPARE Application

The Smart Card Clock signal is used as the main clock for the smart card. Its frequency canbeadjusted using the Smart Card Clock Divisor (SCCDIV). This value is used to divide the system clock.

The SCCLK frequency is given by the following equation:

$$SCCLK_{freq} = \frac{CLK_{freq}}{2 * (SCCDIV + 1)}, SCCDIV \cong \frac{CLK_{freq}}{2 * SCCLK_{freq}} - 1$$

SCCLK\_freq- Smart Card Clock Frequency

CLK\_freq- System Clock Frequency

The Baud Clock Impulse signal is used to transmit and receive serial data between the Smart CardReader and the Smart Card. The baud rate can be modified using the Baud Clock Divisor (BAUDDIV) which is used to divide the system clock. The BAUDDIV value must be >= 4. The BAUD rate is given by the following equation:

$$BAUD_{rate} = \frac{CLK_freq}{2 * (BAUDDIV + 1)}$$

The duration of one bit, Elementary Time Unit (ETU) and parameters F and D are defined in the ISO/IEC7816-3 specification.

$$\frac{1}{\text{BAUD\_rate}} \cong \text{ETU} = \frac{F}{D} * \frac{1}{\text{SCCLK}_{\text{freq}}}, \frac{F}{D} \cong \frac{\text{BAUDDIV} + 1}{\text{SCCDIV} + 1}$$

BAUDDIV equation based on SCCDIV value and Smart Card parameters F and D is following:

$$BAUDDIV \cong (SCCDIV + 1) * \frac{F}{D} - 1$$

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

During the first answer to reset response after the cold reset, the initial ETU must be equal to 372 SmartCard Clock Cycles (given by parameters F=372 and D=1). In this case, the BAUDDIV should be:

BAUDDIV 
$$\cong$$
 (SCCDIV + 1)  $*\frac{372}{1} - 1$ 

After the ATR is completed, the BAUDDIV register value can be changed according to Smart Cardparameters F and D.

Baud Tune Register (BAUDTUNE) 3-bit value that can be used to increase the accuracy of the BaudClock impulses timing by using the BAUDTUNE Increment from Table listed below in combination with BAUDDIVregister value.

| BAUDTUNE     | 000 | 001    | 010  | 011    | 100  | 101    | 110   | 111    |
|--------------|-----|--------|------|--------|------|--------|-------|--------|
| BAUDTUNEINCR | +0  | +0.125 | 0.25 | +0.375 | +0.5 | +0.625 | +0.75 | +0.875 |

BAUDDIV + BAUDTUNE<sub>INCR</sub>  $\cong$  (SCCDIV + 1) \*  $\frac{F}{D}$  - 1

The BAUDDIV register value (nearest integer) can be computed using following equation:

BAUDDIV 
$$\cong$$
 (SCCDIV + 1)  $*\frac{F}{D} - 1 - BAUDTUNE_{INCR}$ 

## 24.6.2 Smart Card Detect Application

It is configurable for SCR's detect pin when Smart Card is inserted. When config GRF\_SOC\_CON7[0]=0, SCDETECT`s active state is 0. When config GRF\_SOC\_CON7[0]=1, SCDETECT`s active state is 1.

# **Chapter 25 I2S/PCM Controller**

## 25.1 Overview

The I2S/PCM controller is designed for interfacing between the AHB bus and the I2S bus.

The I2S bus (Inter-IC sound bus) is a serial link for digital audio data transfer between devices in the system and be invented by Philips Semiconductor. Now it is widely used by many semiconductor manufacturers.

Devices often use the I2S bus are ADC, DAC, DSP, CPU, etc. With the I2S interface, we can connect audio devices and the embedded SoC platform together and provide an audio interface solution for the system.

Not only I2S but also PCM mode surround audio output and stereo input are supported in I2S/PCM controller.

There are three I2S/PCM controllers embedded in the design, I2S0, I2S1 and I2S2. Different features between I2S/PCM controllers are as follows.

- Support four internal 32-bit wide and 32-location deep FIFOs for transmitting audio data for I2S0
- Support eight internal 32-bit wide and 32-location deep FIFOs, four for transmitting and four for receiving audio data for I2S1
- Support two internal 32-bit wide and 32-location deep FIFOs, one for transmitting and one for receiving audio data for I2S2
- Support 8 channels audio data transmitting in I2S mode for I2S0, 8 channels audio data transmitting or 8 channels audio data receiving for I2S1, 2 channels audio data transmitting and 2 channels audio data receiving for I2S2.

Common features for I2S0, I2S1 and I2S2 are as follows.

- Support AHB bus interface
- Support 16 ~ 32 bits audio data transfer
- Support master and slave mode
- Support DMA handshake interface and configurable DMA water level
- Support transmit FIFO empty, underflow, receive FIFO full, overflow interrupt and all interrupts can be masked
- Support configurable water level of transmit FIFO empty and receive FIFO full interrupt
- Support combine interrupt output
- Support 2 channels audio receiving in PCM mode
- Support I2S normal, left and right justified mode serial audio data transfer
- Support PCM early, late1, late2, late3 mode serial audio data transfer
- Support MSB or LSB first serial audio data transfer
- Support 16 to 31 bit audio data left or right justified in 32-bit wide FIFO
- Support two 16-bit audio data store together in one 32-bit wide location
- Support 2 independent LRCK signals, one for receiving and one for transmitting audio data. Single LRCK can be used for transmitting and receiving data if the sample rate are the same
- Support configurable SCLK and LRCK polarity

# 25.2 Block Diagram

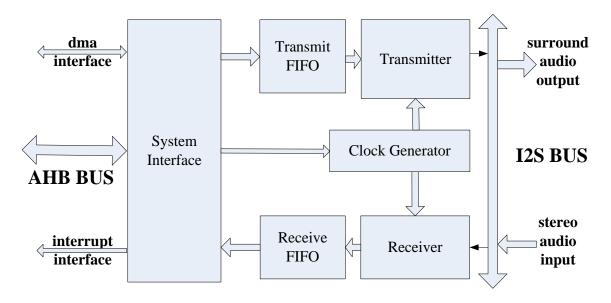



Fig. 25-1 I2S/PCM controller (8 channel) Block Diagram

#### System Interface

The system interface implements the AHB slave operation. It contains not only control registers of transmitter and receiver inside but also interrupt and DMA handshake interface.

#### **Clock Generator**

The Clock Generator implements clock generation function. The input source clock to the module is MCLK\_I2S, and by the divider of the module, the clock generator generates SCLK and LRCK to transmitter and receiver.

#### Transmitter

The Transmitter implements transmission operation. The transmitter can act as either master or slave, with I2S or PCM mode surround serial audio interface.

#### Receiver

The Receiver implements receive operation. The receiver can act as either master or slave, with I2S or PCM mode stereo serial audio interface.

#### **Transmit FIFO**

The Transmit FIFO is the buffer to store transmitted audio data. The size of the FIFO is  $32bits \times 32$ .

#### **Receive FIFO**

The Receive FIFO is the buffer to store received audio data. The size of the FIFO is 32bits x 32.

# **25.3 Function description**

In the I2S/PCM controller, there are four conditions: transmitter-master & receiver-master; transmitter-master & receiver-slave; transmitter-slave & receiver-master; transmitter-slave & receiver-slave.

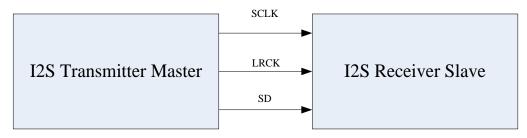



Fig. 25-2 I2S transmitter-master & receiver-slave condition

When transmitter acts as a master, it sends all signals to receiver (slave), and CPU control when to send clock and data to the receiver. When acting as a slave, SD signal still goes from transmitter to receiver, but SCLK and LRCK signals are from receiver (master) to transmitter. Based on three interface specifications, transmitting data should be ready before transmitter receives SCLK and LRCK signals. CPU should know when the receiver to initialize a transaction and when to send data.

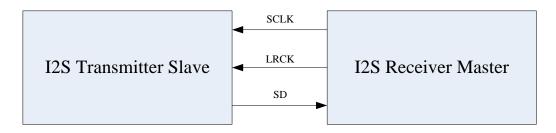



Fig. 25-3 I2S transmitter-slave& receiver-master condition

When the receiver acts as a master, it sends SCLK and LRCK signals to the transmitter (slave) and receives serial data. So CPU must tell the transmitter when to start a transaction for it to prepare transmitting data then the receiver start a transfer and send clock and channel-select signals. When the receiver acts as a slave, CPU should only do initial setting and wait for all signals and then start reading data.

Before transmitting or receiving data, CPU need do initial setting to the I2S register. These includes CPU settings, I2S interface registers settings, and maybe the embedded SoC platform settings. These registers must be set before starting data transfer.

### 25.3.1 i2s normal mode

This is the waveform of I2S normal mode. For LRCK (i2s\_lrck\_rx/i2s\_lrck\_tx) signal, it goes low to indicate left channel and high to right channel. For SD (i2s\_sdo,i2s\_sdi) signal, it transfers MSB or LSB first and sends the first bit one SCLK clock cycle after LRCK changes. The range of SD signal width is from 16 to 32bits.

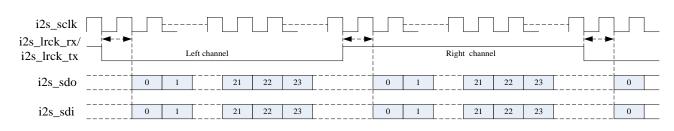



Fig. 25-4 I2S normal mode timing format

## 25.3.2 i2s left justified mode

This is the waveform of I2S left justified mode. For LRCK (i2s\_lrck\_rx / i2s\_lrck\_tx) signal, it goes high to indicate left channel and low to right channel. For SD (i2s\_sdo, i2s\_sdi) signal, it transfers MSB or LSB first and sends the first bit at the same time when LRCK changes. The range of SD signal width is from 16 to 32bits.

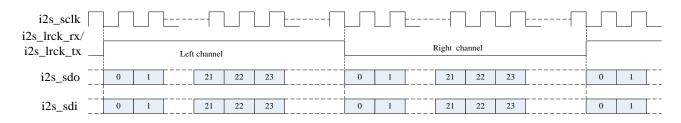



Fig. 25-5 I2S left justified mode timing format

### 25.3.3 i2s right justified mode

This is the waveform of I2S right justified mode. For LRCK (i2s\_lrck\_rx / i2s\_lrck\_tx) signal, it goes high to indicate left channel and low to right channel. For SD (i2s\_sdo, i2s\_sdi) signal, it transfers MSB or LSB first; but different from I2S normal or left justified mode, its data is aligned to last bit at the edge of the LRCK signal. The range of SD signal width is from 16 to 32bits.

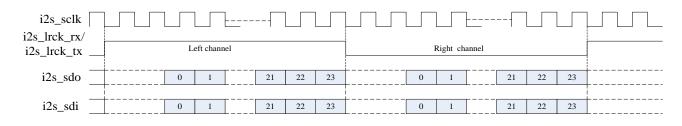



Fig. 25-6 I2S right justified mode timing format

### 25.3.4 PCM early mode

This is the waveform of PCM early mode. For LRCK (i2s\_lrck\_rx / i2s\_lrck\_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s\_sdo, i2s\_sdi) signal, it transfers MSB or LSB first and sends the first bit at the same time when LRCK goes high. The range of SD signal width is from 16 to 32bits.

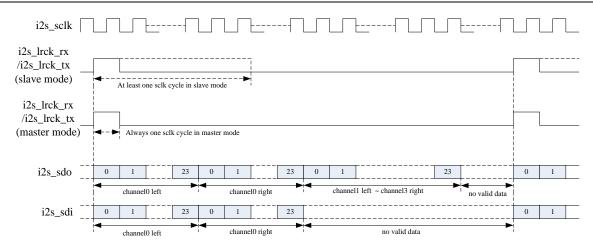



Fig. 25-7 PCM early mode timing format

## 25.3.5 PCM late1 mode

This is the waveform of PCM late1 mode. For LRCK (i2s\_lrck\_rx / i2s\_lrck\_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s\_sdo, i2s\_sdi) signal, it transfers MSB or LSB first and sends the first bit one SCLK clock cycle after LRCK goes high. The range of SD signal width is from 16 to 32bits.

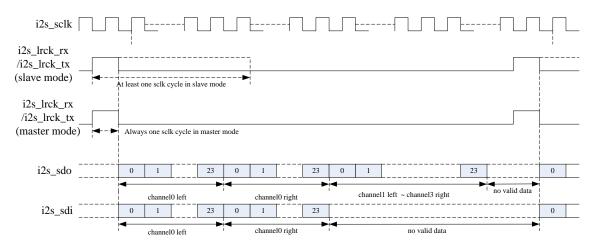



Fig. 25-8 PCM late1 mode timing format

## 25.3.6 PCM late2 mode

This is the waveform of PCM late2 mode. For LRCK (i2s\_lrck\_rx / i2s\_lrck\_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s\_sdo, i2s\_sdi) signal, it transfers MSB or LSB first and sends the first bit two SCLK clock cycles after LRCK goes high. The range of SD signal width is from 16 to 32bits.

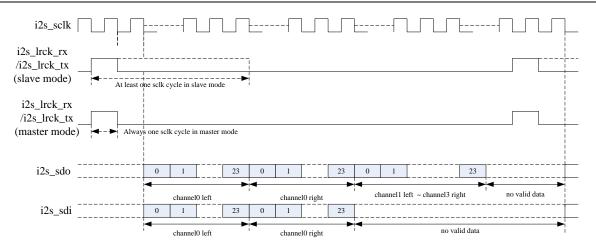



Fig. 25-9 PCM late2 mode timing format

## 25.3.7 PCM late3 mode

This is the waveform of PCM late3 mode. For LRCK (i2s\_lrck\_rx / i2s\_lrck\_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s\_sdo, i2s\_sdi) signal, it transfers MSB or LSB first and sends the first bit three SCLK clock cycles after LRCK goes high. The range of SD signal width is from 16 to 32bits.

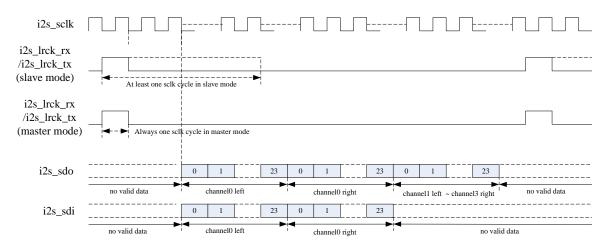



Fig. 25-10 PCM late3 mode timing format

# **25.4 Register Description**

This section describes the control/status registers of the design.

### 25.4.1 Registers Summary

| Name         | Offset | Size | Reset<br>Value | Description                         |
|--------------|--------|------|----------------|-------------------------------------|
| I2S_TXCR     | 0x0000 | W    | 0x0000000f     | transmit operation control register |
| I2S_RXCR     | 0x0004 | W    | 0x0000000f     | receive operation control register  |
| I2S_CKR      | 0x0008 | W    | 0x00071f1f     | clock generation register           |
| I2S_TXFIFOLR | 0x000c | W    | 0x00000000     | TX FIFO level register              |
| I2S_DMACR    | 0x0010 | W    | 0x001f0000     | DMA control register                |
| I2S_INTCR    | 0x0014 | W    | 0x00000000     | interrupt control register          |

#### RK3328 TRM-Part1

| Name         | Offset | Size | Reset<br>Value | Description                      |
|--------------|--------|------|----------------|----------------------------------|
| I2S_INTSR    | 0x0018 | W    | 0x00000000     | interrupt status register        |
| I2S_XFER     | 0x001c | W    | 0x00000000     | Transfer Start Register          |
| I2S_CLR      | 0x0020 | W    | 0x00000000     | SCLK domain logic clear Register |
| I2S_TXDR     | 0x0024 | W    | 0x00000000     | Transmit FIFO Data Register      |
| I2S_RXDR     | 0x0028 | W    | 0x00000000     | Receive FIFO Data Register       |
| I2S_RXFIFOLR | 0x002c | W    | 0x00000000     | RX FIFO level register           |
| I2S_VERSION  | 0x0030 | W    | 0x20150001     | I2s version                      |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 25.4.2 Detail Register Description

### I2S\_TXCR

Address: Operational Base + offset (0x0000)

transmit operation control register

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                  |
|-------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:23 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                     |
| 22:17 | RW   | 0×00        | RCNT<br>right justified counter<br>(Can be written only when XFER[0] bit is 0.)<br>Only valid in I2S Right justified format and slave tx mode is<br>selected.<br>Start to transmit data RCNT sclk cycles after left channel valid.                                                                           |
| 16:15 | RW   | 0x0         | TCSR<br>TX Channel select register<br>2'b00:two channel<br>2'b01:four channel<br>2'b10:six channel<br>2'b11:eight channel                                                                                                                                                                                    |
| 14    | RW   | 0×0         | HWT<br>Halfword word transform<br>(Can be written only when XFER[0] bit is 0.)<br>Only valid when VDW select 16bit data.<br>0:32 bit data valid from AHB/APB bus. Low 16 bit for left channel<br>and high 16 bit for right channel.<br>1:low 16bit data valid from AHB/APB bus, high 16 bit data<br>invalid. |
| 13    | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                     |

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                       |
|------|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12   | RW   | 0×0         | SJM<br>Store justified mode<br>SJM<br>Store justified mode<br>(Can be written only when XFER[1] bit is 0.)<br>16bit~31bit DATA stored in 32 bits width fifo.<br>This bit is invalid if VDW select 16bit data and HWT select 0,<br>Because every fifo unit contain two 16bit data and 32 bit space is<br>full, it is impossible to choose justified mode.<br>0:right justified<br>1:left justified |
| 11   | RW   | 0×0         | FBM<br>First Bit Mode<br>(Can be written only when XFER[0] bit is 0.)<br>0:MSB<br>1:LSB                                                                                                                                                                                                                                                                                                           |
| 10:9 | RW   | 0×0         | IBM<br>I2S bus mode<br>(Can be written only when XFER[0] bit is 0.)<br>0:I2S normal<br>1:I2S Left justified<br>2:I2S Right justified<br>3:reserved                                                                                                                                                                                                                                                |
| 8:7  | RW   | 0x0         | PBM<br>PCM bus mode<br>(Can be written only when XFER[0] bit is 0.)<br>0:PCM no delay mode<br>1:PCM delay 1 mode<br>2:PCM delay 2 mode<br>3:PCM delay 3 mode                                                                                                                                                                                                                                      |
| 6    | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                                          |
| 5    | RW   | 0x0         | TFS<br>Transfer format select<br>(Can be written only when XFER[0] bit is 0.)<br>0: I2S format<br>1: PCM format                                                                                                                                                                                                                                                                                   |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                    |
|-----|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:0 | RW   | 0×0f        | VDW<br>Valid Data width<br>(Can be written only when XFER[0] bit is 0.)<br>0~14:reserved<br>15:16bit<br>16:17bit<br>17:18bit<br>18:19bit<br><br>n:(n+1)bit<br><br>28:29bit<br>29:30bit<br>30:31bit<br>31:32bit |

## I2S\_RXCR

Address: Operational Base + offset (0x0004)

receive operation control register

| Bit   | Attr | Reset Value | Description                                                      |
|-------|------|-------------|------------------------------------------------------------------|
| 31:17 | RO   | 0x0         | reserved                                                         |
|       |      |             | RCSR                                                             |
|       |      |             | RX Channel select register                                       |
| 16:15 | D\\/ | 0x0         | 2'b00:two channel                                                |
| 10.15 | r vv | W 0x0       | 2'b01:four channel                                               |
|       |      |             | 2'b10:six channel                                                |
|       |      |             | 2'b11:eight channel                                              |
|       |      |             | HWT                                                              |
|       |      |             | Halfword word transform                                          |
|       |      |             | (Can be written only when XFER[1] bit is 0.)                     |
| 14    | RW   |             | Only valid when VDW select 16bit data.                           |
|       |      |             | 0:32 bit data valid to AHB/APB bus. Low 16 bit for left channel  |
|       |      |             | and high 16 bit for right channel.                               |
|       |      |             | 1:low 16bit data valid to AHB/APB bus, high 16 bit data invalid. |
| 13    | RO   | 0x0         | reserved                                                         |

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                         |
|------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12   | RW   | 0×0         | SJM<br>Store justified mode<br>(Can be written only when XFER[1] bit is 0.)<br>16bit~31bit DATA stored in 32 bits width fifo.<br>If VDW select 16bit data, this bit is valid only when HWT select<br>0.Because if HWT is 1, every fifo unit contain two 16bit data and<br>32 bit space is full, it is impossible to choose justified mode.<br>0:right justified<br>1:left justified |
| 11   | RW   | 0×0         | FBM<br>First Bit Mode<br>(Can be written only when XFER[1] bit is 0.)<br>0:MSB<br>1:LSB                                                                                                                                                                                                                                                                                             |
| 10:9 | RW   | 0×0         | IBM<br>I2S bus mode<br>(Can be written only when XFER[1] bit is 0.)<br>0:I2S normal<br>1:I2S Left justified<br>2:I2S Right justified<br>3:reserved                                                                                                                                                                                                                                  |
| 8:7  | RW   | 0×0         | PBM<br>PCM bus mode<br>(Can be written only when XFER[1] bit is 0.)<br>0:PCM no delay mode<br>1:PCM delay 1 mode<br>2:PCM delay 2 mode<br>3:PCM delay 3 mode                                                                                                                                                                                                                        |
| 6    | RO   | 0x0         | reserved                                                                                                                                                                                                                                                                                                                                                                            |
| 5    | RW   | 0x0         | TFS<br>Transfer format select<br>(Can be written only when XFER[1] bit is 0.)<br>0:i2s<br>1:pcm                                                                                                                                                                                                                                                                                     |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                    |
|-----|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:0 | RW   | 0×0f        | VDW<br>Valid Data width<br>(Can be written only when XFER[1] bit is 0.)<br>0~14:reserved<br>15:16bit<br>16:17bit<br>17:18bit<br>18:19bit<br><br>n:(n+1)bit<br><br>28:29bit<br>29:30bit<br>30:31bit<br>31:32bit |

## I2S\_CKR

Address: Operational Base + offset (0x0008)

clock generation register

| Bit   | Attr | Reset Value | Description                                                     |
|-------|------|-------------|-----------------------------------------------------------------|
| 31:30 | RO   | 0x0         | reserved                                                        |
|       |      |             | TRCM                                                            |
|       |      |             | Tx and Rx Common Use                                            |
| 29:28 | DW   | 0x0         | 2'b00/2'b11:tx_lrck/rx_lrck are used as synchronous signal for  |
| 29.20 |      | 0.00        | TX /RX respectively.                                            |
|       |      |             | 2'b01:only tx_lrck is used as synchronous signal for TX and RX. |
|       |      |             | 2'b10:only rx_lrck is used as synchronous signal for TX and RX. |
|       |      |             | MSS                                                             |
|       |      |             | Master/slave mode select                                        |
| 27    | RW   | W 0×0       | (Can be written only when XFER[1] or XFER[0] bit is 0.)         |
|       |      |             | 0:master mode(sclk output)                                      |
|       |      |             | 1:slave mode(sclk input)                                        |
|       |      |             | СКР                                                             |
|       |      |             | Sclk polarity                                                   |
| 26    | RW   | 0x0         | (Can be written only when XFER[1] or XFER[0] bit is 0.)         |
|       |      |             | 0: sample data at posedge sclk and drive data at negedge sclk   |
|       |      |             | 1: sample data at negedge sclk and drive data at posedge sclk   |

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25    | RW   | 0×0         | RLP<br>Receive lrck polarity<br>(Can be written only when XFER[1] or XFER[0] bit is 0.)<br>0:normal polarity<br>(I2S normal: low for left channel, high for right channel<br>I2S left/right just: high for left channel, low for right channel<br>PCM start signal: high valid)<br>1:oppsite polarity<br>(I2S normal: high for left channel, low for right channel<br>I2S left/right just: low for left channel, high for right channel<br>PCM start signal: high valid) |
| 24    | RW   | 0×0         | TLP<br>Transmit lrck polarity<br>(Can be written only when XFER[1] or XFER[0] bit is 0.)<br>0:normal polarity<br>(I2S normal: low for left channel, high for right channel<br>I2S left/right just: high for left channel, low for right channel<br>PCM start signal: high valid)<br>1:oppsite polarity<br>(I2S normal: high for left channel, low for right channel<br>I2S left/right just: low for left channel, high for right channel<br>PCM start signal: low valid) |
| 23:16 | RW   | 0×07        | <pre>MDIV mclk divider (Can be written only when XFER[1] or XFER[0] bit is 0.) Serial Clock Divider = Fmclk / Ftxsclk-1.(mclk frequecy / txsclk frequecy-1) 0 :Fmclk=Ftxsclk; 1 :Fmclk=2*Ftxsclk; 2,3 :Fmclk=4*Ftxsclk; 4,5 :Fmclk=6*Ftxsclk; 4,5 :Fmclk=6*Ftxsclk; 2n,2n+1:Fmclk=(2n+2)*Ftxsclk; 60,61:Fmclk=62*Ftxsclk; 62,63:Fmclk=64*Ftxsclk; 252,253:Fmclk=254*Ftxsclk; 254,255:Fmclk=256*Ftxsclk;</pre>                                                            |

| Bit  | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                              |
|------|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:8 | RW   | 0x1f        | RSD<br>Receive sclk divider<br>(Can be written only when XFER[1] or XFER[0] bit is 0.)<br>Receive sclk divider= Fsclk/Frxlrck<br>0~30:reserved<br>31: 32fs<br>32: 33fs<br>33: 34fs<br>34: 35fs<br><br>n: (n+1)fs<br><br>253: 254fs<br>254: 255fs<br>255: 256fs                                                                           |
| 7:0  | RW   | 0x1f        | TSD         Transmit sclk divider         (Can be written only when XFER[1] or XFER[0] bit is 0.)         Transmit sclk divider=Ftxsclk/Ftxlrck         0~30:reserved         31:       32fs         32:       33fs         33:       34fs         34:       35fs          n: (n+1)fs          253:       254fs         255:       256fs |

### I2S\_TXFIFOLR

Address: Operational Base + offset (0x000c)

TX FIFO level register

| Bit   | Attr | Reset Value | Description                                                      |
|-------|------|-------------|------------------------------------------------------------------|
| 31:24 | RO   | 0x0         | reserved                                                         |
|       |      |             | TFL3                                                             |
| 23:18 | RO   | 0x00        | Transmit FIFO3 Level                                             |
|       |      |             | Contains the number of valid data entries in the transmit FIFO3. |

| Bit   | Attr | Reset Value | Description                                                      |
|-------|------|-------------|------------------------------------------------------------------|
|       |      |             | TFL2                                                             |
| 17:12 | RO   | 0x00        | Transmit FIFO2 Level                                             |
|       |      |             | Contains the number of valid data entries in the transmit FIFO2. |
|       |      |             | TFL1                                                             |
| 11:6  | RO   | 0x00        | Transmit FIFO1 Level                                             |
|       |      |             | Contains the number of valid data entries in the transmit FIFO1. |
|       |      |             | TFL0                                                             |
| 5:0   | RO   | 0x00        | Transmit FIFO0 Level                                             |
|       |      |             | Contains the number of valid data entries in the transmit FIFO0. |

#### I2S\_DMACR

Address: Operational Base + offset (0x0010)

DMA control register

| Bit   | Attr | Reset Value | Description                                                      |
|-------|------|-------------|------------------------------------------------------------------|
| 31:25 | RO   | 0x0         | reserved                                                         |
|       |      |             | RDE                                                              |
| 24    | RW   | 0×0         | Receive DMA Enable                                               |
| 24    | L AN | 0.00        | 0 : Receive DMA disabled                                         |
|       |      |             | 1 : Receive DMA enabled                                          |
| 23:21 | RO   | 0x0         | reserved                                                         |
|       |      |             | RDL                                                              |
|       |      | W 0x1f      | Receive Data Level                                               |
|       |      |             | This bit field controls the level at which a DMA request is made |
| 20:16 | RW   |             | by the receive logic. The watermark level = DMARDL+1; that is,   |
| 20.10 |      |             | dma_rx_req is generated when the number of valid data entries    |
|       |      |             | in the receive FIFO (RXFIFO0 if RCSR=00;RXFIFO1 if               |
|       |      |             | RCSR=01,RXFIFO2 if RCSR=10,RXFIFO3 if RCSR=11)is equal to        |
|       |      |             | or above this field value + 1.                                   |
| 15:9  | RO   | 0x0         | reserved                                                         |
|       |      |             | TDE                                                              |
| 8     | RW   | 0x0         | Transmit DMA Enable                                              |
| 0     | r vv | 0.00        | 0 : Transmit DMA disabled                                        |
|       |      |             | 1 : Transmit DMA enabled                                         |
| 7:5   | RO   | 0x0         | reserved                                                         |

| Bit | Attr | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:0 | RW   | 0x00        | TDL<br>Transmit Data Level<br>This bit field controls the level at which a DMA request is made by<br>the transmit logic. It is equal to the watermark level; that is, the<br>dma_tx_req signal is generated when the number of valid data<br>entries in the TXFIFO(TXFIFO0 if TCSR=00;TXFIFO1 if<br>TCSR=01,TXFIFO2 if TCSR=10,TXFIFO3 if TCSR=11)is equal to<br>or below this field value. |

### I2S\_INTCR

Address: Operational Base + offset (0x0014)

interrupt control register

| Bit   | Attr | Reset Value | Description                                                                                                                                                                                                                                                   |
|-------|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:25 | RO   | 0x0         | reserved                                                                                                                                                                                                                                                      |
| 24:20 | RW   | 0×00        | RFT<br>Receive FIFO Threshold<br>When the number of receive FIFO entries (RXFIFO0 if RCSR=00;<br>RXFIFO1 if RCSR=01, RXFIFO2 if RCSR=10, RXFIFO3 if<br>RCSR=11) is more than or equal to this threshold plus 1, the                                           |
| 19    | RO   | 0x0         | receive FIFO full interrupt is triggered.<br>reserved                                                                                                                                                                                                         |
|       |      | 0x0         | RXOIC<br>RX overrun interrupt clear<br>Write 1 to clear RX overrun interrupt.                                                                                                                                                                                 |
| 17    | RW   | 0×0         | RXOIE<br>RX overrun interrupt enable<br>0:disable<br>1:enable                                                                                                                                                                                                 |
| 16    | RW   | 0×0         | RXFIE<br>RX full interrupt enable<br>0:disable<br>1:enable                                                                                                                                                                                                    |
| 15:9  | RO   | 0x0         | reserved                                                                                                                                                                                                                                                      |
| 8:4   | RW   | 0×00        | TFT<br>Transmit FIFO Threshold<br>When the number of transmit FIFO (TXFIFO0 if TCSR=00;<br>TXFIFO1 if TCSR=01, TXFIFO2 if TCSR=10, TXFIFO3 if TCSR=11)<br>entries is less than or equal to this threshold, the transmit FIFO<br>empty interrupt is triggered. |
| 3     | RO   | 0x0         | reserved                                                                                                                                                                                                                                                      |

| Bit | Attr | Reset Value | Description                             |
|-----|------|-------------|-----------------------------------------|
|     |      | 0.0         | TXUIC                                   |
| 2   | WO   | 0x0         | TX underrun interrupt clear             |
|     |      |             | Write 1 to clear TX underrun interrupt. |
|     |      | 0×0         | TXUIE                                   |
| 1   | RW   |             | TX underrun interrupt enable            |
| 1   |      |             | 0:disable                               |
|     |      |             | 1:enable                                |
|     |      | V 0x0       | TXEIE                                   |
| 0   | RW   |             | TX empty interrupt enable               |
| 0   | K VV |             | 0:disable                               |
|     |      |             | 1:enable                                |

### I2S\_INTSR

Address: Operational Base + offset (0x0018)

interrupt status register

| Bit   | Attr | Reset Value | Description           |
|-------|------|-------------|-----------------------|
| 31:18 | RO   | 0x0         | reserved              |
|       |      |             | RXOI                  |
| 17    | RO   | 0x0         | RX overrun interrupt  |
| 1/    | RU   | 0.00        | 0:inactive            |
|       |      |             | 1:active              |
|       |      |             | RXFI                  |
| 16    | RO   | 0x0         | RX full interrupt     |
| 10    | ĸŪ   |             | 0:inactive            |
|       |      |             | 1:active              |
| 15:2  | RO   | 0x0         | reserved              |
|       |      | 0x0         | TXUI                  |
| 1     | RO   |             | TX underrun interrupt |
| T     | RU   |             | 0:inactive            |
|       |      |             | 1:active              |
|       |      | 0x0         | TXEI                  |
| 0     | RO   |             | TX empty interrupt    |
| 0     |      |             | 0:inactive            |
|       |      |             | 1:active              |

### I2S\_XFER

Address: Operational Base + offset (0x001c)

Transfer Start Register

| Bit  | Attr | Reset Value | Description                                                                |
|------|------|-------------|----------------------------------------------------------------------------|
| 31:2 | RO   | 0x0         | reserved                                                                   |
| 1    | RW   | 0×0         | RXS<br>RX Transfer start bit<br>0:stop RX transfer.<br>1:start RX transfer |
| 0    | RW   | 0x0         | TXS<br>TX Transfer start bit<br>0:stop TX transfer.<br>1:start TX transfer |

#### I2S\_CLR

Address: Operational Base + offset (0x0020)

SCLK domain logic clear Register

| Bit  | Attr | Reset Value | Description                                                      |
|------|------|-------------|------------------------------------------------------------------|
| 31:2 | RO   | 0x0         | reserved                                                         |
|      |      |             | RXC                                                              |
| 1    | RW   | 0x0         | RX logic clear                                                   |
|      |      |             | This is a self cleared bit. Write 1 to clear all receive logic.  |
|      |      |             | TXC                                                              |
| 0    | RW   | 0x0         | TX logic clear                                                   |
|      |      |             | This is a self cleared bit. Write 1 to clear all transmit logic. |

### I2S\_TXDR

Address: Operational Base + offset (0x0024)

Transmit FIFO Data Register

| Bit  | Attr | Reset Value | Description                                                   |
|------|------|-------------|---------------------------------------------------------------|
|      |      |             | TXDR                                                          |
| 31:0 | WO   | 0x00000000  | Transmit FIFO Data Register                                   |
|      |      |             | When it is written to, data are moved into the transmit FIFO. |

### I2S\_RXDR

Address: Operational Base + offset (0x0028)

Receive FIFO Data Register

| Bit  | Attr         | Reset Value | Description                                                      |  |
|------|--------------|-------------|------------------------------------------------------------------|--|
|      |              |             | RXDR                                                             |  |
| 31:0 | 31:0 RO 0x00 |             | Receive FIFO Data Register                                       |  |
|      |              |             | When the register is read, data in the receive FIFO is accessed. |  |

### I2S\_RXFIFOLR

Address: Operational Base + offset (0x002c)

RX FIFO level register

| Bit   | Attr | Reset Value | Description                                                     |  |  |  |
|-------|------|-------------|-----------------------------------------------------------------|--|--|--|
| 31:24 | RO   | 0x0         | reserved                                                        |  |  |  |
|       |      |             | RFL3                                                            |  |  |  |
| 23:18 | RO   | 0x00        | Receive FIFO3 Level                                             |  |  |  |
|       |      |             | Contains the number of valid data entries in the receive FIFO3. |  |  |  |
|       |      |             | RFL2                                                            |  |  |  |
| 17:12 | RO   | 0x00        | Receive FIFO2 Level                                             |  |  |  |
|       |      |             | Contains the number of valid data entries in the receive FIFO2. |  |  |  |
|       |      |             | RFL1                                                            |  |  |  |
| 11:6  | RU   | 0x00        | Receive FIFO1 Level                                             |  |  |  |
|       |      |             | Contains the number of valid data entries in the receive FIFO1. |  |  |  |
|       |      |             | RFL0                                                            |  |  |  |
| 5:0   | RO   | 0x00        | Receive FIFO0 Level                                             |  |  |  |
|       |      |             | Contains the number of valid data entries in the receive FIFO0. |  |  |  |

### **I2S\_VERSION**

Address: Operational Base + offset (0x0030)

I2S version

| Bit  | Attr | Reset Value | Description |
|------|------|-------------|-------------|
| 31:0 | RO   | 0x20150001  | I2S version |

# 25.5 16.5 Interface description

| Module Pin | Direction | Pad Name           | IOMUX Setting |
|------------|-----------|--------------------|---------------|
|            |           | Interface for i2s1 |               |

#### RK3328 TRM-Part1

| Module Pin   | Direction | Pad Name                                                     | IOMUX Setting                         |
|--------------|-----------|--------------------------------------------------------------|---------------------------------------|
| i2s1_mclk    | I/O       | IO_I2S1mclk_Nouse0_TSPd0m1_CIF<br>data7m1_GPIO2C2vccio5      | GRF_GPIO2BH_IOMUX[8:6]=3′b001         |
| i2s1_sclk    | I/O       | IO_I2S1sclk_PDMclkm0_TSPd7m1_C<br>IFdata7m1_GPIO2C2vccio5    | GRF_GPIO2CL_IOMUX[8:6]=3'b001         |
| i2s1_lrck_rx | I/O       | IO_I2S1lrckrx_NOuse1_TSPd5m1_CI<br>Fdata5m1_GPIO2C0vccio5    | GRF_GPIO2CL_IOMUX[2:0]=3'b001         |
| i2s1_lrck_tx | I/O       | IO_I2S1lrcktx_SPDIFtxm1_TSPd6m1<br>_CIFdata6m1_GPIO2C1vccio5 | GRF_GPIO2CL_IOMUX[5:3]=3'b001         |
| i2s1_sdo0    | 0         | IO_I2S1sdo_PDMfsyncm0_GPIO2C7v<br>ccio5                      | GRF_GPIO2CH_IOMUX[7:6]=2′b01          |
| i2s1_sdo1    | 0         | IO_I2S1sdio1_PDMsdi1m0_CARDrst<br>m1_GPIO2C4vccio5           | GRF_GPIO2CL_IOMUX[14:12]=3′b001       |
| i2s1_sdo2    | 0         | IO_I2S1sdio2_PDMsdi2m0_CARDdet<br>m1_GPIO2C5vccio5           | GRF_GPIO2CH_IOMUX[2:0]=3′b001         |
| i2s1_sdo3    | 0         | IO_I2S1sdio3_PDMsdi3m0_CARDiom<br>1_GPIO2C6vccio5            | GRF_GPIO2CH_IOMUX[5:3]=3′b001         |
| i2s1_sdi0    | I         | IO_I2S1sdi_PDMsdi0m0_CARDclkm1<br>_GPIO2C3vccio5             | GRF_GPIO2CL_IOMUX[11:9]=3'b001        |
| i2s1_sdi1    | I         | IO_I2S1sdio1_PDMsdi1m0_CARDrst<br>m1_GPIO2C4vccio5           | GRF_GPIO2CL_IOMUX[14:12]=3'b001       |
| i2s1_sdi2    | I         | IO_I2S1sdio2_PDMsdi2m0_CARDdet<br>m1_GPIO2C5vccio5           | GRF_GPIO2CH_IOMUX[2:0]=3′b001         |
| i2s1_sdi3    | I         | IO_I2S1sdio3_PDMsdi3m0_CARDiom<br>1_GPIO2C6vccio5            | GRF_GPIO2CH_IOMUX[5:3]=3′b001         |
|              |           | Interface for i2s2 M0 IO                                     | · · · · · · · · · · · · · · · · · · · |
| i2s2_mclk    | I/O       | IO_I2S2mclk_GMACclkm1_GPIO1C5v<br>ccio4                      | GRF_GPIO1C_IOMUX[11:10]=2'b01         |
| i2s2_sclk    | I/O       | IO_I2S2sclkm0_GMACrxdvm1_PDMcl<br>km1_GPIO1C6vccio4          | GRF_GPIO1C_IOMUX[13:12]=2′b01         |

#### RK3328 TRM-Part1

| Module Pin Direction |     | Pad Name                                                                                                       | IOMUX Setting                 |
|----------------------|-----|----------------------------------------------------------------------------------------------------------------|-------------------------------|
| i2s2_lrck_tx         | I/O | IO_I2S2lrcktxm0_GMACmdcm1_PDM<br>sdi0m1_GPIO1C7vccio4                                                          | GRF_GPIO1C_IOMUX[15:14]=2'b01 |
| i2s2_lrck_rx         | I/O | IO_I2S2lrckrxm0_CLKout_gmacm2_<br>PDMsdi3m1_GPIO1D2vccio4                                                      | GRF_GPIO1D_IOMUX[5:4]=2'b01   |
| i2s2_sdi             | Ι   | IO_I2S2sdim0_GMACrxerm1_PDMsdi<br>1m1_GPIO1D0vccio4                                                            | GRF_GPIO1D_IOMUX[1:0]=2'b01   |
| i2s2_sdo             | 0   | IO_I2S2sdom0_GMACtxenm1_PDMsd<br>i2m1_GPIO1D1vccio4                                                            | GRF_GPIO1D_IOMUX[3:2]=2′b01   |
|                      | -   | Interface for i2s2 M1 IO                                                                                       |                               |
| i2s2_sclk            | I/O | I/O IO_TSPvalid_CIFvsync_SDMMC0EXTc GRF_GPIO3AL_IOMU<br>md_SPIclkm2_USB3PHYdebug1_I2S2<br>sclkm1_GPIO3A0vccio6 |                               |
| i2s2_lrck_tx         | I/O | IO_TSPd4_CIFdata4_SPIcsn0m2_I2S<br>2lrcktxm1_USB3PHYdebug8_I2S2lrck<br>rxm1_GPIO3B0vccio6                      | GRF_GPIO3BL_IOMUX[2:0]=3'b100 |
| i2s2_lrck_rx         | I/O | IO_TSPd4_CIFdata4_SPIcsn0m2_I2S<br>2lrcktxm1_USB3PHYdebug8_I2S2lrck<br>rxm1_GPIO3B0vccio6                      | GRF_GPIO3BL_IOMUX[2:0]=3'b110 |
| i2s2_sdi             | I   | IO_TSPclk_CIFclkin_SDMMC0EXTclko<br>ut_SPIrxdm2_USB3PHYdebug3_I2S2<br>sdim1_GPIO3A2vccio6                      | GRF_GPIO3AL_IOMUX[8:6]=3'b110 |
| i2s2_sdo             | 0   | IO_TSPfail_CIFhref_SDMMC0EXTdet_<br>SPItxdm2_USB3PHYdebug2_I2S2sdo<br>m1_GPIO3A1vccio6                         | GRF_GPIO3AL_IOMUX[5:3]=3'b110 |

Notes: I=input, O=output, I/O=input/output, bidirectional

The i2s1\_sdix(x=1,2,3) and i2s1\_sdox(x=1,2,3) signals shares the same IO, the direction is configured by setting GRF\_CON\_CON10 [4:2]. Each bit controls the direction of IO\_I2S1sdio1\_PDMsdi1m0\_CARDrstm1\_GPI02C4vccio5,

IO\_I2S1sdio2\_PDMsdi2m0\_CARDdetm1\_GPIO2C5vccio5 and

IO\_I2S1sdio3\_PDMsdi3m0\_CARDiom1\_GPIO2C6vccio5 respectively with high level meaning output.

When M0 IO is used, I2S2 can used as transmitter and receiver and the same time.

When M1 IO is used,

IO\_TSPd4\_CIFdata4\_SPIcsn0m2\_I2S2lrcktxm1\_USB3PHYdebug8\_I2S2lrckrxm1\_GPIO3B0vccio6 is connected to either of i2s2\_lrck\_rx and i2s2\_lrck\_tx at the same time, so I2S2 cannot be used as transmitter and receiver and the same time.

The I2S1 is also connected to the ACODEC which supports master and slave mode. When the ACODEC acts as a master, the signal i2s1\_lrck\_tx\_in which connected to I2S1 can be selected from ACODEC or external IO by setting GRF\_SOC\_CON2[15].

| Module Pin       | Direction | Module Pin   | Direction |
|------------------|-----------|--------------|-----------|
| i2s1_mclk        | 0         | pin_mclk     | Ι         |
| i2s1_sclk_out    | 0         | pin_sck_i    | Ι         |
| i2s1_sclk_in     | Ι         | pin_sck_o    | 0         |
| i2s1_lrck_tx_out | 0         | pin_dac_ws_i | Ι         |
| i2s1_lrck_tx_in  | Ι         | pin_dac_ws_o | 0         |
| i2s1_sdo0        | 0         | pin_dac_sd_i | Ι         |

| Table 25-2 Interface Between | I2S1 and ACODEC |
|------------------------------|-----------------|
| Table 25 2 Interface Detween |                 |

The I2S0 module is connected to the audio interface of HDMI, which supports 8 channels audio data transmitting.

Table 25-3 I2S Interface Between I2S2 and HDMI

| Module Pin       | Direction | Module Pin    | Direction |
|------------------|-----------|---------------|-----------|
| i2s0_sclk_out    | 0         | ii2sclk       | Ι         |
| i2s0_tx_lrck_out | 0         | ii2slrck      | Ι         |
| i2s0_sdo[3:0]    | 0         | ii2sdata[3:0] | Ι         |

# 25.6 16.6 Application Notes

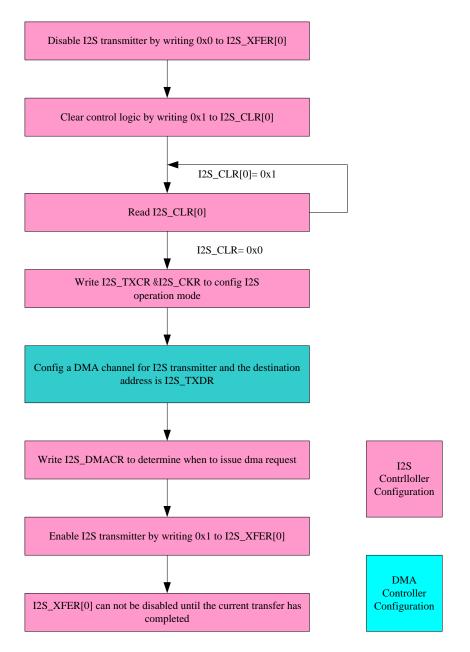



Fig. 25-11 I2S/PCM controller transmit operation flow chart

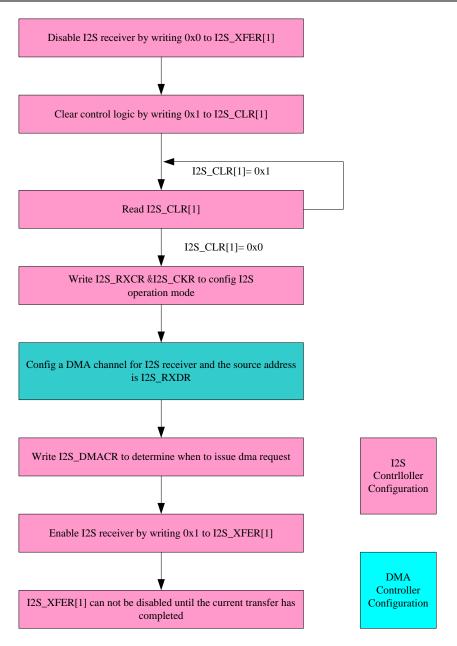



Fig. 25-12 I2S/PCM controller receive operation flow chart

# Chapter 26 Graphics Process Unit (GPU)

# 26.1 Overview

The GPU is a hardware accelerator for 2D and 3D graphics systems. Its triangle rate can be 30 Mtris/s, pixel rate can be 300Mpix/s@300MHz.

The GPU supports the following graphics standards:

- OpenGL ES 2.0
- OpenGL ES 1.1
- OpenVG 1.1
- EGL 1.5

The GPU consists of:

- 2 Pixel Processors (PPs)
- 1 geometry Processor (GP)
- 2 Level2 Cache controller (L2)
- 1 Memory Management Unit (MMU) for each GP and PP included in the GPU

The GPU contains a 32-bit APB bus and 2 128-bit AXI bus. CPU configures GPU through APB bus, GPU read and write data through AXI bus.

## 26.2 Block Diagram

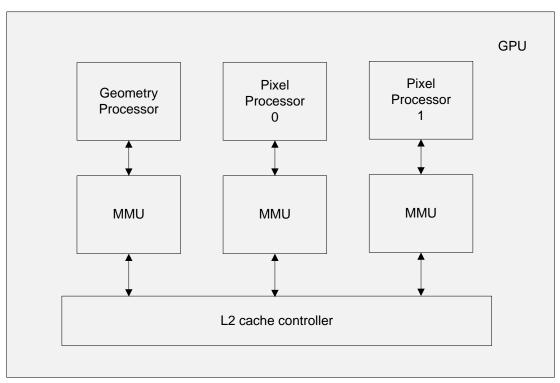



Fig. 26-1 GPU block diagram

The GPU contains 1 geometry processor, 2 pixel processors, 3 MMU and 2 L2 cache controller.

The pixel processor features are:

- each pixel processor used processes a different tile, enabling a faster turnaround
- programmable fragment shader
- alpha blending
- complete non-power-of-2 texture support
- cube mapping
- fast dynamic branching
- fast trigonometric functions, including arctangent
- framebuffer blend with destination Alpha

#### RK3328 TRM-Part1

- indexable texture samplers
- line, quad, triangle and point sprites
- no limit on program length
- perspective correct texturing
- point sampling, bilinear, and trilinear filtering
- programmable mipmap level-of-detail biasing and replacement
- stencil buffering, 8-bit
- two-sided stencil
- unlimited dependent texture reads
- 4-level hierarchical Z and stencil operations
- 4-bit per texel compressed texture format
- Up to 512 times Full Scene Anti-Aliasing (FSAA). 4x multisampling by 128x supersampling.

The geometry processor features are:

- two programmable vertex shaders
- flexible input and output formats
- autonomous operation tile list generation
- indexed and non-indexed geometry input
- primitive constructions with points, lines, triangles and quads.

The L2 cache controller features are:

- 64KB
- 4-way set-associative
- supports up to 32 outstanding AXI transactions
- implements a standard pseudo-LRU algorithm
- cache line and line fill burst size is 64 bytes
- supports eight to 64bytes uncached read bursts and write bursts
- 128-bit interface to memory sub-system
- support for hit-under-miss and miss-under-miss with the only limitation of AXI ordering rules.

The MMU features are:

- accesses control registers through the bus infrastructure to configure the memory system.
- each processor has its own MMU to control and translate memory accesses that the GPU initiates.

APB broadcast features are:

- configuration of multiple PPs in parallel
- the ability to use a single read to poll multiple PP interrupts.
- DMA features are:
- The register DMA reduces the number of required APB transactions by configuring the rest of the GPU using configuration data stored in main memory. The driver writes the configuration data for each frame to main memory while the previous frame is rendered. The register DMA unit performs the setup after the previous frame is completed. This reduces the system overhead between frames, and reduces the workload for the CPU. The DMA simplifies transfer of GPU commands and data from memory to the pixel processors. A counter in the DMA determines how many register write packages are processed.

Load balancing features are:

• The address of the tile lists and the number of tiles in the framebuffer is programmable. The dynamic load balancing unit assigns a new tile to the different pixel processors ecause they complete the previous tile. The dynamic load balancing unit iterates over the frame in a Z-order pattern starting at the first tile for pixel processor 0-3 and the last tile for pixel processor 4-7. This ensures that the pixel processors connected to the same level 2 cache process nearby tiles. This improves cache efficiency. This also balances the workload for the different pixel processors regardless of the frame content.

# **26.3 Register Description**

The GPU base addressis 0XFF30\_0000.

# **26.4 Interface Description**

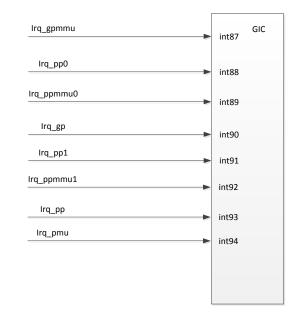
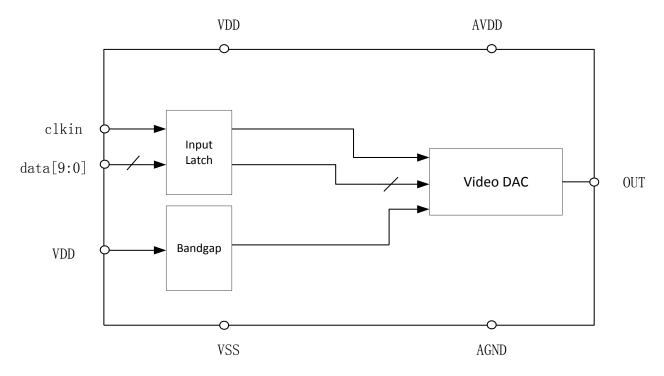



Fig. 26-2 GPU interrupt connection

Pmu interrupt keeps 0 because GPU is not configured to support PMU function.

# Chapter 27 Video Digital Analog Converter (VDAC)

## 27.1 Overview


Video DAC PHY is a small-sized, 27~300MHz, 1-channel, 10bit, high-speed D/A converter optimized for video or graphic applications. This IP designed to support Component(Pr,Y,Pb),Composite(CVBS), and S-Video(Y,C) signal standards for "consumer quality".

## 27.1.1 Features

- 10-bit resolution
- Single channel
- Up to 300Msps throughput rate
- Programmable current output: 14.7mA~ 34.8mA with 64 adjustable steps
- Current consumption: 1mA @Iout = 14.7mA, 39mA @Iout = 34.8mA
- 57dBc SFDR @Iout = 14.7, fclk = 300MHz and fout = 5MHz;45dBc SFDR @Iout = 34.8, fclk = 300MHz and fout = 5MHz;
- Clock frequency : 27MHz to 300MHz
- Cable connection detection
- Build-in bandgap reference
- 1.8V supply for analog and 1.0V supply for digital

# 27.2 Block Diagram

The architecture is shown in the following figure.





# **27.3 Function Description**

### 27.3.1 System configure write timing for apb bus

The Write transfer starts with the address, write data, write signl all changing after the rising edge of the clock. The first clock cycle of the transfer is called the SETUP cycle. After the following clock edge the enable signal PENABLE is asserted and this indicates that

#### RK3328 TRM-Part1

ENABLE cycle is taking place. The address, data and control signals all remain valid throughout the ENABLE cycle. The transfer completes at the end of this cycle.

The enable signal, PENABLE, will be de-asserted at the end of the transfer. The select signal will also go LOW, unless the transfer is to be immediately follower by another transfer to the sample peripheral.

In order to reduce power consumption the address signal and the write signal will not change after a transfer until the next access occurs.

### 27.3.2 System configure read timing for apb bus

The timing of the address, write, select and strobe signals are all the same as for the write transfer. In the case of a read, the slave must provide the data during then ENABLE cycle. The data is sampled on the rising edge of clock at the end of the ENABLE cycle.

# **27.4 Register Description**

### 27.4.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

### 27.4.2 Registers Summary

| Name       | Offset | Size | Reset<br>Value | Description |
|------------|--------|------|----------------|-------------|
| VDAC_VDAC0 | 0x0000 | W    | 0x00000c0      | VDAC0       |
| VDAC_VDAC1 | 0x0280 | W    | 0x0000070      | VDAC1       |
| VDAC_VDAC2 | 0x0284 | W    | 0x0000020      | VDAC2       |
| VDAC_VDAC3 | 0x0288 | W    | 0x0000030      | VDAC3       |

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

### 1.4.3 Detail Register Description

### VDAC\_VDAC0

Address: Operational Base + offset (0x0000) VDAC0

| Bit  | Attr | <b>Reset Value</b> | Description                     |  |  |  |
|------|------|--------------------|---------------------------------|--|--|--|
| 31:8 | RO   | 0x0                | reserved                        |  |  |  |
|      |      |                    | RST_ANA                         |  |  |  |
| 7    | RW   | 0x1                | soft analog reset_n, low reset  |  |  |  |
|      |      |                    | soft analog reset_n, low reset  |  |  |  |
|      |      |                    | RST_DIG                         |  |  |  |
| 6    | RW   | 0x1                | soft digital reset_n, low reset |  |  |  |
|      |      |                    | soft digital reset_n, low reset |  |  |  |
| 5:0  | RO   | 0x0                | reserved                        |  |  |  |

### VDAC\_VDAC1

Address: Operational Base + offset (0x0280) VDAC1

| Bit  | Attr | <b>Reset Value</b> | Description                      |
|------|------|--------------------|----------------------------------|
| 31:8 | RO   | 0x0                | reserved                         |
|      |      |                    | CUR_REF                          |
| 7:4  | RW   | 0x7                | select typical current reference |
|      |      |                    | select typical current reference |
| 3:2  | RO   | 0x0                | reserved                         |
|      |      |                    | DR_PWR_DOWN                      |
|      |      |                    | vdac driver power down           |
| 1    | RW   | 0x0                | vdac driver power down           |
|      |      |                    | 1: power down                    |
|      |      |                    | 0: power on                      |
|      |      |                    | BG_PWR_DOWN                      |
|      |      |                    | vdac band gap power down         |
| 0    | RW   | 0×0                | vdac band gap power down         |
|      |      |                    | 1: power down                    |
|      |      |                    | 0: power on                      |

#### VDAC\_VDAC2

Address: Operational Base + offset (0x0284) VDAC2

| Bit  | Attr | <b>Reset Value</b> | Description                    |  |  |  |
|------|------|--------------------|--------------------------------|--|--|--|
| 31:6 | RO   | 0x0                | reserved                       |  |  |  |
| 5:0  | RW   | 0x20               | CUR_CTR                        |  |  |  |
|      |      |                    | output current control for DAC |  |  |  |
|      |      |                    | output current control for DAC |  |  |  |
|      |      |                    | tvdac_sw[5:0]                  |  |  |  |

#### VDAC\_VDAC3

Address: Operational Base + offset (0x0288) VDAC3

Bit Attr Reset Value Description 31:6 RO 0x0 reserved CAB\_EN Enable cable connection detection for DAC 5 Enable cable connection detection for DAC RW 0x1 1: enable 0: disable CAB\_REF reference voltage for cable disconnection detection of DAC 4 RW 0x1 reference voltage for cable disconnection detection of DAC 0: select 500mV 1: select 800mV 0x0 3:1 RO reserved

| Bit | Attr | <b>Reset Value</b> | Description                                      |  |
|-----|------|--------------------|--------------------------------------------------|--|
|     |      | 0x0                | CAB_FLAG                                         |  |
| 0   | RW   |                    | status output for DAC cable connection detection |  |
|     |      |                    | (1 means cable disconnection)                    |  |

## **27.5 Application Notes**

## **27.5.1 CABLE DETECTION**

The DAC channel contains a cable detection circuit to detect the cable plug condition. For typical application, cable with 75 $\Omega$  characteristic impedance is used and DAC output is terminated by 75 $\Omega$  double termination. In such case, a 75 $\Omega$  source termination resistance is connected to ground at DAC output end. The 75 $\Omega$  source termination resistance combined with 75 $\Omega$  load termination resistance results in an equivalent load resistance of 37.5 $\Omega$ .

Therefore, the equivalent load resistance for DAC output is  $37.5\Omega$  when cable is connected. It becomes  $75\Omega$  when cable is not connected. Compared to the case cable is connected, DAC output level will be twice in the case that cable is not connected with identical output current.

To start cable detection, controller should enable this function (controlled by register tvdac\_dispdet\_en) and set the 10-bit input data for a DAC channel to be middle level. Then controller should select a proper reference voltage(controlled by register tvdac\_sw), which will be compared with DAC output level to judge whether cable is connected or not. The reference voltage selection is shown in following table.

| Tvdac_sw            | Tvdac_dispdet_sel | Reference voltage |
|---------------------|-------------------|-------------------|
| 6'b000000~6'b011111 | 1′b0              | 500mV             |
| 6′b100000~6′b111111 | 1′b1              | 800mV             |

If DAC output level is larger than the reference voltage, the cable detection flag signal(tvdac\_dispdet) will be high and it means cable is disconnected. Otherwise, the cable detection flag signal will be low and it means cable is connected.

| Tvdac_dispdet | 1 | Cable is connected    |
|---------------|---|-----------------------|
|               | 0 | Cable is disconnected |

### **27.5.2 TYPICAL CONFIGURATION**

The typical configuration is shown in following figure. DAC output is connected through  $75\Omega$  cable with  $75\Omega$  double termination.

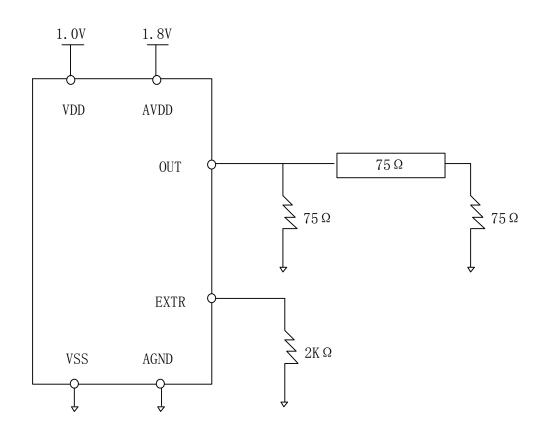



Fig. 27-2 VDAC Block Diagram

Analog supply AVDD should be connected to 1.8V power with decoupling. The digital supply VDD should be connected to digital core.

If external resistor is selected to produce reference current, EXTR should connect a  $2K\Omega$  resistor to ground.

Video DAC is suggested to placed close to the connector, in order to reduce signal noise and reflection due to impedance mismatch.

The DAC outputs are suggested to connect a  $75\Omega$  source termination resistance to ground. The termination resistors should be placed close to video DAC outputs to minimize reflection.

### **27.5.3 INSTRUCTION TO BRING UP VDAC**

The following is a step by step instruction for bringing up the VDAC to your system, we use APB bus to configure VDAC.

**Step1**. Turn on entire system.

Step2. Configure 0xb3(data) to 0x280(address) to disable VDAC.

**Step3**. Configure 0x39(data) to 0x284(address) for current control.

Step4. Configure VOP.

**Step5**. Configure 0xb0(data) to 0x280(address) to enable VDAC and for typical current reference.

**Step6**. Now, TVDAC is ready to go. Start your test.